/ChordSpace.lua
http://silencio.googlecode.com/ · Lua · 1953 lines · 1526 code · 154 blank · 273 comment · 133 complexity · 20bb87c20154a78a5845a633fe9e6701 MD5 · raw file
Large files are truncated click here to view the full file
- local Silencio = require("Silencio")
- local metalua_serialize = require("metalua_serialize")
- local io = require("io")
- local string = require("string")
- local ChordSpace = {}
- function ChordSpace.help()
- print [[
- C H O R D S P A C E
- Copyright 2010, 2011 by Michael Gogins.
- This software is licensed under the terms of the GNU Lesser General Public
- License.
- This package, part of Silencio, implements a geometric approach to some common
- operations on chords in neo-Riemannian music theory for use in score
- generating procedures:
- -- Identifying whether a chord belongs to some equivalence class of music
- theory, or sending a chord to its equivalent within a representative
- fundamental domain of some equivalence class. The equivalence classes are
- octave (O), permutational (P), transpositional, (T), inversional (I), and
- their compounds OP, OPT (set-class or chord type), and OPTI (prime form).
- -- Causing chord progressions to move strictly within an orbifold that
- generates some equivalence class.
- -- Implementing chord progressions based on the L, P, R, D, K, and Q
- operations of neo-Riemannian theory (thus implementing some aspects of
- "harmony").
- -- Implementing chord progressions performed within a more abstract
- equivalence class by means of the best-formed voice-leading within a less
- abstract equivalence class (thus implementing some fundamentals of
- "counterpoint").
- The associated ChordSpaceView package can display these chord spaces and
- operations for trichords in an interactive 3-dimensional view.
- DEFINITIONS
- Pitch is the perception of a distinct sound frequency. It is a logarithmic
- perception; octaves, which sound 'equivalent' in some sense, represent
- doublings or halvings of frequency.
- Pitches and intervals are represented as real numbers. Middle C is 60 and the
- octave is 12. Our usual system of 12-tone equal temperament, as well as MIDI
- key numbers, are completely represented by the whole numbers; any and all
- other pitches can be represented simply by using fractions.
- A voice is a distinct sound that is heard as having a pitch.
- A chord is simply a set of voices heard at the same time, represented here
- as a point in a chord space having one dimension of pitch for each voice
- in the chord.
- For the purposes of algorithmic composition in Silencio, a score is considered
- as a sequence of more or less fleeting chords.
- EQUIVALENCE CLASSES
- An equivalence class identifies elements of a set. Operations that send one
- equivalent point to another induce quotient spaces or orbifolds, where the
- equivalence operation identifies points on one face of the orbifold with
- points on an opposing face. The fundamental domain of the equivalence class
- is the space "within" the orbifold.
- Plain chord space has no equivalence classes. Ordered chords are represented
- as vectors in parentheses (p1, ..., pN). Unordered chords are represented as
- sorted vectors in braces {p1, ..., pN}. Unordering is itself an equivalence
- class.
- The following equivalence classes apply to pitches and chords, and exist in
- different orbifolds. Equivalence classes can be combined (Callendar, Quinn,
- and Tymoczko, "Generalized Voice-Leading Spaces," _Science_ 320, 2008), and
- the more equivalence classes are combined, the more abstract is the resulting
- orbifold compared to the parent space.
- In most cases, a chord space can be divided into a number, possibly
- infinite, of geometrically equivalent fundamental domains for the same
- equivalence class. Therefore, here we use the notion of 'representative'
- fundamental domain. For example, the representative fundamental domain of
- unordered sequences, out of all possible orderings, consists of all sequences
- in their ordinary sorted order. It is important, in the following, to identify
- representative fundamental domains that combine properly, e.g. such that the
- representative fundamental domain of OP / the representative fundamental
- domain of PI equals the representative fundamental domain of OPI. And this in
- turn may require accounting for duplicate elements of the representative
- fundamental domain caused by reflections or singularities in the orbifold.
- C Cardinality equivalence, e.g. {1, 1, 2} == {1, 2}. _Not_ assuming
- cardinality equivalence ensures that there is a proto-metric in plain
- chord space that is inherited by all child chord spaces. Cardinality
- equivalence is never assumed here, because we are working in chord
- spaces of fixed dimensionality; e.g. we represent the note middle C
- not as {60}, but as {60, 60, ..., 60}.
- O Octave equivalence. The fundamental domain is defined by the pitches
- in a chord spanning the range of an octave or less, and summing to
- an octave or less.
- P Permutational equivalence. The fundamental domain is defined by a
- "wedge" of plain chord space in which the voices of a chord are always
- sorted by pitch.
- T Transpositional equivalence, e.g. {1, 2} == {7, 8}. The fundamental
- domain is defined as a plane in chord space at right angles to the
- diagonal of unison chords. Represented by the chord always having a
- sum of pitches equal to 0.
