PageRenderTime 77ms CodeModel.GetById 17ms RepoModel.GetById 0ms app.codeStats 3ms

/cocos2d/external/bullet/BulletCollision/CollisionDispatch/btCollisionWorld.cpp

https://gitlab.com/gasabr/flappy-test
C++ | 1350 lines | 991 code | 262 blank | 97 comment | 80 complexity | 892ddf3a39c0a95aea46f0ac53a6ecad MD5 | raw file
  1. /*
  2. Bullet Continuous Collision Detection and Physics Library
  3. Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
  4. This software is provided 'as-is', without any express or implied warranty.
  5. In no event will the authors be held liable for any damages arising from the use of this software.
  6. Permission is granted to anyone to use this software for any purpose,
  7. including commercial applications, and to alter it and redistribute it freely,
  8. subject to the following restrictions:
  9. 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
  10. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
  11. 3. This notice may not be removed or altered from any source distribution.
  12. */
  13. #include "btCollisionWorld.h"
  14. #include "btCollisionDispatcher.h"
  15. #include "bullet/BulletCollision//CollisionDispatch/btCollisionObject.h"
  16. #include "bullet/BulletCollision//CollisionShapes/btCollisionShape.h"
  17. #include "bullet/BulletCollision//CollisionShapes/btConvexShape.h"
  18. #include "bullet/BulletCollision//NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
  19. #include "bullet/BulletCollision//CollisionShapes/btSphereShape.h" //for raycasting
  20. #include "bullet/BulletCollision//CollisionShapes/btBvhTriangleMeshShape.h" //for raycasting
  21. #include "bullet/BulletCollision//NarrowPhaseCollision/btRaycastCallback.h"
  22. #include "bullet/BulletCollision//CollisionShapes/btCompoundShape.h"
  23. #include "bullet/BulletCollision//NarrowPhaseCollision/btSubSimplexConvexCast.h"
  24. #include "bullet/BulletCollision//NarrowPhaseCollision/btGjkConvexCast.h"
  25. #include "bullet/BulletCollision//NarrowPhaseCollision/btContinuousConvexCollision.h"
  26. #include "bullet/BulletCollision//BroadphaseCollision/btCollisionAlgorithm.h"
  27. #include "bullet/BulletCollision//BroadphaseCollision/btBroadphaseInterface.h"
  28. #include "bullet/BulletCollision//BroadphaseCollision/btDbvt.h"
  29. #include "bullet/LinearMath/btAabbUtil2.h"
  30. #include "bullet/LinearMath/btQuickprof.h"
  31. #include "bullet/LinearMath/btSerializer.h"
  32. #include "bullet/BulletCollision//CollisionShapes/btConvexPolyhedron.h"
  33. #include "bullet/BulletCollision//CollisionDispatch/btCollisionObjectWrapper.h"
  34. #include "bullet/BulletCollision//Gimpact/btGImpactShape.h"
  35. //#define DISABLE_DBVT_COMPOUNDSHAPE_RAYCAST_ACCELERATION
  36. //#define USE_BRUTEFORCE_RAYBROADPHASE 1
  37. //RECALCULATE_AABB is slower, but benefit is that you don't need to call 'stepSimulation' or 'updateAabbs' before using a rayTest
  38. //#define RECALCULATE_AABB_RAYCAST 1
  39. //When the user doesn't provide dispatcher or broadphase, create basic versions (and delete them in destructor)
  40. #include "bullet/BulletCollision//CollisionDispatch/btCollisionDispatcher.h"
  41. #include "bullet/BulletCollision//BroadphaseCollision/btSimpleBroadphase.h"
  42. #include "bullet/BulletCollision//CollisionDispatch/btCollisionConfiguration.h"
  43. ///for debug drawing
  44. //for debug rendering
  45. #include "bullet/BulletCollision//CollisionShapes/btBoxShape.h"
  46. #include "bullet/BulletCollision//CollisionShapes/btCapsuleShape.h"
  47. #include "bullet/BulletCollision//CollisionShapes/btCompoundShape.h"
  48. #include "bullet/BulletCollision//CollisionShapes/btConeShape.h"
  49. #include "bullet/BulletCollision//CollisionShapes/btConvexTriangleMeshShape.h"
  50. #include "bullet/BulletCollision//CollisionShapes/btCylinderShape.h"
  51. #include "bullet/BulletCollision//CollisionShapes/btMultiSphereShape.h"
  52. #include "bullet/BulletCollision//CollisionShapes/btPolyhedralConvexShape.h"
  53. #include "bullet/BulletCollision//CollisionShapes/btSphereShape.h"
  54. #include "bullet/BulletCollision//CollisionShapes/btTriangleCallback.h"
  55. #include "bullet/BulletCollision//CollisionShapes/btTriangleMeshShape.h"
  56. #include "bullet/BulletCollision//CollisionShapes/btStaticPlaneShape.h"
  57. btCollisionWorld::btCollisionWorld(btDispatcher* dispatcher,btBroadphaseInterface* pairCache, btCollisionConfiguration* collisionConfiguration)
  58. :m_dispatcher1(dispatcher),
  59. m_broadphasePairCache(pairCache),
  60. m_debugDrawer(0),
  61. m_forceUpdateAllAabbs(true)
  62. {
  63. }
  64. btCollisionWorld::~btCollisionWorld()
  65. {
  66. //clean up remaining objects
  67. int i;
  68. for (i=0;i<m_collisionObjects.size();i++)
  69. {
  70. btCollisionObject* collisionObject= m_collisionObjects[i];
  71. btBroadphaseProxy* bp = collisionObject->getBroadphaseHandle();
  72. if (bp)
  73. {
  74. //
  75. // only clear the cached algorithms
  76. //
  77. getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(bp,m_dispatcher1);
  78. getBroadphase()->destroyProxy(bp,m_dispatcher1);
  79. collisionObject->setBroadphaseHandle(0);
  80. }
  81. }
  82. }
  83. void btCollisionWorld::addCollisionObject(btCollisionObject* collisionObject,short int collisionFilterGroup,short int collisionFilterMask)
  84. {
  85. btAssert(collisionObject);
  86. //check that the object isn't already added
  87. btAssert( m_collisionObjects.findLinearSearch(collisionObject) == m_collisionObjects.size());
  88. m_collisionObjects.push_back(collisionObject);
  89. //calculate new AABB
  90. btTransform trans = collisionObject->getWorldTransform();
  91. btVector3 minAabb;
  92. btVector3 maxAabb;
  93. collisionObject->getCollisionShape()->getAabb(trans,minAabb,maxAabb);
  94. int type = collisionObject->getCollisionShape()->getShapeType();
  95. collisionObject->setBroadphaseHandle( getBroadphase()->createProxy(
  96. minAabb,
  97. maxAabb,
  98. type,
  99. collisionObject,
  100. collisionFilterGroup,
  101. collisionFilterMask,
  102. m_dispatcher1,0
  103. )) ;
  104. }
  105. void btCollisionWorld::updateSingleAabb(btCollisionObject* colObj)
