PageRenderTime 76ms CodeModel.GetById 30ms RepoModel.GetById 0ms app.codeStats 0ms

/tools/testing/selftests/kvm/lib/x86_64/vmx.c

http://github.com/mirrors/linux
C | 539 lines | 390 code | 68 blank | 81 comment | 29 complexity | cb59b920c920fdf008cb1366c583bcd3 MD5 | raw file
Possible License(s): AGPL-1.0, GPL-2.0, LGPL-2.0
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * tools/testing/selftests/kvm/lib/x86_64/vmx.c
  4. *
  5. * Copyright (C) 2018, Google LLC.
  6. */
  7. #include "test_util.h"
  8. #include "kvm_util.h"
  9. #include "../kvm_util_internal.h"
  10. #include "processor.h"
  11. #include "vmx.h"
  12. #define PAGE_SHIFT_4K 12
  13. #define KVM_EPT_PAGE_TABLE_MIN_PADDR 0x1c0000
  14. bool enable_evmcs;
  15. struct hv_enlightened_vmcs *current_evmcs;
  16. struct hv_vp_assist_page *current_vp_assist;
  17. struct eptPageTableEntry {
  18. uint64_t readable:1;
  19. uint64_t writable:1;
  20. uint64_t executable:1;
  21. uint64_t memory_type:3;
  22. uint64_t ignore_pat:1;
  23. uint64_t page_size:1;
  24. uint64_t accessed:1;
  25. uint64_t dirty:1;
  26. uint64_t ignored_11_10:2;
  27. uint64_t address:40;
  28. uint64_t ignored_62_52:11;
  29. uint64_t suppress_ve:1;
  30. };
  31. struct eptPageTablePointer {
  32. uint64_t memory_type:3;
  33. uint64_t page_walk_length:3;
  34. uint64_t ad_enabled:1;
  35. uint64_t reserved_11_07:5;
  36. uint64_t address:40;
  37. uint64_t reserved_63_52:12;
  38. };
  39. int vcpu_enable_evmcs(struct kvm_vm *vm, int vcpu_id)
  40. {
  41. uint16_t evmcs_ver;
  42. struct kvm_enable_cap enable_evmcs_cap = {
  43. .cap = KVM_CAP_HYPERV_ENLIGHTENED_VMCS,
  44. .args[0] = (unsigned long)&evmcs_ver
  45. };
  46. vcpu_ioctl(vm, vcpu_id, KVM_ENABLE_CAP, &enable_evmcs_cap);
  47. /* KVM should return supported EVMCS version range */
  48. TEST_ASSERT(((evmcs_ver >> 8) >= (evmcs_ver & 0xff)) &&
  49. (evmcs_ver & 0xff) > 0,
  50. "Incorrect EVMCS version range: %x:%x\n",
  51. evmcs_ver & 0xff, evmcs_ver >> 8);
  52. return evmcs_ver;
  53. }
  54. /* Allocate memory regions for nested VMX tests.
  55. *
  56. * Input Args:
  57. * vm - The VM to allocate guest-virtual addresses in.
  58. *
  59. * Output Args:
  60. * p_vmx_gva - The guest virtual address for the struct vmx_pages.
  61. *
  62. * Return:
  63. * Pointer to structure with the addresses of the VMX areas.