- I Inversional equivalence. Care is needed to distinguish the
- mathematician's sense of 'invert', which means 'pitch-space inversion'
- or 'reflect in a point', from the musician's sense of 'invert', which
- varies according to context but in practice often means 'registral
- inversion' or 'revoice by adding an octave to the lowest tone of a
- chord.' Here, we use 'invert' and 'inversion' in the mathematician's
- sense, and we use the terms 'revoice' and 'voicing' for the musician's
- 'invert' and 'inversion'. The inversion point for any inversion lies
- on the unison diagonal. A fundamental domain is defined as any half of
- chord space that is bounded by a plane containing the inversion point.
- Represented as the chord having the first interval between voices be
- smaller than or equal to the final interval (recursing for chords of
- more than 3 voices).
- PI Inversional equivalence with permutational equivalence. The
- 'inversion flat' of unordered chord space is a hyperplane consisting
- of all those unordered chords that are invariant under inversion. A
- fundamental domain is defined by any half space bounded by a
- hyperplane containing the inversion flat. It is represented as that
- half of the space on or lower than the hyperplane defined by the
- inversion flat and the unison diagonal.
- OP Octave equivalence with permutational equivalence. Tymoczko's orbifold
- for chords; i.e. chords with a fixed number of voices in a harmonic
- context. The fundamental domain is defined as a hyperprism one octave
- long with as many sides as voices and the ends identified by octave
- equivalence and one cyclical permutation of voices, modulo the
- unordering. In OP for trichords in 12TET, the augmented triads run up
- the middle of the prism, the major and minor triads are in 6
- alternating columns around the augmented triads, the two-pitch chords
- form the 3 sides, and the one-pitch chords form the 3 edges that join
- the sides.
- OPT The layer of the OP prism as close as possible to the origin, modulo
- the number of voices. Chord type. Note that CM and Cm are different
- OPT. Because the OP prism is canted down from the origin, at least one
- pitch in each OPT chord (excepting the origin itself) is negative.
- OPI The OP prism modulo inversion, i.e. 1/2 of the OP prism. The
- representative fundamental consits of those chords less than or equal
- to their inversions modulo OP.
- OPTI The OPT layer modulo inversion, i.e. 1/2 of the OPT layer.
- Set-class. Note that CM and Cm are the same OPTI.
- OPERATIONS
- Each of the above equivalence classes is, of course, an operation that sends
- chords outside the fundamental domain to chords inside the fundamental domain.
- And we define the following additional operations:
- T(p, x) Translate p by x.
- I(p [, x]) Reflect p in x, by default the origin.
- P Send a major triad to the minor triad with the same root,
- or vice versa (Riemann's parallel transformation).
- L Send a major triad to the minor triad one major third higher,
- or vice versa (Riemann's Leittonwechsel or leading-tone
- exchange transformation).
- R Send a major triad to the minor triad one minor third lower,
- or vice versa (Riemann's relative transformation).
- D Send a triad to the next triad a perfect fifth lower
- (dominant transformation).
- P, L, and R have been extended as follows, see Fiore and Satyendra,
- "Generalized Contextual Groups", _Music Theory Online_ 11, August 2008:
- K(c) Interchange by inversion;
- K(c) := I(c, c[1] + c[2]).
- This is a generalized form of P; for major and minor triads,
- it is exactly the same as P, but it also works with other
- chord types.
- Q(c, n, m) Contexual transposition;
- Q(c, n, m) := T(c, n) if c is a T-form of m,
- or T(c, -n) if c is an I-form of M. Not a generalized form
- of L or R; but, like them, K and Q generate the T-I group.
- ]]
- end
- --[[
- LOG
- 2011-Sep-07
- Redoing this package from scratch using GVLS formulas.
- 2011-Sep-09
- There are definite problems with side effects in these tests. The first test
- passes, but not when in series with another test.
- Is there a bug in "~=" for Lua and/or LuaJIT?
- 2011-Sep-10
- There is definitely one or more bugs in LuaJIT vs. Lua. Tests run to 4 or 5
- voices in Lua that do not work in LuaJIT. There appear to be false temporaries
- or something in LuaJIT.
- 2011-Sep-11
- I am going to redo the equivalence formulas in sets: vanilla GVLS, GVLS with
- my modifications, and mine. This seems like the only way of sorting out the
- mess.
- 2011-Sep-22
- It may be that my R, P, T, and I do not fit together to make OPTI because my I
- does not use the inversion flat.
- [2011-Sep-28: Not so, but because my T was aligned on 12-TET.]
- 2011-Sep-27
- Redo tests of equivalences. [2011-Sep-28: They pass up to 5 voices.]
- 2011-Sep-28
- First, some lessons learned painfully. I can still think quite well, but I AM
- slower, and I have to ALLOW for that. So I actually need to think MORE
- CAREFULLY (which takes longer) in order to make sure tests and logic are quite
- clear, as this will save yet more time in testing and debugging. E.g., if I
- had had my current unit tests in place when I began to rewrite this code,
- I would have been where I am now four or five months ago. It wouldn't hurt,
- either, to ask for help sooner rather than later -- DT's advice was extremely
- helpful.
- OK, I get it now. My prior attempts to combine representative fundamental
- domains were ill-advised.
- The fundamental domain formulas are now as correct as the tests I have written
- can tell, although I should try to come up with some additional tests. Yet
- there still may be problems...