  106. {
  107. btVector3 minAabb,maxAabb;
  108. colObj->getCollisionShape()->getAabb(colObj->getWorldTransform(), minAabb,maxAabb);
  109. //need to increase the aabb for contact thresholds
  110. btVector3 contactThreshold(gContactBreakingThreshold,gContactBreakingThreshold,gContactBreakingThreshold);
  111. minAabb -= contactThreshold;
  112. maxAabb += contactThreshold;
  113. if(getDispatchInfo().m_useContinuous && colObj->getInternalType()==btCollisionObject::CO_RIGID_BODY && !colObj->isStaticOrKinematicObject())
  114. {
  115. btVector3 minAabb2,maxAabb2;
  116. colObj->getCollisionShape()->getAabb(colObj->getInterpolationWorldTransform(),minAabb2,maxAabb2);
  117. minAabb2 -= contactThreshold;
  118. maxAabb2 += contactThreshold;
  119. minAabb.setMin(minAabb2);
  120. maxAabb.setMax(maxAabb2);
  121. }
  122. btBroadphaseInterface* bp = (btBroadphaseInterface*)m_broadphasePairCache;
  123. //moving objects should be moderately sized, probably something wrong if not
  124. if ( colObj->isStaticObject() || ((maxAabb-minAabb).length2() < btScalar(1e12)))
  125. {
  126. bp->setAabb(colObj->getBroadphaseHandle(),minAabb,maxAabb, m_dispatcher1);
  127. } else
  128. {
  129. //something went wrong, investigate
  130. //this assert is unwanted in 3D modelers (danger of loosing work)
  131. colObj->setActivationState(DISABLE_SIMULATION);
  132. static bool reportMe = true;
  133. if (reportMe && m_debugDrawer)
  134. {
  135. reportMe = false;
  136. m_debugDrawer->reportErrorWarning("Overflow in AABB, object removed from simulation");
  137. m_debugDrawer->reportErrorWarning("If you can reproduce this, please email bugs@continuousphysics.com\n");
  138. m_debugDrawer->reportErrorWarning("Please include above information, your Platform, version of OS.\n");
  139. m_debugDrawer->reportErrorWarning("Thanks.\n");
  140. }
  141. }
  142. }
  143. void btCollisionWorld::updateAabbs()
  144. {
  145. BT_PROFILE("updateAabbs");
  146. btTransform predictedTrans;
  147. for ( int i=0;i<m_collisionObjects.size();i++)
  148. {
  149. btCollisionObject* colObj = m_collisionObjects[i];
  150. //only update aabb of active objects
  151. if (m_forceUpdateAllAabbs || colObj->isActive())
  152. {
  153. updateSingleAabb(colObj);
  154. }
  155. }
  156. }
  157. void btCollisionWorld::computeOverlappingPairs()
  158. {
  159. BT_PROFILE("calculateOverlappingPairs");
  160. m_broadphasePairCache->calculateOverlappingPairs(m_dispatcher1);
  161. }
  162. void btCollisionWorld::performDiscreteCollisionDetection()
  163. {
  164. BT_PROFILE("performDiscreteCollisionDetection");
  165. btDispatcherInfo& dispatchInfo = getDispatchInfo();
  166. updateAabbs();
  167. computeOverlappingPairs();
  168. btDispatcher* dispatcher = getDispatcher();
  169. {
  170. BT_PROFILE("dispatchAllCollisionPairs");
  171. if (dispatcher)
  172. dispatcher->dispatchAllCollisionPairs(m_broadphasePairCache->getOverlappingPairCache(),dispatchInfo,m_dispatcher1);
  173. }
  174. }
  175. void btCollisionWorld::removeCollisionObject(btCollisionObject* collisionObject)
  176. {
  177. //bool removeFromBroadphase = false;
  178. {
  179. btBroadphaseProxy* bp = collisionObject->getBroadphaseHandle();
  180. if (bp)
  181. {
  182. //
  183. // only clear the cached algorithms
  184. //
  185. getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(bp,m_dispatcher1);
  186. getBroadphase()->destroyProxy(bp,m_dispatcher1);
  187. collisionObject->setBroadphaseHandle(0);
  188. }
  189. }
  190. //swapremove
  191. m_collisionObjects.remove(collisionObject);
  192. }
  193. void btCollisionWorld::rayTestSingle(const btTransform& rayFromTrans,const btTransform& rayToTrans,
  194. btCollisionObject* collisionObject,
  195. const btCollisionShape* collisionShape,
  196. const btTransform& colObjWorldTransform,
  197. RayResultCallback& resultCallback)
  198. {
  199. btCollisionObjectWrapper colObWrap(0,collisionShape,collisionObject,colObjWorldTransform,-1,-1);
  200. btCollisionWorld::rayTestSingleInternal(rayFromTrans,rayToTrans,&colObWrap,resultCallback);
  201. }
  202. void btCollisionWorld::rayTestSingleInternal(const btTransform& rayFromTrans,const btTransform& rayToTrans,
  203. const btCollisionObjectWrapper* collisionObjectWrap,
  204. RayResultCallback& resultCallback)
  205. {
  206. btSphereShape pointShape(btScalar(0.0));
  207. pointShape.setMargin(0.f);
  208. const btConvexShape* castShape = &pointShape;
  209. const btCollisionShape* collisionShape = collisionObjectWrap->getCollisionShape();
  210. const btTransform& colObjWorldTransform = collisionObjectWrap->getWorldTransform();
  211. if (collisionShape->isConvex())
  212. {
  213. // BT_PROFILE("rayTestConvex");
  214. btConvexCast::CastResult castResult;
  215. castResult.m_fraction = resultCallback.m_closestHitFraction;
  216. btConvexShape* convexShape = (btConvexShape*) collisionShape;
  217. btVoronoiSimplexSolver simplexSolver;
  218. btSubsimplexConvexCast subSimplexConvexCaster(castShape,convexShape,&simplexSolver);
  219. btGjkConvexCast gjkConvexCaster(castShape,convexShape,&simplexSolver);
  220. //btContinuousConvexCollision convexCaster(castShape,convexShape,&simplexSolver,0);
  221. bool condition = true;
  222. btConvexCast* convexCasterPtr = 0;
  223. if (resultCallback.m_flags & btTriangleRaycastCallback::kF_UseSubSimplexConvexCastRaytest)
  224. convexCasterPtr = &subSimplexConvexCaster;
  225. else
  226. convexCasterPtr = &gjkConvexCaster;
  227. btConvexCast& convexCaster = *convexCasterPtr;
  228. if (convexCaster.calcTimeOfImpact(rayFromTrans,rayToTrans,colObjWorldTransform,colObjWorldTransform,castResult))
  229. {
  230. //add hit
  231. if (castResult.m_normal.length2() > btScalar(0.0001))
  232. {
  233. if (castResult.m_fraction < resultCallback.m_closestHitFraction)
  234. {
  235. #ifdef USE_SUBSIMPLEX_CONVEX_CAST
  236. //rotate normal into worldspace
  237. castResult.m_normal = rayFromTrans.getBasis() * castResult.m_normal;
  238. #endif //USE_SUBSIMPLEX_CONVEX_CAST
  239. castResult.m_normal.normalize();
  240. btCollisionWorld::LocalRayResult localRayResult
  241. (