  64. */
  65. struct vmx_pages *
  66. vcpu_alloc_vmx(struct kvm_vm *vm, vm_vaddr_t *p_vmx_gva)
  67. {
  68. vm_vaddr_t vmx_gva = vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
  69. struct vmx_pages *vmx = addr_gva2hva(vm, vmx_gva);
  70. /* Setup of a region of guest memory for the vmxon region. */
  71. vmx->vmxon = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
  72. vmx->vmxon_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmxon);
  73. vmx->vmxon_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmxon);
  74. /* Setup of a region of guest memory for a vmcs. */
  75. vmx->vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
  76. vmx->vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmcs);
  77. vmx->vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmcs);
  78. /* Setup of a region of guest memory for the MSR bitmap. */
  79. vmx->msr = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
  80. vmx->msr_hva = addr_gva2hva(vm, (uintptr_t)vmx->msr);
  81. vmx->msr_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->msr);
  82. memset(vmx->msr_hva, 0, getpagesize());
  83. /* Setup of a region of guest memory for the shadow VMCS. */
  84. vmx->shadow_vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
  85. vmx->shadow_vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->shadow_vmcs);
  86. vmx->shadow_vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->shadow_vmcs);
  87. /* Setup of a region of guest memory for the VMREAD and VMWRITE bitmaps. */
  88. vmx->vmread = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
  89. vmx->vmread_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmread);
  90. vmx->vmread_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmread);
  91. memset(vmx->vmread_hva, 0, getpagesize());
  92. vmx->vmwrite = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
  93. vmx->vmwrite_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmwrite);
  94. vmx->vmwrite_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmwrite);
  95. memset(vmx->vmwrite_hva, 0, getpagesize());
  96. /* Setup of a region of guest memory for the VP Assist page. */
  97. vmx->vp_assist = (void *)vm_vaddr_alloc(vm, getpagesize(),
  98. 0x10000, 0, 0);
  99. vmx->vp_assist_hva = addr_gva2hva(vm, (uintptr_t)vmx->vp_assist);
  100. vmx->vp_assist_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vp_assist);
  101. /* Setup of a region of guest memory for the enlightened VMCS. */
  102. vmx->enlightened_vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(),
  103. 0x10000, 0, 0);
  104. vmx->enlightened_vmcs_hva =
  105. addr_gva2hva(vm, (uintptr_t)vmx->enlightened_vmcs);
  106. vmx->enlightened_vmcs_gpa =
  107. addr_gva2gpa(vm, (uintptr_t)vmx->enlightened_vmcs);
  108. *p_vmx_gva = vmx_gva;
  109. return vmx;
  110. }
  111. bool prepare_for_vmx_operation(struct vmx_pages *vmx)
  112. {
  113. uint64_t feature_control;
  114. uint64_t required;
  115. unsigned long cr0;
  116. unsigned long cr4;
  117. /*
  118. * Ensure bits in CR0 and CR4 are valid in VMX operation:
  119. * - Bit X is 1 in _FIXED0: bit X is fixed to 1 in CRx.
  120. * - Bit X is 0 in _FIXED1: bit X is fixed to 0 in CRx.
  121. */
  122. __asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory");
  123. cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1);
  124. cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0);
  125. __asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory");
  126. __asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory");
  127. cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1);
  128. cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0);
  129. /* Enable VMX operation */
  130. cr4 |= X86_CR4_VMXE;
  131. __asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory");
  132. /*
  133. * Configure IA32_FEATURE_CONTROL MSR to allow VMXON:
  134. * Bit 0: Lock bit. If clear, VMXON causes a #GP.
  135. * Bit 2: Enables VMXON outside of SMX operation. If clear, VMXON
  136. * outside of SMX causes a #GP.
  137. */
  138. required = FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
  139. required |= FEAT_CTL_LOCKED;
  140. feature_control = rdmsr(MSR_IA32_FEAT_CTL);
  141. if ((feature_control & required) != required)
  142. wrmsr(MSR_IA32_FEAT_CTL, feature_control | required);
  143. /* Enter VMX root operation. */
  144. *(uint32_t *)(vmx->vmxon) = vmcs_revision();
  145. if (vmxon(vmx->vmxon_gpa))
  146. return false;
  147. return true;
  148. }
  149. bool load_vmcs(struct vmx_pages *vmx)
  150. {
  151. if (!enable_evmcs) {
  152. /* Load a VMCS. */
  153. *(uint32_t *)(vmx->vmcs) = vmcs_revision();
  154. if (vmclear(vmx->vmcs_gpa))
  155. return false;
  156. if (vmptrld(vmx->vmcs_gpa))
  157. return false;
  158. /* Setup shadow VMCS, do not load it yet. */
  159. *(uint32_t *)(vmx->shadow_vmcs) =
  160. vmcs_revision() | 0x80000000ul;
  161. if (vmclear(vmx->shadow_vmcs_gpa))
  162. return false;
  163. } else {
  164. if (evmcs_vmptrld(vmx->enlightened_vmcs_gpa,
  165. vmx->enlightened_vmcs))
  166. return false;
  167. current_evmcs->revision_id = EVMCS_VERSION;
  168. }
  169. return true;
  170. }
  171. /*
  172. * Initialize the control fields to the most basic settings possible.