- 2011-Oct-11
- RPTT and RPTTI need unit tests. The definitions in :information and in
- ChordSpaceGroup are not consistent, this is why ChordSpaceGroup is failing.
- 2011-Oct-13
- I have redone ChordSpaceGroup using different orbifolds and equivalences that
- keep operations in OPTI, I, and T strictly within equal temperament. I do not
- use the GVLS fundamental domains directly for this at all. The symmetries of
- the operations are all I need musically, so I simply put the GVLS OPTIs into
- equal temperament and enumerate them for my set-class group (OPTTI). I do this
- by taking the floor of the OPTI and then transposing it up by one unit of
- transposition.
- 2011-Oct-16
- Problems with ChordSpaceGroup:toChord and :fromChord. Look at voicing number
- and transposition.
- 2011-Oct-17
- Problems, e.g. {-4, 0, 4} transposed 4 is also eOP {-4, 0, 4}, ditto
- transposed 8 and 12. The inversion flat would behave similiarly.
- In other words, for some chords ChordSpaceGroup:toChord will give the same
- chord for several different P, I, T, V, but ChordSpaceGroup:fromChord can only
- give the same P, I, T, V for all of those chords. This is correct, but it
- means that in unit testing from and should compare only chords, not numbers.
- 2011-Oct-19
- In 1 dimension, all pitches under OP equivalence fall in the fundamental
- domain {[0, 12)}; there are no duplicate equivalents.
- In 2 dimensions, all chords under OP equivalence fall in the fundamental
- domain {[-6, 6], [-6, 6], [12, 0], [0, 12]}; there are duplicate
- equivalents, because otherwise the chord {11, 11} has no equivalent in
- the domain (it is actually {-1, 11}).
- 2011-Oct-20
- DD'OOOOHHHHHHHHHHHHH.... -0 and 0 are messing up chord comparators and hashes.
- Hence the sets of OPTTI are wrong. Hence the ChordSpaceGroup is wrong. But,
- now I know what the problem is!
- 2011-Oct-24
- "allOf" fails for OPT and OPTI because of fractional pitches. This must be
- dealt with, but is not so serious right now.
- More urgently, there is still a problem with OPI for 5 voices. I should
- capture the offending chord and test it in solitary confinement. Well, here
- it is:
- TESTING CHORDS OF 5 VOICES...
- pitches: { -13.0000 -13.0000 -13.0000 -8.0000 -6.0000}
- I: { 13.0000 13.0000 13.0000 8.0000 6.0000}
- eO: { -1.0000 -1.0000 -1.0000 4.0000 6.0000} iseO: false
- eP: { -13.0000 -13.0000 -13.0000 -8.0000 -6.0000} iseP: true
- eT: { -2.4000 -2.4000 -2.4000 2.6000 4.6000} iseT: false
- { 0.0000 0.0000 0.0000 5.0000 7.0000}
- eI: { -13.0000 -13.0000 -13.0000 -8.0000 -6.0000} iseI: true
- eV: { -13.0000 -13.0000 -13.0000 -8.0000 -6.0000} iseV: true
- { 0.0000 0.0000 0.0000 5.0000 7.0000}
- eOP: { -1.0000 -1.0000 -1.0000 4.0000 6.0000} iseOP: false
- pcs: { 4.0000 6.0000 11.0000 11.0000 11.0000}
- eOPT: { -2.4000 -2.4000 -2.4000 2.6000 4.6000} iseOPT: false
- eOPTT: { -2.0000 -2.0000 -2.0000 3.0000 5.0000}
- { 0.0000 0.0000 0.0000 5.0000 7.0000}
- eOPI: { -4.0000 1.0000 1.0000 1.0000 6.0000} iseOPI: false
- eOPTI: { -2.4000 -2.4000 -2.4000 2.6000 4.6000} iseOPTI: false
- eOPTTI: { -2.0000 -2.0000 -2.0000 3.0000 5.0000}
- { 0.0000 0.0000 0.0000 5.0000 7.0000}
- layer: -53.00
- pitches: { -2.4000 -2.4000 -2.4000 2.6000 4.6000}
- I: { 2.4000 2.4000 2.4000 -2.6000 -4.6000}
- eO: { -2.4000 -2.4000 9.6000 2.6000 4.6000} iseO: true
- eP: { -2.4000 -2.4000 -2.4000 2.6000 4.6000} iseP: true
- eT: { -2.4000 -2.4000 -2.4000 2.6000 4.6000} iseT: true
- { 0.0000 0.0000 0.0000 5.0000 7.0000}
- eI: { -2.4000 -2.4000 -2.4000 2.6000 4.6000} iseI: true
- eV: { -2.4000 -2.4000 -2.4000 2.6000 4.6000} iseV: true