  242. collisionObjectWrap->getCollisionObject(),
  243. 0,
  244. castResult.m_normal,
  245. castResult.m_fraction
  246. );
  247. bool normalInWorldSpace = true;
  248. resultCallback.addSingleResult(localRayResult, normalInWorldSpace);
  249. }
  250. }
  251. }
  252. } else {
  253. if (collisionShape->isConcave())
  254. {
  255. //ConvexCast::CastResult
  256. struct BridgeTriangleRaycastCallback : public btTriangleRaycastCallback
  257. {
  258. btCollisionWorld::RayResultCallback* m_resultCallback;
  259. const btCollisionObject* m_collisionObject;
  260. const btConcaveShape* m_triangleMesh;
  261. btTransform m_colObjWorldTransform;
  262. BridgeTriangleRaycastCallback( const btVector3& from,const btVector3& to,
  263. btCollisionWorld::RayResultCallback* resultCallback, const btCollisionObject* collisionObject,const btConcaveShape* triangleMesh,const btTransform& colObjWorldTransform):
  264. //@BP Mod
  265. btTriangleRaycastCallback(from,to, resultCallback->m_flags),
  266. m_resultCallback(resultCallback),
  267. m_collisionObject(collisionObject),
  268. m_triangleMesh(triangleMesh),
  269. m_colObjWorldTransform(colObjWorldTransform)
  270. {
  271. }
  272. virtual btScalar reportHit(const btVector3& hitNormalLocal, btScalar hitFraction, int partId, int triangleIndex )
  273. {
  274. btCollisionWorld::LocalShapeInfo shapeInfo;
  275. shapeInfo.m_shapePart = partId;
  276. shapeInfo.m_triangleIndex = triangleIndex;
  277. btVector3 hitNormalWorld = m_colObjWorldTransform.getBasis() * hitNormalLocal;
  278. btCollisionWorld::LocalRayResult rayResult
  279. (m_collisionObject,
  280. &shapeInfo,
  281. hitNormalWorld,
  282. hitFraction);
  283. bool normalInWorldSpace = true;
  284. return m_resultCallback->addSingleResult(rayResult,normalInWorldSpace);
  285. }
  286. };
  287. btTransform worldTocollisionObject = colObjWorldTransform.inverse();
  288. btVector3 rayFromLocal = worldTocollisionObject * rayFromTrans.getOrigin();
  289. btVector3 rayToLocal = worldTocollisionObject * rayToTrans.getOrigin();
  290. // BT_PROFILE("rayTestConcave");
  291. if (collisionShape->getShapeType()==TRIANGLE_MESH_SHAPE_PROXYTYPE)
  292. {
  293. ///optimized version for btBvhTriangleMeshShape
  294. btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)collisionShape;
  295. BridgeTriangleRaycastCallback rcb(rayFromLocal,rayToLocal,&resultCallback,collisionObjectWrap->getCollisionObject(),triangleMesh,colObjWorldTransform);
  296. rcb.m_hitFraction = resultCallback.m_closestHitFraction;
  297. triangleMesh->performRaycast(&rcb,rayFromLocal,rayToLocal);
  298. }
  299. else if(collisionShape->getShapeType()==GIMPACT_SHAPE_PROXYTYPE)
  300. {
  301. btGImpactMeshShape* concaveShape = (btGImpactMeshShape*)collisionShape;
  302. BridgeTriangleRaycastCallback rcb(rayFromLocal,rayToLocal,&resultCallback,collisionObjectWrap->getCollisionObject(),concaveShape, colObjWorldTransform);
  303. rcb.m_hitFraction = resultCallback.m_closestHitFraction;
  304. concaveShape->processAllTrianglesRay(&rcb,rayFromLocal,rayToLocal);
  305. }else
  306. {
  307. //generic (slower) case
  308. btConcaveShape* concaveShape = (btConcaveShape*)collisionShape;
  309. btTransform worldTocollisionObject = colObjWorldTransform.inverse();
  310. btVector3 rayFromLocal = worldTocollisionObject * rayFromTrans.getOrigin();
  311. btVector3 rayToLocal = worldTocollisionObject * rayToTrans.getOrigin();
  312. //ConvexCast::CastResult
  313. struct BridgeTriangleRaycastCallback : public btTriangleRaycastCallback
  314. {
  315. btCollisionWorld::RayResultCallback* m_resultCallback;
  316. const btCollisionObject* m_collisionObject;
  317. btConcaveShape* m_triangleMesh;
  318. btTransform m_colObjWorldTransform;
  319. BridgeTriangleRaycastCallback( const btVector3& from,const btVector3& to,
  320. btCollisionWorld::RayResultCallback* resultCallback, const btCollisionObject* collisionObject,btConcaveShape* triangleMesh, const btTransform& colObjWorldTransform):
  321. //@BP Mod
  322. btTriangleRaycastCallback(from,to, resultCallback->m_flags),
  323. m_resultCallback(resultCallback),
  324. m_collisionObject(collisionObject),
  325. m_triangleMesh(triangleMesh),
  326. m_colObjWorldTransform(colObjWorldTransform)
  327. {
  328. }
  329. virtual btScalar reportHit(const btVector3& hitNormalLocal, btScalar hitFraction, int partId, int triangleIndex )
  330. {
  331. btCollisionWorld::LocalShapeInfo shapeInfo;
  332. shapeInfo.m_shapePart = partId;
  333. shapeInfo.m_triangleIndex = triangleIndex;
  334. btVector3 hitNormalWorld = m_colObjWorldTransform.getBasis() * hitNormalLocal;
  335. btCollisionWorld::LocalRayResult rayResult
  336. (m_collisionObject,
  337. &shapeInfo,
  338. hitNormalWorld,
  339. hitFraction);
  340. bool normalInWorldSpace = true;
  341. return m_resultCallback->addSingleResult(rayResult,normalInWorldSpace);
  342. }
  343. };
  344. BridgeTriangleRaycastCallback rcb(rayFromLocal,rayToLocal,&resultCallback,collisionObjectWrap->getCollisionObject(),concaveShape, colObjWorldTransform);
  345. rcb.m_hitFraction = resultCallback.m_closestHitFraction;
  346. btVector3 rayAabbMinLocal = rayFromLocal;
  347. rayAabbMinLocal.setMin(rayToLocal);
  348. btVector3 rayAabbMaxLocal = rayFromLocal;
  349. rayAabbMaxLocal.setMax(rayToLocal);
  350. concaveShape->processAllTriangles(&rcb,rayAabbMinLocal,rayAabbMaxLocal);
  351. }
  352. } else {
  353. // BT_PROFILE("rayTestCompound");
  354. if (collisionShape->isCompound())
  355. {
  356. struct LocalInfoAdder2 : public RayResultCallback
  357. {
  358. RayResultCallback* m_userCallback;
  359. int m_i;
  360. LocalInfoAdder2 (int i, RayResultCallback *user)
  361. : m_userCallback(user), m_i(i)
  362. {
  363. m_closestHitFraction = m_userCallback->m_closestHitFraction;
  364. m_flags = m_userCallback->m_flags;
  365. }
  366. virtual bool needsCollision(btBroadphaseProxy* p) const
  367. {
  368. return m_userCallback->needsCollision(p);
  369. }
  370. virtual btScalar addSingleResult (btCollisionWorld::LocalRayResult &r, bool b)
  371. {
  372. btCollisionWorld::LocalShapeInfo shapeInfo;
