{- | Module : $Header$ Description : Morphisms in Propositional logic Copyright : (c) Dominik Luecke, Uni Bremen 2007 License : GPLv2 or higher, see LICENSE.txt Maintainer : luecke@informatik.uni-bremen.de Stability : experimental Portability : portable Definition of morphisms for propositional logic copied to "Temporal.Morphism" -} {- Ref. Till Mossakowski, Joseph Goguen, Razvan Diaconescu, Andrzej Tarlecki. What is a Logic?. In Jean-Yves Beziau (Ed.), Logica Universalis, pp. 113-@133. Birkhaeuser. 2005. -} module Propositional.Morphism ( Morphism (..) -- datatype for Morphisms , pretty -- pretty printing , idMor -- identity morphism , isLegalMorphism -- check if morhpism is ok , composeMor -- composition , inclusionMap -- inclusion map , mapSentence -- map of sentences , mapSentenceH -- map of sentences, without Result type , applyMap -- application function for maps , applyMorphism -- application function for morphism , morphismUnion ) where import qualified Data.Map as Map import qualified Data.Set as Set import Propositional.Sign as Sign import qualified Common.Result as Result import qualified Propositional.AS_BASIC_Propositional as AS_BASIC import Common.Id as Id import Common.Result import Common.Doc import Common.DocUtils -- | The datatype for morphisms in propositional logic as -- maps of sets data Morphism = Morphism { source :: Sign , target :: Sign , propMap :: Map.Map Id Id } deriving (Eq, Ord, Show) instance Pretty Morphism where pretty = printMorphism -- | Constructs an id-morphism idMor :: Sign -> Morphism idMor a = inclusionMap a a -- | Determines whether a morphism is valid isLegalMorphism :: Morphism -> Result () isLegalMorphism pmor = let psource = items $ source pmor ptarget = items $ target pmor pdom = Map.keysSet $ propMap pmor pcodom = Set.map (applyMorphism pmor) psource in if Set.isSubsetOf pcodom ptarget && Set.isSubsetOf pdom psource then return () else fail "illegal Propositional morphism" -- | Application funtion for morphisms applyMorphism :: Morphism -> Id -> Id applyMorphism mor idt = Map.findWithDefault idt idt $ propMap mor -- | Application function for propMaps applyMap :: Map.Map Id Id -> Id -> Id applyMap pmap idt = Map.findWithDefault idt idt pmap -- | Composition of morphisms in propositional Logic composeMor :: Morphism -> Morphism -> Result Morphism composeMor f g = let fSource = source f gTarget = target g fMap = propMap f gMap = propMap g in return Morphism { source = fSource , target = gTarget , propMap = if Map.null gMap then fMap else Set.fold ( \ i -> let j = applyMap gMap (applyMap fMap i) in if i == j then id else Map.insert i j) Map.empty $ items fSource } -- | Pretty printing for Morphisms printMorphism :: Morphism -> Doc printMorphism m = pretty (source m) <> text "-->" <> pretty (target m) <> vcat (map ( \ (x, y) -> lparen <> pretty x <> text "," <> pretty y <> rparen) $ Map.assocs $ propMap m) -- | Inclusion map of a subsig into a supersig inclusionMap :: Sign.Sign -> Sign.Sign -> Morphism inclusionMap s1 s2 = Morphism { source = s1 , target = s2 , propMap = Map.empty } -- | sentence translation along signature morphism -- here just the renaming of formulae mapSentence :: Morphism -> AS_BASIC.FORMULA -> Result.Result AS_BASIC.FORMULA mapSentence mor = return . mapSentenceH mor mapSentenceH :: Morphism -> AS_BASIC.FORMULA -> AS_BASIC.FORMULA mapSentenceH mor frm = case frm of AS_BASIC.Negation form rn -> AS_BASIC.Negation (mapSentenceH mor form) rn AS_BASIC.Conjunction form rn -> AS_BASIC.Conjunction (map (mapSentenceH mor) form) rn AS_BASIC.Disjunction form rn -> AS_BASIC.Disjunction (map (mapSentenceH mor) form) rn AS_BASIC.Implication form1 form2 rn -> AS_BASIC.Implication (mapSentenceH mor form1) (mapSentenceH mor form2) rn AS_BASIC.Equivalence form1 form2 rn -> AS_BASIC.Equivalence (mapSentenceH mor form1) (mapSentenceH mor form2) rn AS_BASIC.True_atom rn -> AS_BASIC.True_atom rn AS_BASIC.False_atom rn -> AS_BASIC.False_atom rn AS_BASIC.Predication predH -> AS_BASIC.Predication $ id2SimpleId $ applyMorphism mor $ Id.simpleIdToId predH morphismUnion :: Morphism -> Morphism -> Result.Result Morphism morphismUnion mor1 mor2 = let pmap1 = propMap mor1 pmap2 = propMap mor2 p1 = source mor1 p2 = source mor2 up1 = Set.difference (items p1) $ Map.keysSet pmap1 up2 = Set.difference (items p2) $ Map.keysSet pmap2 (pds, pmap) = foldr ( \ (i, j) (ds, m) -> case Map.lookup i m of Nothing -> (ds, Map.insert i j m) Just k -> if j == k then (ds, m) else (Diag Error ("incompatible mapping of prop " ++ showId i " to " ++ showId j " and " ++ showId k "") nullRange : ds, m)) ([], pmap1) (Map.toList pmap2 ++ map (\ a -> (a, a)) (Set.toList $ Set.union up1 up2)) in if null pds then return Morphism { source = unite p1 p2 , target = unite (target mor1) $ target mor2 , propMap = pmap } else Result pds Nothing