- { 0.0000 0.0000 0.0000 5.0000 7.0000}
- eOP: { -2.4000 -2.4000 2.6000 4.6000 9.6000} iseOP: true
- pcs: { 2.6000 4.6000 9.6000 9.6000 9.6000}
- eOPT: { -4.6000 -2.6000 2.4000 2.4000 2.4000} iseOPT: true
- eOPTT: { -4.0000 -2.0000 3.0000 3.0000 3.0000}
- { 0.0000 2.0000 7.0000 7.0000 7.0000}
- eOPI: { -2.6000 2.4000 2.4000 2.4000 7.4000} iseOPI: false
- eOPTI: { -4.6000 -2.6000 2.4000 2.4000 2.4000} iseOPTI: false
- eOPTTI: { -4.0000 -2.0000 3.0000 3.0000 3.0000}
- { 0.0000 2.0000 7.0000 7.0000 7.0000}
- layer: 0.00
- ========================================================================
- FAILED: chord:eOPTI():iseOPTI() == true
- ========================================================================
- pitches: { -13.0000 -13.0000 -13.0000 -8.0000 6.0000}
- I: { 13.0000 13.0000 13.0000 8.0000 -6.0000}
- eO: { -1.0000 -1.0000 -1.0000 4.0000 6.0000} iseO: false
- eP: { -13.0000 -13.0000 -13.0000 -8.0000 6.0000} iseP: true
- eT: { -4.8000 -4.8000 -4.8000 0.2000 14.2000} iseT: false
- { 0.0000 0.0000 0.0000 5.0000 19.0000}
- eI: { -13.0000 -13.0000 -13.0000 -8.0000 6.0000} iseI: true
- eV: { -8.0000 6.0000 -13.0000 -13.0000 -13.0000} iseV: false
- { 5.0000 19.0000 0.0000 0.0000 0.0000}
- eOP: { -1.0000 -1.0000 -1.0000 4.0000 6.0000} iseOP: false
- pcs: { 4.0000 6.0000 11.0000 11.0000 11.0000}
- eOPT: { -2.4000 -2.4000 -2.4000 2.6000 4.6000} iseOPT: false
- eOPTT: { -2.0000 -2.0000 -2.0000 3.0000 5.0000}
- { 0.0000 0.0000 0.0000 5.0000 7.0000}
- eOPI: { -4.0000 1.0000 1.0000 1.0000 6.0000} iseOPI: false
- eOPTI: { -2.4000 -2.4000 -2.4000 2.6000 4.6000} iseOPTI: false
- eOPTTI: { -2.0000 -2.0000 -2.0000 3.0000 5.0000}
- { 0.0000 0.0000 0.0000 5.0000 7.0000}
- layer: -41.00
- pitches: { -2.4000 -2.4000 -2.4000 2.6000 4.6000}
- I: { 2.4000 2.4000 2.4000 -2.6000 -4.6000}
- eO: { -2.4000 -2.4000 9.6000 2.6000 4.6000} iseO: true
- eP: { -2.4000 -2.4000 -2.4000 2.6000 4.6000} iseP: true
- eT: { -2.4000 -2.4000 -2.4000 2.6000 4.6000} iseT: true
- { 0.0000 0.0000 0.0000 5.0000 7.0000}
- eI: { -2.4000 -2.4000 -2.4000 2.6000 4.6000} iseI: true
- eV: { -2.4000 -2.4000 -2.4000 2.6000 4.6000} iseV: true
- { 0.0000 0.0000 0.0000 5.0000 7.0000}
- eOP: { -2.4000 -2.4000 2.6000 4.6000 9.6000} iseOP: true
- pcs: { 2.6000 4.6000 9.6000 9.6000 9.6000}
- eOPT: { -4.6000 -2.6000 2.4000 2.4000 2.4000} iseOPT: true
- eOPTT: { -4.0000 -2.0000 3.0000 3.0000 3.0000}
- { 0.0000 2.0000 7.0000 7.0000 7.0000}
- eOPI: { -2.6000 2.4000 2.4000 2.4000 7.4000} iseOPI: false
- eOPTI: { -4.6000 -2.6000 2.4000 2.4000 2.4000} iseOPTI: false
- eOPTTI: { -4.0000 -2.0000 3.0000 3.0000 3.0000}
- { 0.0000 2.0000 7.0000 7.0000 7.0000}
- layer: 0.00
- ========================================================================
- FAILED: chord:eOPTI():iseOPTI() == true
- ========================================================================
- pitches: { -13.0000 -13.0000 -13.0000 -7.0000 -7.0000}
- I: { 13.0000 13.0000 13.0000 7.0000 7.0000}
- eO: { -1.0000 -1.0000 -1.0000 5.0000 5.0000} iseO: false
- eP: { -13.0000 -13.0000 -13.0000 -7.0000 -7.0000} iseP: true
- eT: { -2.4000 -2.4000 -2.4000 3.6000 3.6000} iseT: false
- { 0.0000 0.0000 0.0000 6.0000 6.0000}
- eI: { -13.0000 -13.0000 -13.0000 -7.0000 -7.0000} iseI: true
- eV: { -13.0000 -13.0000 -13.0000 -7.0000 -7.0000} iseV: true
- { 0.0000 0.0000 0.0000 6.0000 6.0000}
- eOP: { -1.0000 -1.0000 -1.0000 5.0000 5.0000} iseOP: false
- pcs: { 5.0000 5.0000 11.0000 11.0000 11.0000}
- eOPT: { -2.4000 -2.4000 -2.4000 3.6000 3.6000} iseOPT: false
- eOPTT: { -2.0000 -2.0000 -2.0000 4.0000 4.0000}