  373. shapeInfo.m_shapePart = -1;
  374. shapeInfo.m_triangleIndex = m_i;
  375. if (r.m_localShapeInfo == NULL)
  376. r.m_localShapeInfo = &shapeInfo;
  377. const btScalar result = m_userCallback->addSingleResult(r, b);
  378. m_closestHitFraction = m_userCallback->m_closestHitFraction;
  379. return result;
  380. }
  381. };
  382. struct RayTester : btDbvt::ICollide
  383. {
  384. const btCollisionObject* m_collisionObject;
  385. const btCompoundShape* m_compoundShape;
  386. const btTransform& m_colObjWorldTransform;
  387. const btTransform& m_rayFromTrans;
  388. const btTransform& m_rayToTrans;
  389. RayResultCallback& m_resultCallback;
  390. RayTester(const btCollisionObject* collisionObject,
  391. const btCompoundShape* compoundShape,
  392. const btTransform& colObjWorldTransform,
  393. const btTransform& rayFromTrans,
  394. const btTransform& rayToTrans,
  395. RayResultCallback& resultCallback):
  396. m_collisionObject(collisionObject),
  397. m_compoundShape(compoundShape),
  398. m_colObjWorldTransform(colObjWorldTransform),
  399. m_rayFromTrans(rayFromTrans),
  400. m_rayToTrans(rayToTrans),
  401. m_resultCallback(resultCallback)
  402. {
  403. }
  404. void ProcessLeaf(int i)
  405. {
  406. const btCollisionShape* childCollisionShape = m_compoundShape->getChildShape(i);
  407. const btTransform& childTrans = m_compoundShape->getChildTransform(i);
  408. btTransform childWorldTrans = m_colObjWorldTransform * childTrans;
  409. btCollisionObjectWrapper tmpOb(0,childCollisionShape,m_collisionObject,childWorldTrans,-1,i);
  410. // replace collision shape so that callback can determine the triangle
  411. LocalInfoAdder2 my_cb(i, &m_resultCallback);
  412. rayTestSingleInternal(
  413. m_rayFromTrans,
  414. m_rayToTrans,
  415. &tmpOb,
  416. my_cb);
  417. }
  418. void Process(const btDbvtNode* leaf)
  419. {
  420. ProcessLeaf(leaf->dataAsInt);
  421. }
  422. };
  423. const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(collisionShape);
  424. const btDbvt* dbvt = compoundShape->getDynamicAabbTree();
  425. RayTester rayCB(
  426. collisionObjectWrap->getCollisionObject(),
  427. compoundShape,
  428. colObjWorldTransform,
  429. rayFromTrans,
  430. rayToTrans,
  431. resultCallback);
  432. #ifndef DISABLE_DBVT_COMPOUNDSHAPE_RAYCAST_ACCELERATION
  433. if (dbvt)
  434. {
  435. btVector3 localRayFrom = colObjWorldTransform.inverseTimes(rayFromTrans).getOrigin();
  436. btVector3 localRayTo = colObjWorldTransform.inverseTimes(rayToTrans).getOrigin();
  437. btDbvt::rayTest(dbvt->m_root, localRayFrom , localRayTo, rayCB);
  438. }
  439. else
  440. #endif //DISABLE_DBVT_COMPOUNDSHAPE_RAYCAST_ACCELERATION
  441. {
  442. for (int i = 0, n = compoundShape->getNumChildShapes(); i < n; ++i)
  443. {
  444. rayCB.ProcessLeaf(i);
  445. }
  446. }
  447. }
  448. }
  449. }
  450. }
  451. void btCollisionWorld::objectQuerySingle(const btConvexShape* castShape,const btTransform& convexFromTrans,const btTransform& convexToTrans,
  452. btCollisionObject* collisionObject,
  453. const btCollisionShape* collisionShape,
  454. const btTransform& colObjWorldTransform,
  455. ConvexResultCallback& resultCallback, btScalar allowedPenetration)
  456. {
  457. btCollisionObjectWrapper tmpOb(0,collisionShape,collisionObject,colObjWorldTransform,-1,-1);
  458. btCollisionWorld::objectQuerySingleInternal(castShape,convexFromTrans,convexToTrans,&tmpOb,resultCallback,allowedPenetration);
  459. }
  460. void btCollisionWorld::objectQuerySingleInternal(const btConvexShape* castShape,const btTransform& convexFromTrans,const btTransform& convexToTrans,
  461. const btCollisionObjectWrapper* colObjWrap,
  462. ConvexResultCallback& resultCallback, btScalar allowedPenetration)
  463. {
  464. const btCollisionShape* collisionShape = colObjWrap->getCollisionShape();
  465. const btTransform& colObjWorldTransform = colObjWrap->getWorldTransform();
  466. if (collisionShape->isConvex())
  467. {
  468. //BT_PROFILE("convexSweepConvex");
  469. btConvexCast::CastResult castResult;
  470. castResult.m_allowedPenetration = allowedPenetration;
  471. castResult.m_fraction = resultCallback.m_closestHitFraction;//btScalar(1.);//??
  472. btConvexShape* convexShape = (btConvexShape*) collisionShape;
  473. btVoronoiSimplexSolver simplexSolver;
  474. btGjkEpaPenetrationDepthSolver gjkEpaPenetrationSolver;
  475. btContinuousConvexCollision convexCaster1(castShape,convexShape,&simplexSolver,&gjkEpaPenetrationSolver);
  476. //btGjkConvexCast convexCaster2(castShape,convexShape,&simplexSolver);
  477. //btSubsimplexConvexCast convexCaster3(castShape,convexShape,&simplexSolver);
  478. btConvexCast* castPtr = &convexCaster1;
  479. if (castPtr->calcTimeOfImpact(convexFromTrans,convexToTrans,colObjWorldTransform,colObjWorldTransform,castResult))
  480. {
  481. //add hit
  482. if (castResult.m_normal.length2() > btScalar(0.0001))
  483. {
  484. if (castResult.m_fraction < resultCallback.m_closestHitFraction)
  485. {
  486. castResult.m_normal.normalize();
  487. btCollisionWorld::LocalConvexResult localConvexResult
  488. (
  489. colObjWrap->getCollisionObject(),
  490. 0,
  491. castResult.m_normal,
  492. castResult.m_hitPoint,
  493. castResult.m_fraction
  494. );
  495. bool normalInWorldSpace = true;
  496. resultCallback.addSingleResult(localConvexResult, normalInWorldSpace);
  497. }
  498. }
  499. }
  500. } else {
  501. if (collisionShape->isConcave())
  502. {
  503. if (collisionShape->getShapeType()==TRIANGLE_MESH_SHAPE_PROXYTYPE)
  504. {
  505. //BT_PROFILE("convexSweepbtBvhTriangleMesh");
  506. btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)collisionShape;
  507. btTransform worldTocollisionObject = colObjWorldTransform.inverse();
  508. btVector3 convexFromLocal = worldTocollisionObject * convexFromTrans.getOrigin();
  509. btVector3 convexToLocal = worldTocollisionObject * convexToTrans.getOrigin();
  510. // rotation of box in local mesh space = MeshRotation^-1 * ConvexToRotation
  511. btTransform rotationXform = btTransform(worldTocollisionObject.getBasis() * convexToTrans.getBasis());
  512. //ConvexCast::CastResult