  173. */
  174. static inline void init_vmcs_control_fields(struct vmx_pages *vmx)
  175. {
  176. uint32_t sec_exec_ctl = 0;
  177. vmwrite(VIRTUAL_PROCESSOR_ID, 0);
  178. vmwrite(POSTED_INTR_NV, 0);
  179. vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PINBASED_CTLS));
  180. if (vmx->eptp_gpa) {
  181. uint64_t ept_paddr;
  182. struct eptPageTablePointer eptp = {
  183. .memory_type = VMX_BASIC_MEM_TYPE_WB,
  184. .page_walk_length = 3, /* + 1 */
  185. .ad_enabled = !!(rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & VMX_EPT_VPID_CAP_AD_BITS),
  186. .address = vmx->eptp_gpa >> PAGE_SHIFT_4K,
  187. };
  188. memcpy(&ept_paddr, &eptp, sizeof(ept_paddr));
  189. vmwrite(EPT_POINTER, ept_paddr);
  190. sec_exec_ctl |= SECONDARY_EXEC_ENABLE_EPT;
  191. }
  192. if (!vmwrite(SECONDARY_VM_EXEC_CONTROL, sec_exec_ctl))
  193. vmwrite(CPU_BASED_VM_EXEC_CONTROL,
  194. rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  195. else {
  196. vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS));
  197. GUEST_ASSERT(!sec_exec_ctl);
  198. }
  199. vmwrite(EXCEPTION_BITMAP, 0);
  200. vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0);
  201. vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1); /* Never match */
  202. vmwrite(CR3_TARGET_COUNT, 0);
  203. vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) |
  204. VM_EXIT_HOST_ADDR_SPACE_SIZE); /* 64-bit host */
  205. vmwrite(VM_EXIT_MSR_STORE_COUNT, 0);
  206. vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0);
  207. vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) |
  208. VM_ENTRY_IA32E_MODE); /* 64-bit guest */
  209. vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0);
  210. vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0);
  211. vmwrite(TPR_THRESHOLD, 0);
  212. vmwrite(CR0_GUEST_HOST_MASK, 0);
  213. vmwrite(CR4_GUEST_HOST_MASK, 0);
  214. vmwrite(CR0_READ_SHADOW, get_cr0());
  215. vmwrite(CR4_READ_SHADOW, get_cr4());
  216. vmwrite(MSR_BITMAP, vmx->msr_gpa);
  217. vmwrite(VMREAD_BITMAP, vmx->vmread_gpa);
  218. vmwrite(VMWRITE_BITMAP, vmx->vmwrite_gpa);
  219. }
  220. /*
  221. * Initialize the host state fields based on the current host state, with
  222. * the exception of HOST_RSP and HOST_RIP, which should be set by vmlaunch
  223. * or vmresume.
  224. */
  225. static inline void init_vmcs_host_state(void)
  226. {
  227. uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS);
  228. vmwrite(HOST_ES_SELECTOR, get_es());
  229. vmwrite(HOST_CS_SELECTOR, get_cs());
  230. vmwrite(HOST_SS_SELECTOR, get_ss());
  231. vmwrite(HOST_DS_SELECTOR, get_ds());
  232. vmwrite(HOST_FS_SELECTOR, get_fs());
  233. vmwrite(HOST_GS_SELECTOR, get_gs());
  234. vmwrite(HOST_TR_SELECTOR, get_tr());
  235. if (exit_controls & VM_EXIT_LOAD_IA32_PAT)
  236. vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT));
  237. if (exit_controls & VM_EXIT_LOAD_IA32_EFER)
  238. vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER));
  239. if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
  240. vmwrite(HOST_IA32_PERF_GLOBAL_CTRL,
  241. rdmsr(MSR_CORE_PERF_GLOBAL_CTRL));
  242. vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS));
  243. vmwrite(HOST_CR0, get_cr0());
  244. vmwrite(HOST_CR3, get_cr3());
  245. vmwrite(HOST_CR4, get_cr4());
  246. vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE));
  247. vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE));
  248. vmwrite(HOST_TR_BASE,
  249. get_desc64_base((struct desc64 *)(get_gdt().address + get_tr())));
  250. vmwrite(HOST_GDTR_BASE, get_gdt().address);
  251. vmwrite(HOST_IDTR_BASE, get_idt().address);
  252. vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP));
  253. vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP));
  254. }
  255. /*
  256. * Initialize the guest state fields essentially as a clone of
  257. * the host state fields. Some host state fields have fixed
  258. * values, and we set the corresponding guest state fields accordingly.