- { 0.0000 0.0000 0.0000 6.0000 6.0000}
- eOPI: { -5.0000 1.0000 1.0000 1.0000 7.0000} iseOPI: false
- eOPTI: { -2.4000 -2.4000 -2.4000 3.6000 3.6000} iseOPTI: false
- eOPTTI: { -2.0000 -2.0000 -2.0000 4.0000 4.0000}
- { 0.0000 0.0000 0.0000 6.0000 6.0000}
- layer: -53.00
- pitches: { -2.4000 -2.4000 -2.4000 3.6000 3.6000}
- I: { 2.4000 2.4000 2.4000 -3.6000 -3.6000}
- eO: { -2.4000 -2.4000 9.6000 3.6000 3.6000} iseO: true
- eP: { -2.4000 -2.4000 -2.4000 3.6000 3.6000} iseP: true
- eT: { -2.4000 -2.4000 -2.4000 3.6000 3.6000} iseT: true
- { 0.0000 0.0000 0.0000 6.0000 6.0000}
- eI: { -2.4000 -2.4000 -2.4000 3.6000 3.6000} iseI: true
- eV: { -2.4000 -2.4000 -2.4000 3.6000 3.6000} iseV: true
- { 0.0000 0.0000 0.0000 6.0000 6.0000}
- eOP: { -2.4000 -2.4000 3.6000 3.6000 9.6000} iseOP: true
- pcs: { 3.6000 3.6000 9.6000 9.6000 9.6000}
- eOPT: { -3.6000 -3.6000 2.4000 2.4000 2.4000} iseOPT: true
- eOPTT: { -3.0000 -3.0000 3.0000 3.0000 3.0000}
- { 0.0000 0.0000 6.0000 6.0000 6.0000}
- eOPI: { -3.6000 2.4000 2.4000 2.4000 8.4000} iseOPI: false
- eOPTI: { -3.6000 -3.6000 2.4000 2.4000 2.4000} iseOPTI: false
- eOPTTI: { -3.0000 -3.0000 3.0000 3.0000 3.0000}
- { 0.0000 0.0000 6.0000 6.0000 6.0000}
- layer: 0.00
- ========================================================================
- FAILED: chord:eOPTI():iseOPTI() == true
- ========================================================================
- pitches: { -13.0000 -13.0000 -13.0000 -7.0000 5.0000}
- I: { 13.0000 13.0000 13.0000 7.0000 -5.0000}
- eO: { -1.0000 -1.0000 -1.0000 5.0000 5.0000} iseO: false
- eP: { -13.0000 -13.0000 -13.0000 -7.0000 5.0000} iseP: true
- eT: { -4.8000 -4.8000 -4.8000 1.2000 13.2000} iseT: false
- { 0.0000 0.0000 0.0000 6.0000 18.0000}
- eI: { -13.0000 -13.0000 -13.0000 -7.0000 5.0000} iseI: true
- eV: { -13.0000 -13.0000 -7.0000 5.0000 -13.0000} iseV: false
- { 0.0000 0.0000 6.0000 18.0000 0.0000}
- eOP: { -1.0000 -1.0000 -1.0000 5.0000 5.0000} iseOP: false
- pcs: { 5.0000 5.0000 11.0000 11.0000 11.0000}
- eOPT: { -2.4000 -2.4000 -2.4000 3.6000 3.6000} iseOPT: false
- eOPTT: { -2.0000 -2.0000 -2.0000 4.0000 4.0000}
- { 0.0000 0.0000 0.0000 6.0000 6.0000}
- eOPI: { -5.0000 1.0000 1.0000 1.0000 7.0000} iseOPI: false
- eOPTI: { -2.4000 -2.4000 -2.4000 3.6000 3.6000} iseOPTI: false
- eOPTTI: { -2.0000 -2.0000 -2.0000 4.0000 4.0000}
- { 0.0000 0.0000 0.0000 6.0000 6.0000}
- layer: -41.00
- pitches: { -2.4000 -2.4000 -2.4000 3.6000 3.6000}
- I: { 2.4000 2.4000 2.4000 -3.6000 -3.6000}
- eO: { -2.4000 -2.4000 9.6000 3.6000 3.6000} iseO: true
- eP: { -2.4000 -2.4000 -2.4000 3.6000 3.6000} iseP: true
- eT: { -2.4000 -2.4000 -2.4000 3.6000 3.6000} iseT: true
- { 0.0000 0.0000 0.0000 6.0000 6.0000}
- eI: { -2.4000 -2.4000 -2.4000 3.6000 3.6000} iseI: true
- eV: { -2.4000 -2.4000 -2.4000 3.6000 3.6000} iseV: true
- { 0.0000 0.0000 0.0000 6.0000 6.0000}
- eOP: { -2.4000 -2.4000 3.6000 3.6000 9.6000} iseOP: true
- pcs: { 3.6000 3.6000 9.6000 9.6000 9.6000}
- eOPT: { -3.6000 -3.6000 2.4000 2.4000 2.4000} iseOPT: true
- eOPTT: { -3.0000 -3.0000 3.0000 3.0000 3.0000}
- { 0.0000 0.0000 6.0000 6.0000 6.0000}
- eOPI: { -3.6000 2.4000 2.4000 2.4000 8.4000} iseOPI: false
- eOPTI: { -3.6000 -3.6000 2.4000 2.4000 2.4000} iseOPTI: false
- eOPTTI: { -3.0000 -3.0000 3.0000 3.0000 3.0000}
- { 0.0000 0.0000 6.0000 6.0000 6.0000}
- layer: 0.00
- ========================================================================
- FAILED: chord:eOPTI():iseOPTI() == true
- ========================================================================
- It looks like the real culprit is this eV thing.