  513. struct BridgeTriangleConvexcastCallback : public btTriangleConvexcastCallback
  514. {
  515. btCollisionWorld::ConvexResultCallback* m_resultCallback;
  516. const btCollisionObject* m_collisionObject;
  517. btTriangleMeshShape* m_triangleMesh;
  518. BridgeTriangleConvexcastCallback(const btConvexShape* castShape, const btTransform& from,const btTransform& to,
  519. btCollisionWorld::ConvexResultCallback* resultCallback, const btCollisionObject* collisionObject,btTriangleMeshShape* triangleMesh, const btTransform& triangleToWorld):
  520. btTriangleConvexcastCallback(castShape, from,to, triangleToWorld, triangleMesh->getMargin()),
  521. m_resultCallback(resultCallback),
  522. m_collisionObject(collisionObject),
  523. m_triangleMesh(triangleMesh)
  524. {
  525. }
  526. virtual btScalar reportHit(const btVector3& hitNormalLocal, const btVector3& hitPointLocal, btScalar hitFraction, int partId, int triangleIndex )
  527. {
  528. btCollisionWorld::LocalShapeInfo shapeInfo;
  529. shapeInfo.m_shapePart = partId;
  530. shapeInfo.m_triangleIndex = triangleIndex;
  531. if (hitFraction <= m_resultCallback->m_closestHitFraction)
  532. {
  533. btCollisionWorld::LocalConvexResult convexResult
  534. (m_collisionObject,
  535. &shapeInfo,
  536. hitNormalLocal,
  537. hitPointLocal,
  538. hitFraction);
  539. bool normalInWorldSpace = true;
  540. return m_resultCallback->addSingleResult(convexResult,normalInWorldSpace);
  541. }
  542. return hitFraction;
  543. }
  544. };
  545. BridgeTriangleConvexcastCallback tccb(castShape, convexFromTrans,convexToTrans,&resultCallback,colObjWrap->getCollisionObject(),triangleMesh, colObjWorldTransform);
  546. tccb.m_hitFraction = resultCallback.m_closestHitFraction;
  547. tccb.m_allowedPenetration = allowedPenetration;
  548. btVector3 boxMinLocal, boxMaxLocal;
  549. castShape->getAabb(rotationXform, boxMinLocal, boxMaxLocal);
  550. triangleMesh->performConvexcast(&tccb,convexFromLocal,convexToLocal,boxMinLocal, boxMaxLocal);
  551. } else
  552. {
  553. if (collisionShape->getShapeType()==STATIC_PLANE_PROXYTYPE)
  554. {
  555. btConvexCast::CastResult castResult;
  556. castResult.m_allowedPenetration = allowedPenetration;
  557. castResult.m_fraction = resultCallback.m_closestHitFraction;
  558. btStaticPlaneShape* planeShape = (btStaticPlaneShape*) collisionShape;
  559. btContinuousConvexCollision convexCaster1(castShape,planeShape);
  560. btConvexCast* castPtr = &convexCaster1;
  561. if (castPtr->calcTimeOfImpact(convexFromTrans,convexToTrans,colObjWorldTransform,colObjWorldTransform,castResult))
  562. {
  563. //add hit
  564. if (castResult.m_normal.length2() > btScalar(0.0001))
  565. {
  566. if (castResult.m_fraction < resultCallback.m_closestHitFraction)
  567. {
  568. castResult.m_normal.normalize();
  569. btCollisionWorld::LocalConvexResult localConvexResult
  570. (
  571. colObjWrap->getCollisionObject(),
  572. 0,
  573. castResult.m_normal,
  574. castResult.m_hitPoint,
  575. castResult.m_fraction
  576. );
  577. bool normalInWorldSpace = true;
  578. resultCallback.addSingleResult(localConvexResult, normalInWorldSpace);
  579. }
  580. }
  581. }
  582. } else
  583. {
  584. //BT_PROFILE("convexSweepConcave");
  585. btConcaveShape* concaveShape = (btConcaveShape*)collisionShape;
  586. btTransform worldTocollisionObject = colObjWorldTransform.inverse();
  587. btVector3 convexFromLocal = worldTocollisionObject * convexFromTrans.getOrigin();
  588. btVector3 convexToLocal = worldTocollisionObject * convexToTrans.getOrigin();
  589. // rotation of box in local mesh space = MeshRotation^-1 * ConvexToRotation
  590. btTransform rotationXform = btTransform(worldTocollisionObject.getBasis() * convexToTrans.getBasis());
  591. //ConvexCast::CastResult
  592. struct BridgeTriangleConvexcastCallback : public btTriangleConvexcastCallback
  593. {
  594. btCollisionWorld::ConvexResultCallback* m_resultCallback;
  595. const btCollisionObject* m_collisionObject;
  596. btConcaveShape* m_triangleMesh;
  597. BridgeTriangleConvexcastCallback(const btConvexShape* castShape, const btTransform& from,const btTransform& to,
  598. btCollisionWorld::ConvexResultCallback* resultCallback, const btCollisionObject* collisionObject,btConcaveShape* triangleMesh, const btTransform& triangleToWorld):
  599. btTriangleConvexcastCallback(castShape, from,to, triangleToWorld, triangleMesh->getMargin()),
  600. m_resultCallback(resultCallback),
  601. m_collisionObject(collisionObject),
  602. m_triangleMesh(triangleMesh)
  603. {
  604. }
  605. virtual btScalar reportHit(const btVector3& hitNormalLocal, const btVector3& hitPointLocal, btScalar hitFraction, int partId, int triangleIndex )
  606. {
  607. btCollisionWorld::LocalShapeInfo shapeInfo;
  608. shapeInfo.m_shapePart = partId;
  609. shapeInfo.m_triangleIndex = triangleIndex;
  610. if (hitFraction <= m_resultCallback->m_closestHitFraction)
  611. {
  612. btCollisionWorld::LocalConvexResult convexResult
  613. (m_collisionObject,
  614. &shapeInfo,
  615. hitNormalLocal,
  616. hitPointLocal,
  617. hitFraction);
  618. bool normalInWorldSpace = false;
  619. return m_resultCallback->addSingleResult(convexResult,normalInWorldSpace);
  620. }
  621. return hitFraction;
  622. }
  623. };
  624. BridgeTriangleConvexcastCallback tccb(castShape, convexFromTrans,convexToTrans,&resultCallback,colObjWrap->getCollisionObject(),concaveShape, colObjWorldTransform);
  625. tccb.m_hitFraction = resultCallback.m_closestHitFraction;
  626. tccb.m_allowedPenetration = allowedPenetration;
  627. btVector3 boxMinLocal, boxMaxLocal;
  628. castShape->getAabb(rotationXform, boxMinLocal, boxMaxLocal);
  629. btVector3 rayAabbMinLocal = convexFromLocal;
  630. rayAabbMinLocal.setMin(convexToLocal);
  631. btVector3 rayAabbMaxLocal = convexFromLocal;
  632. rayAabbMaxLocal.setMax(convexToLocal);
  633. rayAabbMinLocal += boxMinLocal;
  634. rayAabbMaxLocal += boxMaxLocal;
  635. concaveShape->processAllTriangles(&tccb,rayAabbMinLocal,rayAabbMaxLocal);
  636. }
  637. }
  638. } else {
  639. ///@todo : use AABB tree or other BVH acceleration structure!