  259. */
  260. static inline void init_vmcs_guest_state(void *rip, void *rsp)
  261. {
  262. vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR));
  263. vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR));
  264. vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR));
  265. vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR));
  266. vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR));
  267. vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR));
  268. vmwrite(GUEST_LDTR_SELECTOR, 0);
  269. vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR));
  270. vmwrite(GUEST_INTR_STATUS, 0);
  271. vmwrite(GUEST_PML_INDEX, 0);
  272. vmwrite(VMCS_LINK_POINTER, -1ll);
  273. vmwrite(GUEST_IA32_DEBUGCTL, 0);
  274. vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT));
  275. vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER));
  276. vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL,
  277. vmreadz(HOST_IA32_PERF_GLOBAL_CTRL));
  278. vmwrite(GUEST_ES_LIMIT, -1);
  279. vmwrite(GUEST_CS_LIMIT, -1);
  280. vmwrite(GUEST_SS_LIMIT, -1);
  281. vmwrite(GUEST_DS_LIMIT, -1);
  282. vmwrite(GUEST_FS_LIMIT, -1);
  283. vmwrite(GUEST_GS_LIMIT, -1);
  284. vmwrite(GUEST_LDTR_LIMIT, -1);
  285. vmwrite(GUEST_TR_LIMIT, 0x67);
  286. vmwrite(GUEST_GDTR_LIMIT, 0xffff);
  287. vmwrite(GUEST_IDTR_LIMIT, 0xffff);
  288. vmwrite(GUEST_ES_AR_BYTES,
  289. vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093);
  290. vmwrite(GUEST_CS_AR_BYTES, 0xa09b);
  291. vmwrite(GUEST_SS_AR_BYTES, 0xc093);
  292. vmwrite(GUEST_DS_AR_BYTES,
  293. vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093);
  294. vmwrite(GUEST_FS_AR_BYTES,
  295. vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093);
  296. vmwrite(GUEST_GS_AR_BYTES,
  297. vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093);
  298. vmwrite(GUEST_LDTR_AR_BYTES, 0x10000);
  299. vmwrite(GUEST_TR_AR_BYTES, 0x8b);
  300. vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0);
  301. vmwrite(GUEST_ACTIVITY_STATE, 0);
  302. vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS));
  303. vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0);
  304. vmwrite(GUEST_CR0, vmreadz(HOST_CR0));
  305. vmwrite(GUEST_CR3, vmreadz(HOST_CR3));
  306. vmwrite(GUEST_CR4, vmreadz(HOST_CR4));
  307. vmwrite(GUEST_ES_BASE, 0);
  308. vmwrite(GUEST_CS_BASE, 0);
  309. vmwrite(GUEST_SS_BASE, 0);
  310. vmwrite(GUEST_DS_BASE, 0);
  311. vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE));
  312. vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE));
  313. vmwrite(GUEST_LDTR_BASE, 0);
  314. vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE));
  315. vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE));
  316. vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE));
  317. vmwrite(GUEST_DR7, 0x400);
  318. vmwrite(GUEST_RSP, (uint64_t)rsp);
  319. vmwrite(GUEST_RIP, (uint64_t)rip);
  320. vmwrite(GUEST_RFLAGS, 2);
  321. vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  322. vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP));
  323. vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP));
  324. }
  325. void prepare_vmcs(struct vmx_pages *vmx, void *guest_rip, void *guest_rsp)
  326. {
  327. init_vmcs_control_fields(vmx);
  328. init_vmcs_host_state();
  329. init_vmcs_guest_state(guest_rip, guest_rsp);
  330. }
  331. void nested_vmx_check_supported(void)
  332. {
  333. struct kvm_cpuid_entry2 *entry = kvm_get_supported_cpuid_entry(1);
  334. if (!(entry->ecx & CPUID_VMX)) {
  335. print_skip("nested VMX not enabled");
  336. exit(KSFT_SKIP);
  337. }
  338. }
  339. void nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
  340. uint64_t nested_paddr, uint64_t paddr, uint32_t eptp_memslot)
  341. {
  342. uint16_t index[4];
  343. struct eptPageTableEntry *pml4e;
  344. TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
  345. "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
  346. TEST_ASSERT((nested_paddr % vm->page_size) == 0,
  347. "Nested physical address not on page boundary,\n"
  348. " nested_paddr: 0x%lx vm->page_size: 0x%x",
  349. nested_paddr, vm->page_size);
  350. TEST_ASSERT((nested_paddr >> vm->page_shift) <= vm->max_gfn,
  351. "Physical address beyond beyond maximum supported,\n"
  352. " nested_paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
  353. paddr, vm->max_gfn, vm->page_size);
  354. TEST_ASSERT((paddr % vm->page_size) == 0,
  355. "Physical address not on page boundary,\n"
  356. " paddr: 0x%lx vm->page_size: 0x%x",