- 2011-Oct-25
- Regarding eV, it's tricky because to start with a voicing and permute doesn't
- give the same permutations as starting with a chord and permuting. So the
- permutations have always to be in the same order. This may be my whole problem
- all along.
- I think eV may be the first permutation that is the closest to the unison
- diagonal.
- 2011-Oct-27
- It's official:
- From: 5 0 0 0
- { -3.0000 0.0000 4.0000}
- fromChord: chord: { -3.0000 0.0000 4.0000} true
- fromChord: op: { -3.0000 0.0000 4.0000}
- fromChord: optt: { -3.0000 0.0000 4.0000}
- fromChord: optt_t: { -3.0000 0.0000 4.0000} 0
- equals
- fromChord: optti: { -3.0000 0.0000 4.0000} -3,1.6653345369377e-016,4
- fromChord: voicing: { 0.0000 0.0000 0.0000} 0
- fromChord: nil 0 0 0
- To: nil 0 0 0
- c:\utah\opt\Csound\bin\luajit.exe: .\ChordSpace.lua:2477: attempt to perform arithmetic on local 'P' (a nil value)
- stack traceback:
- .\ChordSpace.lua:2477: in function 'toChord'
- ChordSpaceTest.lua:205: in main chunk
- [C]: ?
- Hashing will need clamping. That might need a global g.
- TODO:
- -- Redo basic unit tests to ensure nothing has been broken.
- -- Compute and save a chord space group file if the requested group does not
- exist; always load a chord space group from a file. This saves simply
- oodles of time.
- -- Display the fundamental domains in the viewer much more clearly.
- -- Display various temperament systems to see how harmony might work with
- voiceleading around the central diagonal. Alternatively, set up columns
- or lattices of chords that are in interesting relations, and see how they
- sound and work together.
- -- Implement Rachel Hall, "Linear Contextual Transformations," 2009,
- which seems to further extend the Generalized Contextual Group using
- affine transformations in chord space, and Maxx Cho, "The Voice-Leading
- Automorphism and Riemannian Operators," 2009, which may show that tonality
- arises from a voice-leading automorphism in the Riemannian group.
- -- Implement various scales found in 20th and 21st century harmony
- along with 'splitting' and 'merging' operations.
- ]]
- ChordSpace.help()
- -- Returns n!
- function ChordSpace.factorial (n)
- if n == 0 then
- return 1
- else
- return n * ChordSpace.factorial(n - 1)
- end
- end
- -- For taking numerical errors into account.
- ChordSpace.EPSILON = 1
- local epsilonFactor = 1000
- while true do
- ChordSpace.EPSILON = ChordSpace.EPSILON / 2
- local nextEpsilon = ChordSpace.EPSILON / 2
- local onePlusNextEpsilon = 1 + nextEpsilon
- if onePlusNextEpsilon == 1 then
- print(string.format('ChordSpace.EPSILON: %g', ChordSpace.EPSILON))
- break
- end
- end
- function ChordSpace.eq_epsilon(a, b, factor)
- factor = factor or epsilonFactor
- if (math.abs(a - b) < (ChordSpace.EPSILON * factor)) then
- return true
- end
- return false
- end
- function ChordSpace.gt_epsilon(a, b, factor)
- factor = factor or epsilonFactor
- local eq = ChordSpace.eq_epsilon(a, b, factor)
- if eq then
- return false
- end
- if a > b then
- return true
- end
- return false
- end
- function ChordSpace.lt_epsilon(a, b, factor)
- factor = factor or epsilonFactor
- local eq = ChordSpace.eq_epsilon(a, b, factor)
- if eq then
- return false
- end
- if a < b then
- return true
- end
- return false
- end
- function ChordSpace.ge_epsilon(a, b, factor)
- factor = factor or epsilonFactor
- local eq = ChordSpace.eq_epsilon(a, b, factor)
- if eq then
- return true
- end
- if a > b then
- return true
- end
- return false
- end
- function ChordSpace.le_epsilon(a, b, factor)
- factor = factor or epsilonFactor
- local eq = ChordSpace.eq_epsilon(a, b, factor)
- if eq then
- return true
- end
- if a < b then
- return true
- end
- return false
- end
- -- The size of the octave, defined to be consistent with
- -- 12 tone equal temperament and MIDI.