  640. if (collisionShape->isCompound())
  641. {
  642. BT_PROFILE("convexSweepCompound");
  643. const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(collisionShape);
  644. int i=0;
  645. for (i=0;i<compoundShape->getNumChildShapes();i++)
  646. {
  647. btTransform childTrans = compoundShape->getChildTransform(i);
  648. const btCollisionShape* childCollisionShape = compoundShape->getChildShape(i);
  649. btTransform childWorldTrans = colObjWorldTransform * childTrans;
  650. struct LocalInfoAdder : public ConvexResultCallback {
  651. ConvexResultCallback* m_userCallback;
  652. int m_i;
  653. LocalInfoAdder (int i, ConvexResultCallback *user)
  654. : m_userCallback(user), m_i(i)
  655. {
  656. m_closestHitFraction = m_userCallback->m_closestHitFraction;
  657. }
  658. virtual bool needsCollision(btBroadphaseProxy* p) const
  659. {
  660. return m_userCallback->needsCollision(p);
  661. }
  662. virtual btScalar addSingleResult (btCollisionWorld::LocalConvexResult& r, bool b)
  663. {
  664. btCollisionWorld::LocalShapeInfo shapeInfo;
  665. shapeInfo.m_shapePart = -1;
  666. shapeInfo.m_triangleIndex = m_i;
  667. if (r.m_localShapeInfo == NULL)
  668. r.m_localShapeInfo = &shapeInfo;
  669. const btScalar result = m_userCallback->addSingleResult(r, b);
  670. m_closestHitFraction = m_userCallback->m_closestHitFraction;
  671. return result;
  672. }
  673. };
  674. LocalInfoAdder my_cb(i, &resultCallback);
  675. btCollisionObjectWrapper tmpObj(colObjWrap,childCollisionShape,colObjWrap->getCollisionObject(),childWorldTrans,-1,i);
  676. objectQuerySingleInternal(castShape, convexFromTrans,convexToTrans,
  677. &tmpObj,my_cb, allowedPenetration);
  678. }
  679. }
  680. }
  681. }
  682. }
  683. struct btSingleRayCallback : public btBroadphaseRayCallback
  684. {
  685. btVector3 m_rayFromWorld;
  686. btVector3 m_rayToWorld;
  687. btTransform m_rayFromTrans;
  688. btTransform m_rayToTrans;
  689. btVector3 m_hitNormal;
  690. const btCollisionWorld* m_world;
  691. btCollisionWorld::RayResultCallback& m_resultCallback;
  692. btSingleRayCallback(const btVector3& rayFromWorld,const btVector3& rayToWorld,const btCollisionWorld* world,btCollisionWorld::RayResultCallback& resultCallback)
  693. :m_rayFromWorld(rayFromWorld),
  694. m_rayToWorld(rayToWorld),
  695. m_world(world),
  696. m_resultCallback(resultCallback)
  697. {
  698. m_rayFromTrans.setIdentity();
  699. m_rayFromTrans.setOrigin(m_rayFromWorld);
  700. m_rayToTrans.setIdentity();
  701. m_rayToTrans.setOrigin(m_rayToWorld);
  702. btVector3 rayDir = (rayToWorld-rayFromWorld);
  703. rayDir.normalize ();
  704. ///what about division by zero? --> just set rayDirection[i] to INF/BT_LARGE_FLOAT
  705. m_rayDirectionInverse[0] = rayDir[0] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[0];
  706. m_rayDirectionInverse[1] = rayDir[1] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[1];
  707. m_rayDirectionInverse[2] = rayDir[2] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[2];
  708. m_signs[0] = m_rayDirectionInverse[0] < 0.0;
  709. m_signs[1] = m_rayDirectionInverse[1] < 0.0;
  710. m_signs[2] = m_rayDirectionInverse[2] < 0.0;
  711. m_lambda_max = rayDir.dot(m_rayToWorld-m_rayFromWorld);
  712. }
  713. virtual bool process(const btBroadphaseProxy* proxy)
  714. {
  715. ///terminate further ray tests, once the closestHitFraction reached zero
  716. if (m_resultCallback.m_closestHitFraction == btScalar(0.f))
  717. return false;
  718. btCollisionObject* collisionObject = (btCollisionObject*)proxy->m_clientObject;
  719. //only perform raycast if filterMask matches
  720. if(m_resultCallback.needsCollision(collisionObject->getBroadphaseHandle()))
  721. {
  722. //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
  723. //btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
  724. #if 0
  725. #ifdef RECALCULATE_AABB
  726. btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
  727. collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(),collisionObjectAabbMin,collisionObjectAabbMax);
  728. #else
  729. //getBroadphase()->getAabb(collisionObject->getBroadphaseHandle(),collisionObjectAabbMin,collisionObjectAabbMax);
  730. const btVector3& collisionObjectAabbMin = collisionObject->getBroadphaseHandle()->m_aabbMin;
  731. const btVector3& collisionObjectAabbMax = collisionObject->getBroadphaseHandle()->m_aabbMax;
  732. #endif
  733. #endif
  734. //btScalar hitLambda = m_resultCallback.m_closestHitFraction;
  735. //culling already done by broadphase
  736. //if (btRayAabb(m_rayFromWorld,m_rayToWorld,collisionObjectAabbMin,collisionObjectAabbMax,hitLambda,m_hitNormal))
  737. {
  738. m_world->rayTestSingle(m_rayFromTrans,m_rayToTrans,
  739. collisionObject,
  740. collisionObject->getCollisionShape(),
  741. collisionObject->getWorldTransform(),
  742. m_resultCallback);
  743. }
  744. }
  745. return true;
  746. }
  747. };
  748. void btCollisionWorld::rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, RayResultCallback& resultCallback) const
  749. {
  750. //BT_PROFILE("rayTest");
  751. /// use the broadphase to accelerate the search for objects, based on their aabb
  752. /// and for each object with ray-aabb overlap, perform an exact ray test
  753. btSingleRayCallback rayCB(rayFromWorld,rayToWorld,this,resultCallback);
  754. #ifndef USE_BRUTEFORCE_RAYBROADPHASE
  755. m_broadphasePairCache->rayTest(rayFromWorld,rayToWorld,rayCB);
  756. #else
  757. for (int i=0;i<this->getNumCollisionObjects();i++)
  758. {
  759. rayCB.process(m_collisionObjects[i]->getBroadphaseHandle());
  760. }
  761. #endif //USE_BRUTEFORCE_RAYBROADPHASE
  762. }
  763. struct btSingleSweepCallback : public btBroadphaseRayCallback
  764. {
  765. btTransform m_convexFromTrans;
  766. btTransform m_convexToTrans;
  767. btVector3 m_hitNormal;
  768. const btCollisionWorld* m_world;
  769. btCollisionWorld::ConvexResultCallback& m_resultCallback;
  770. btScalar m_allowedCcdPenetration;
  771. const btConvexShape* m_castShape;
  772. btSingleSweepCallback(const btConvexShape* castShape, const btTransform& convexFromTrans,const btTransform& convexToTrans,const btCollisionWorld* world,btCollisionWorld::ConvexResultCallback& resultCallback,btScalar allowedPenetration)
  773. :m_convexFromTrans(convexFromTrans),
  774. m_convexToTrans(convexToTrans),
  775. m_world(world),
  776. m_resultCallback(resultCallback),
  777. m_allowedCcdPenetration(allowedPenetration),
  778. m_castShape(castShape)
  779. {
  780. btVector3 unnormalizedRayDir = (m_convexToTrans.getOrigin()-m_convexFromTrans.getOrigin());
  781. btVector3 rayDir = unnormalizedRayDir.normalized();
  782. ///what about division by zero? --> just set rayDirection[i] to INF/BT_LARGE_FLOAT
  783. m_rayDirectionInverse[0] = rayDir[0] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[0];
  784. m_rayDirectionInverse[1] = rayDir[1] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[1];
  785. m_rayDirectionInverse[2] = rayDir[2] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[2];
  786. m_signs[0] = m_rayDirectionInverse[0] < 0.0;
  787. m_signs[1] = m_rayDirectionInverse[1] < 0.0;
  788. m_signs[2] = m_rayDirectionInverse[2] < 0.0;
  789. m_lambda_max = rayDir.dot(unnormalizedRayDir);
  790. }
  791. virtual bool process(const btBroadphaseProxy* proxy)
  792. {
  793. ///terminate further convex sweep tests, once the closestHitFraction reached zero