  357. paddr, vm->page_size);
  358. TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
  359. "Physical address beyond beyond maximum supported,\n"
  360. " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
  361. paddr, vm->max_gfn, vm->page_size);
  362. index[0] = (nested_paddr >> 12) & 0x1ffu;
  363. index[1] = (nested_paddr >> 21) & 0x1ffu;
  364. index[2] = (nested_paddr >> 30) & 0x1ffu;
  365. index[3] = (nested_paddr >> 39) & 0x1ffu;
  366. /* Allocate page directory pointer table if not present. */
  367. pml4e = vmx->eptp_hva;
  368. if (!pml4e[index[3]].readable) {
  369. pml4e[index[3]].address = vm_phy_page_alloc(vm,
  370. KVM_EPT_PAGE_TABLE_MIN_PADDR, eptp_memslot)
  371. >> vm->page_shift;
  372. pml4e[index[3]].writable = true;
  373. pml4e[index[3]].readable = true;
  374. pml4e[index[3]].executable = true;
  375. }
  376. /* Allocate page directory table if not present. */
  377. struct eptPageTableEntry *pdpe;
  378. pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size);
  379. if (!pdpe[index[2]].readable) {
  380. pdpe[index[2]].address = vm_phy_page_alloc(vm,
  381. KVM_EPT_PAGE_TABLE_MIN_PADDR, eptp_memslot)
  382. >> vm->page_shift;
  383. pdpe[index[2]].writable = true;
  384. pdpe[index[2]].readable = true;
  385. pdpe[index[2]].executable = true;
  386. }
  387. /* Allocate page table if not present. */
  388. struct eptPageTableEntry *pde;
  389. pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size);
  390. if (!pde[index[1]].readable) {
  391. pde[index[1]].address = vm_phy_page_alloc(vm,
  392. KVM_EPT_PAGE_TABLE_MIN_PADDR, eptp_memslot)
  393. >> vm->page_shift;
  394. pde[index[1]].writable = true;
  395. pde[index[1]].readable = true;
  396. pde[index[1]].executable = true;
  397. }
  398. /* Fill in page table entry. */
  399. struct eptPageTableEntry *pte;
  400. pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size);
  401. pte[index[0]].address = paddr >> vm->page_shift;
  402. pte[index[0]].writable = true;
  403. pte[index[0]].readable = true;
  404. pte[index[0]].executable = true;
  405. /*
  406. * For now mark these as accessed and dirty because the only
  407. * testcase we have needs that. Can be reconsidered later.
  408. */
  409. pte[index[0]].accessed = true;
  410. pte[index[0]].dirty = true;
  411. }
  412. /*
  413. * Map a range of EPT guest physical addresses to the VM's physical address
  414. *
  415. * Input Args:
  416. * vm - Virtual Machine
  417. * nested_paddr - Nested guest physical address to map
  418. * paddr - VM Physical Address
  419. * size - The size of the range to map
  420. * eptp_memslot - Memory region slot for new virtual translation tables
  421. *
  422. * Output Args: None
  423. *
  424. * Return: None
  425. *
  426. * Within the VM given by vm, creates a nested guest translation for the
  427. * page range starting at nested_paddr to the page range starting at paddr.
  428. */
  429. void nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
  430. uint64_t nested_paddr, uint64_t paddr, uint64_t size,
  431. uint32_t eptp_memslot)
  432. {
  433. size_t page_size = vm->page_size;
  434. size_t npages = size / page_size;
  435. TEST_ASSERT(nested_paddr + size > nested_paddr, "Vaddr overflow");
  436. TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
  437. while (npages--) {
  438. nested_pg_map(vmx, vm, nested_paddr, paddr, eptp_memslot);
  439. nested_paddr += page_size;
  440. paddr += page_size;
  441. }
  442. }
  443. /* Prepare an identity extended page table that maps all the
  444. * physical pages in VM.
  445. */
  446. void nested_map_memslot(struct vmx_pages *vmx, struct kvm_vm *vm,
  447. uint32_t memslot, uint32_t eptp_memslot)
  448. {
  449. sparsebit_idx_t i, last;
  450. struct userspace_mem_region *region =
  451. memslot2region(vm, memslot);
  452. i = (region->region.guest_phys_addr >> vm->page_shift) - 1;
  453. last = i + (region->region.memory_size >> vm->page_shift);
  454. for (;;) {
  455. i = sparsebit_next_clear(region->unused_phy_pages, i);
  456. if (i > last)
  457. break;
  458. nested_map(vmx, vm,
  459. (uint64_t)i << vm->page_shift,
  460. (uint64_t)i << vm->page_shift,
  461. 1 << vm->page_shift,
  462. eptp_memslot);
  463. }
  464. }
  465. void prepare_eptp(struct vmx_pages *vmx, struct kvm_vm *vm,
  466. uint32_t eptp_memslot)
  467. {
  468. vmx->eptp = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
  469. vmx->eptp_hva = addr_gva2hva(vm, (uintptr_t)vmx->eptp);
  470. vmx->eptp_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->eptp);
  471. }