- ChordSpace.OCTAVE = 12
- -- Middle C.
- ChordSpace.MIDDLE_C = 60
- ChordSpace.C4 = ChordSpace.MIDDLE_C
- -- Returns the pitch transposed by semitones, which may be any scalar.
- -- NOTE: Does NOT return the result under any equivalence class.
- local function T(pitch, semitones)
- return pitch + semitones
- end
- -- Returns the pitch reflected in the center, which may be any pitch.
- -- NOTE: Does NOT return the result under any equivalence class.
- local function I(pitch, center)
- center = center or 0
- return center - pitch
- end
- -- Returns the Euclidean distance between chords a and b,
- -- which must have the same number of voices.
- function ChordSpace.euclidean(a, b)
- local sumOfSquaredDifferences = 0
- for voice = 1, #a do
- sumOfSquaredDifferences = sumOfSquaredDifferences + math.pow((a[voice] - b[voice]), 2)
- end
- return math.sqrt(sumOfSquaredDifferences)
- end
- -- Chords represent simultaneously sounding pitches.
- -- The pitches are represented as semitones with 0 at the origin
- -- and middle C as 60.
- Chord = {}
- -- Returns a new chord object with no voices.
- function Chord:new(o)
- o = o or {duration = {}, channel = {}, velocity = {}, pan = {}}
- if not o.duration then
- o.duration = {}
- end
- if not o.channel then
- o.channel = {}
- end
- if not o.velocity then
- o.velocity = {}
- end
- if not o.pan then
- o.pan = {}
- end
- setmetatable(o, self)
- self.__index = self
- return o
- end
- -- Returns a string representation of the chord.
- -- Quadratic complexity, but short enough not to matter.
- function Chord:__tostring()
- local buffer = '{'
- for voice = 1, #self do
- buffer = buffer .. string.format('%12.7f', self[voice])
- end
- buffer = buffer .. '}'
- return buffer
- end
- -- Resizes a chord to the specified number of voices.
- -- Existing voices are not changed. Extra voices are removed.
- -- New voices are initialized to 0.
- function Chord:resize(voices)
- while #self < voices do
- table.insert(self, 0)
- table.insert(self.duration, 0)
- table.insert(self.channel, 0)
- table.insert(self.velocity, 0)
- table.insert(self.pan, 0)
- end
- while #self > voices do
- table.remove(self)
- table.remove(self.duration)
- table.remove(self.channel)
- table.remove(self.velocity)
- table.remove(self.pan)
- end
- end
- function Chord:setDuration(value)
- for i = 1, #self do
- self.duration[i] = value
- end
- end
- function Chord:getDuration(voice)
- voice = voice or 1
- return self.duration[voice]
- end
- function Chord:setChannel(value)
- for i = 1, #self do
- self.channel[i] = value
- end
- end
- function Chord:getChannel(voice)
- voice = voice or 1
- return self.channel[voice]
- end
- function Chord:setVelocity(value)
- for i = 1, #self do
- self.velocity[i] = value
- end
- end
- function Chord:getVelocity(voice)
- voice = voice or 1
- return self.velocity[voice]
- end
- function Chord:setPan(value)
- for i = 1, #self do
- self.pan[i] = value
- end
- end
- function Chord:getPan(voice)
- voice = voice or 1
- return self.pan[voice]
- end
- function Chord:count(pitch)
- local n = 0
- for voice = 1, #self do
- if self[voice] == pitch then
- n = n + 1
- end
- end
- return n
- end
- -- Redefines the metamethod to implement value semantics
- -- for ==, for the pitches in this only.
- function Chord:__eq(other)
- if not (#self == #other) then
- return false
- end
- for voice = 1, #self do
- --if not (self[voice] == other[voice]) then
- if not (ChordSpace.eq_epsilon(self[voice], other[voice])) then
- return false
- end
- end
- return true
- end
- function Chord:__eq_epsilon(other)
- if not (#self == #other) then
- return false
- end
- for voice = 1, #self do
- if not (ChordSpace.eq_epsilon(self[voice], other[voice])) then
- return false
- end
- end
- return true
- end
- -- This hash function is used to give chords value semantics for sets.
- function Chord:__hash()
- local buffer = ''
- local comma = ','
- for voice = 1, #self do
- local digit = tostring(self[voice])
- if voice == 1 then
- buffer = buffer .. digit
- else
- buffer = buffer .. comma .. digit
- end
- end
- return buffer
- end
- -- Redefines the metamethod to implement value semantics
- -- for <, for the pitches in this only.
- function Chord:__lt(other)
- local voices = math.min(#self, #other)
- for voice = 1, voices do
- if ChordSpace.lt_epsilon(self[voice], other[voice]) then
- return true
- end
- if ChordSpace.gt_epsilon(self[voice], other[voice]) then
- return false
- end
- end
- if #self < #other then
- return true
- end
- return false
- end
- function Chord:__le(other)
- if self:__eq(other) then
- return true
- end
- return self:__lt(other)
- end
- -- Returns whether or not the chord contains the pitch.