  794. if (m_resultCallback.m_closestHitFraction == btScalar(0.f))
  795. return false;
  796. btCollisionObject* collisionObject = (btCollisionObject*)proxy->m_clientObject;
  797. //only perform raycast if filterMask matches
  798. if(m_resultCallback.needsCollision(collisionObject->getBroadphaseHandle())) {
  799. //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
  800. m_world->objectQuerySingle(m_castShape, m_convexFromTrans,m_convexToTrans,
  801. collisionObject,
  802. collisionObject->getCollisionShape(),
  803. collisionObject->getWorldTransform(),
  804. m_resultCallback,
  805. m_allowedCcdPenetration);
  806. }
  807. return true;
  808. }
  809. };
  810. void btCollisionWorld::convexSweepTest(const btConvexShape* castShape, const btTransform& convexFromWorld, const btTransform& convexToWorld, ConvexResultCallback& resultCallback, btScalar allowedCcdPenetration) const
  811. {
  812. BT_PROFILE("convexSweepTest");
  813. /// use the broadphase to accelerate the search for objects, based on their aabb
  814. /// and for each object with ray-aabb overlap, perform an exact ray test
  815. /// unfortunately the implementation for rayTest and convexSweepTest duplicated, albeit practically identical
  816. btTransform convexFromTrans,convexToTrans;
  817. convexFromTrans = convexFromWorld;
  818. convexToTrans = convexToWorld;
  819. btVector3 castShapeAabbMin, castShapeAabbMax;
  820. /* Compute AABB that encompasses angular movement */
  821. {
  822. btVector3 linVel, angVel;
  823. btTransformUtil::calculateVelocity (convexFromTrans, convexToTrans, 1.0f, linVel, angVel);
  824. btVector3 zeroLinVel;
  825. zeroLinVel.setValue(0,0,0);
  826. btTransform R;
  827. R.setIdentity ();
  828. R.setRotation (convexFromTrans.getRotation());
  829. castShape->calculateTemporalAabb (R, zeroLinVel, angVel, 1.0f, castShapeAabbMin, castShapeAabbMax);
  830. }
  831. #ifndef USE_BRUTEFORCE_RAYBROADPHASE
  832. btSingleSweepCallback convexCB(castShape,convexFromWorld,convexToWorld,this,resultCallback,allowedCcdPenetration);
  833. m_broadphasePairCache->rayTest(convexFromTrans.getOrigin(),convexToTrans.getOrigin(),convexCB,castShapeAabbMin,castShapeAabbMax);
  834. #else
  835. /// go over all objects, and if the ray intersects their aabb + cast shape aabb,
  836. // do a ray-shape query using convexCaster (CCD)
  837. int i;
  838. for (i=0;i<m_collisionObjects.size();i++)
  839. {
  840. btCollisionObject* collisionObject= m_collisionObjects[i];
  841. //only perform raycast if filterMask matches
  842. if(resultCallback.needsCollision(collisionObject->getBroadphaseHandle())) {
  843. //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
  844. btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
  845. collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(),collisionObjectAabbMin,collisionObjectAabbMax);
  846. AabbExpand (collisionObjectAabbMin, collisionObjectAabbMax, castShapeAabbMin, castShapeAabbMax);
  847. btScalar hitLambda = btScalar(1.); //could use resultCallback.m_closestHitFraction, but needs testing
  848. btVector3 hitNormal;
  849. if (btRayAabb(convexFromWorld.getOrigin(),convexToWorld.getOrigin(),collisionObjectAabbMin,collisionObjectAabbMax,hitLambda,hitNormal))
  850. {
  851. objectQuerySingle(castShape, convexFromTrans,convexToTrans,
  852. collisionObject,
  853. collisionObject->getCollisionShape(),
  854. collisionObject->getWorldTransform(),
  855. resultCallback,
  856. allowedCcdPenetration);
  857. }
  858. }
  859. }
  860. #endif //USE_BRUTEFORCE_RAYBROADPHASE
  861. }
  862. struct btBridgedManifoldResult : public btManifoldResult
  863. {
  864. btCollisionWorld::ContactResultCallback& m_resultCallback;
  865. btBridgedManifoldResult( const btCollisionObjectWrapper* obj0Wrap,const btCollisionObjectWrapper* obj1Wrap,btCollisionWorld::ContactResultCallback& resultCallback )
  866. :btManifoldResult(obj0Wrap,obj1Wrap),
  867. m_resultCallback(resultCallback)
  868. {
  869. }
  870. virtual void addContactPoint(const btVector3& normalOnBInWorld,const btVector3& pointInWorld,btScalar depth)
  871. {
  872. bool isSwapped = m_manifoldPtr->getBody0() != m_body0Wrap->getCollisionObject();
  873. btVector3 pointA = pointInWorld + normalOnBInWorld * depth;
  874. btVector3 localA;
  875. btVector3 localB;
  876. if (isSwapped)
  877. {
  878. localA = m_body1Wrap->getCollisionObject()->getWorldTransform().invXform(pointA );
  879. localB = m_body0Wrap->getCollisionObject()->getWorldTransform().invXform(pointInWorld);
  880. } else
  881. {
  882. localA = m_body0Wrap->getCollisionObject()->getWorldTransform().invXform(pointA );
  883. localB = m_body1Wrap->getCollisionObject()->getWorldTransform().invXform(pointInWorld);
  884. }
  885. btManifoldPoint newPt(localA,localB,normalOnBInWorld,depth);
  886. newPt.m_positionWorldOnA = pointA;
  887. newPt.m_positionWorldOnB = pointInWorld;
  888. //BP mod, store contact triangles.
  889. if (isSwapped)
  890. {
  891. newPt.m_partId0 = m_partId1;
  892. newPt.m_partId1 = m_partId0;
  893. newPt.m_index0 = m_index1;
  894. newPt.m_index1 = m_index0;
  895. } else
  896. {
  897. newPt.m_partId0 = m_partId0;
  898. newPt.m_partId1 = m_partId1;
  899. newPt.m_index0 = m_index0;
  900. newPt.m_index1 = m_index1;
  901. }
  902. //experimental feature info, for per-triangle material etc.
  903. const btCollisionObjectWrapper* obj0Wrap = isSwapped? m_body1Wrap : m_body0Wrap;
  904. const btCollisionObjectWrapper* obj1Wrap = isSwapped? m_body0Wrap : m_body1Wrap;
  905. m_resultCallback.addSingleResult(newPt,obj0Wrap,newPt.m_partId0,newPt.m_index0,obj1Wrap,newPt.m_partId1,newPt.m_index1);
  906. }
  907. };
  908. struct btSingleContactCallback : public btBroadphaseAabbCallback
  909. {
  910. btCollisionObject* m_collisionObject;
  911. btCollisionWorld* m_world;
  912. btCollisionWorld::ContactResultCallback& m_resultCallback;
  913. btSingleContactCallback(btCollisionObject* collisionObject, btCollisionWorld* world,btCollisionWorld::ContactResultCallback& resultCallback)
  914. :m_collisionObject(collisionObject),
  915. m_world(world),
  916. m_resultCallback(resultCallback)
  917. {
  918. }
  919. virtual bool process(const btBroadphaseProxy* proxy)
  920. {
  921. btCollisionObject* collisionObject = (btCollisionObject*)proxy->m_clientObject;
  922. if (collisionObject == m_collisionObject)
  923. return true;
  924. //only perform raycast if filterMask matches
  925. if(m_resultCallback.needsCollision(collisionObject->getBroadphaseHandle()))
  926. {
  927. btCollisionObjectWrapper ob0(0,m_collisionObject->getCollisionShape(),m_collisionObject,m_collisionObject->getWorldTransform(),-1,-1);
  928. btCollisionObjectWrapper ob1(0,collisionObject->getCollisionShape(),collisionObject,collisionObject->getWorldTransform(),-1,-1);
  929. btCollisionAlgorithm* algorithm = m_world->getDispatcher()->findAlgorithm(&ob0,&ob1);
  930. if (algorithm)
  931. {
  932. btBridgedManifoldResult contactPointResult(&ob0,&ob1, m_resultCallback);
  933. //discrete collision detection query
  934. algorithm->processCollision(&ob0,&ob1, m_world->getDispatchInfo(),&contactPointResult);
  935. algorithm->~btCollisionAlgorithm();
  936. m_world->getDispatcher()->freeCollisionAlgorithm(algorithm);
  937. }
  938. }
  939. return true;
  940. }
  941. };
  942. ///contactTest performs a discrete collision test against all objects in the btCollisionWorld, and calls the resultCallback.
  943. ///it reports one or more contact points for every overlapping object (including the one with deepest penetration)
  944. void btCollisionWorld::contactTest( btCollisionObject* colObj, ContactResultCallback& resultCallback)
  945. {
  946. btVector3 aabbMin,aabbMax;
  947. colObj->getCollisionShape()->getAabb(colObj->getWorldTransform(),aabbMin,aabbMax);
  948. btSingleContactCallback contactCB(colObj,this,resultCallback);
  949. m_broadphasePairCache->aabbTest(aabbMin,aabbMax,contactCB);
  950. }
  951. ///contactTest performs a discrete collision test between two collision objects and calls the resultCallback if overlap if detected.
  952. ///it reports one or more contact points (including the one with deepest penetration)
  953. void btCollisionWorld::contactPairTest(btCollisionObject* colObjA, btCollisionObject* colObjB, ContactResultCallback& resultCallback)
  954. {
  955. btCollisionObjectWrapper obA(0,colObjA->getCollisionShape(),colObjA,colObjA->getWorldTransform(),-1,-1);
  956. btCollisionObjectWrapper obB(0,colObjB->getCollisionShape(),colObjB,colObjB->getWorldTransform(),-1,-1);
  957. btCollisionAlgorithm* algorithm = getDispatcher()->findAlgorithm(&obA,&obB);
  958. if (algorithm)
  959. {
  960. btBridgedManifoldResult contactPointResult(&obA,&obB, resultCallback);
  961. //discrete collision detection query
  962. algorithm->processCollision(&obA,&obB, getDispatchInfo(),&contactPointResult);
  963. algorithm->~btCollisionAlgorithm();
  964. getDispatcher()->freeCollisionAlgorithm(algorithm);
  965. }
  966. }
  967. class DebugDrawcallback : public btTriangleCallback, public btInternalTriangleIndexCallback
  968. {
  969. btIDebugDraw* m_debugDrawer;
  970. btVector3 m_color;
  971. btTransform m_worldTrans;
  972. public:
  973. DebugDrawcallback(btIDebugDraw* debugDrawer,const btTransform& worldTrans,const btVector3& color) :
  974. m_debugDrawer(debugDrawer),
  975. m_color(color),
  976. m_worldTrans(worldTrans)
  977. {
  978. }
  979. virtual void internalProcessTriangleIndex(btVector3* triangle,int partId,int triangleIndex)
  980. {
  981. processTriangle(triangle,partId,triangleIndex);
  982. }
  983. virtual void processTriangle(btVector3* triangle,int partId, int triangleIndex)
  984. {
  985. (void)partId;
  986. (void)triangleIndex;
  987. btVector3 wv0,wv1,wv2;
  988. wv0 = m_worldTrans*triangle[0];
  989. wv1 = m_worldTrans*triangle[1];
  990. wv2 = m_worldTrans*triangle[2];
  991. btVector3 center = (wv0+wv1+wv2)*btScalar(1./3.);
  992. if (m_debugDrawer->getDebugMode() & btIDebugDraw::DBG_DrawNormals )
  993. {
  994. btVector3 normal = (wv1-wv0).cross(wv2-wv0);
  995. normal.normalize();
  996. btVector3 normalColor(1,1,0);
  997. m_debugDrawer->drawLine(center,center+normal,normalColor);
  998. }
  999. m_debugDrawer->drawLine(wv0,wv1,m_color);
  1000. m_debugDrawer->drawLine(wv1,wv2,m_color);
  1001. m_debugDrawer->drawLine(wv2,wv0,m_color);
  1002. }
  1003. };
  1004. void btCollisionWorld::debugDrawObject(const btTransform& worldTransform, const btCollisionShape* shape, const btVector3& color)
  1005. {
  1006. // Draw a small simplex at the center of the object
  1007. getDebugDrawer()->drawTransform(worldTransform,1);
  1008. if (shape->getShapeType() == COMPOUND_SHAPE_PROXYTYPE)
  1009. {
  1010. const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(shape);
  1011. for (int i=compoundShape->getNumChildShapes()-1;i>=0;i--)
  1012. {
  1013. btTransform childTrans = compoundShape->getChildTransform(i);
  1014. const btCollisionShape* colShape = compoundShape->getChildShape(i);
  1015. debugDrawObject(worldTransform*childTrans,colShape,color);
  1016. }
  1017. } else
  1018. {
  1019. switch (shape->getShapeType())
  1020. {
  1021. case BOX_SHAPE_PROXYTYPE:
  1022. {
  1023. const btBoxShape* boxShape = static_cast<const btBoxShape*>(shape);
  1024. btVector3 halfExtents = boxShape->getHalfExtentsWithMargin();
  1025. getDebugDrawer()->drawBox(-halfExtents,halfExtents,worldTransform,color);
  1026. break;
  1027. }
  1028. case SPHERE_SHAPE_PROXYTYPE:
  1029. {
  1030. const btSphereShape* sphereShape = static_cast<const btSphereShape*>(shape);
  1031. btScalar radius = sphereShape->getMargin();//radius doesn't include the margin, so draw with margin
  1032. getDebugDrawer()->drawSphere(radius, worldTransform, color);
  1033. break;
  1034. }
  1035. case MULTI_SPHERE_SHAPE_PROXYTYPE:
  1036. {
  1037. const btMultiSphereShape* multiSphereShape = static_cast<const btMultiSphereShape*>(shape);
  1038. btTransform childTransform;
  1039. childTransform.setIdentity();
  1040. for (int i = multiSphereShape->getSphereCount()-1; i>=0;i--)
  1041. {
  1042. childTransform.setOrigin(multiSphereShape->getSpherePosition(i));
  1043. getDebugDrawer()->drawSphere(multiSphereShape->getSphereRadius(i), worldTransform*childTransform, color);
  1044. }
  1045. break;
  1046. }
  1047. case CAPSULE_SHAPE_PROXYTYPE:
  1048. {
  1049. const btCapsuleShape* capsuleShape = static_cast<const btCapsuleShape*>(shape);
  1050. btScalar radius = capsuleShape->getRadius();
  1051. btScalar halfHeight = capsuleShape->getHalfHeight();
  1052. int upAxis = capsuleShape->getUpAxis();
  1053. getDebugDrawer()->drawCapsule(radius, halfHeight, upAxis, worldTransform, color);
  1054. break;
  1055. }
  1056. case CONE_SHAPE_PROXYTYPE:
  1057. {
  1058. const btConeShape* coneShape = static_cast<const btConeShape*>(shape);
  1059. btScalar radius = coneShape->getRadius();//+coneShape->getMargin();
  1060. btScalar height = coneShape->getHeight();//+coneShape->getMargin();
  1061. int upAxis= coneShape->getConeUpIndex();
  1062. getDebugDrawer()->drawCone(radius, height, upAxis, worldTransform, color);
  1063. break;
  1064. }
  1065. case CYLINDER_SHAPE_PROXYTYPE:
  1066. {
  1067. const btCylinderShape* cylinder = static_cast<const btCylinderShape*>(shape);
  1068. int upAxis = cylinder->getUpAxis();
  1069. btScalar radius = cylinder->getRadius();
  1070. btScalar halfHeight = cylinder->getHalfExtentsWithMargin()[upAxis];
  1071. getDebugDrawer()->drawCylinder(radius, halfHeight, upAxis, worldTransform, color);
  1072. break;
  1073. }
  1074. case STATIC_PLANE_PROXYTYPE:
  1075. {
  1076. const btStaticPlaneShape* staticPlaneShape = static_cast<const btStaticPlaneShape*>(shape);
  1077. btScalar planeConst = staticPlaneShape->getPlaneConstant();
  1078. const btVector3& planeNormal = staticPlaneShape->getPlaneNormal();
  1079. getDebugDrawer()->drawPlane(planeNormal, planeConst,worldTransform, color);
  1080. break;
  1081. }
  1082. default:
  1083. {
  1084. /// for polyhedral shapes
  1085. if (shape->isPolyhedral())
  1086. {