- function Chord:contains(pitch)
- for voice, pitch_ in ipairs(self) do
- if pitch_ == pitch then
- return true
- end
- end
- return false
- end
- -- Returns the lowest pitch in the chord,
- -- and also its voice index.
- function Chord:min()
- local lowestVoice = 1
- local lowestPitch = self[lowestVoice]
- for voice = 2, #self do
- if self[voice] < lowestPitch then
- lowestPitch = self[voice]
- lowestVoice = voice
- end
- end
- return lowestPitch, lowestVoice
- end
- -- Returns the minimum interval in the chord.
- function Chord:minimumInterval()
- local minimumInterval = math.abs(self[1] - self[2])
- for v1 = 1, #self do
- for v2 = 1, #self do
- if t (v1 == v2) then
- local interval = math.abs(self[v1] - self[v2])
- if interval < minimumInterval then
- minimumInterval = interval
- end
- end
- end
- end
- return minimumInterval
- end
- -- Returns the highest pitch in the chord,
- -- and also its voice index.
- function Chord:max()
- local highestVoice = 1
- local highestPitch = self[highestVoice]
- for voice = 2, #self do
- if self[voice] > highestPitch then
- highestPitch = self[voice]
- highestVoice = voice
- end
- end
- return highestPitch, highestVoice
- end
- -- Returns the maximum interval in the chord.
- function Chord:maximumInterval()
- return self:max() - self:min()
- end
- -- Returns a new chord whose pitches are the floors of this chord's pitches.
- function Chord:floor()
- local chord = self:clone()
- for voice = 1, #self do
- chord[voice] = math.floor(self[voice])
- end
- return chord
- end
- -- Returns a new chord whose pitches are the ceilings of this chord's pitches.
- function Chord:ceil()
- local chord = self:clone()
- for voice = 1, #self do
- chord[voice] = math.ceil(self[voice])
- end
- return chord
- end
- -- Returns a value copy of the chord.
- function Chord:clone()
- local clone_ = Chord:new()
- for voice, pitch in ipairs(self) do
- clone_[voice] = pitch
- end
- for voice, value in ipairs(self.duration) do
- clone_.duration[voice] = value
- end
- for voice, value in ipairs(self.channel) do
- clone_.channel[voice] = value
- end
- for voice, value in ipairs(self.velocity) do
- clone_.velocity[voice] = value
- end
- for voice, value in ipairs(self.pan) do
- clone_.pan[voice] = value
- end
- return clone_
- end
- -- Returns the origin of the chord's space.
- function Chord:origin()
- local clone_ = self:clone()
- for voice = 1, #clone_ do
- clone_[voice] = 0
- end
- return clone_
- end
- function Chord:distanceToOrigin()
- local origin = self:origin()
- return ChordSpace.euclidean(self, origin)
- end
- function Chord:distanceToUnisonDiagonal()
- local unison = self:origin()
- local pitch = self:layer() / #self
- for voice = 1, #self do
- unison[voice] = pitch
- end
- return ChordSpace.euclidean(self, unison)
- end
- -- Returns the maximally even chord in the chord's space,
- -- e.g. the augmented triad for 3 dimensions.
- function Chord:maximallyEven()
- local clone_ = self:clone()
- local g = ChordSpace.OCTAVE / #clone_
- for i = 1, #clone_ do
- clone_[i] = (i - 1) * g
- end
- return clone_
- end
- -- Returns the sum of the pitches in the chord.
- function Chord:layer()
- local s = 0
- for voice, pitch in ipairs(self) do
- s = s + pitch
- end
- return s
- end
- -- Transposes the chord by the indicated interval (may be a fraction).
- -- NOTE: Does NOT return the result under any equivalence class.
- function Chord:T(interval)
- local clone_ = self:clone()
- for voice = 1, #clone_ do
- clone_[voice] = T(clone_[voice], interval)
- end
- return clone_
- end
- -- Inverts the chord by another chord that is on the unison diagonal, by
- -- default the origin. NOTE: Does NOT return the result under any equivalence
- -- class.
- function Chord:I(center)
- center = center or 0
- local inverse = self:clone()
- for voice = 1, #inverse do
- inverse[voice] = I(self[voice], center)
- end
- return inverse
- end
- -- Returns the equivalent of the pitch under pitch-class equivalence, i.e.
- -- the pitch is in the interval [0, OCTAVE).
- function ChordSpace.epc(pitch)
- --while pitch < 0 do
- while ChordSpace.lt_epsilon(pitch, 0) do
- pitch = pitch + ChordSpace.OCTAVE
- end
- --while pitch >= ChordSpace.OCTAVE do
- while ChordSpace.ge_epsilon(pitch, ChordSpace.OCTAVE) do
- pitch = pitch - ChordSpace.OCTAVE
- end
- return pitch
- end
- -- Returns whether the chord is within the fundamental domain of
- -- pitch-class equivalence, i.e. is a pitch-class set.
- function Chord:isepcs()
- for voice = 1, #chord do
- --if not (self[voice] == ChordSpace.epc(chord[voice])) then
- if not ChordSpace.eq_epsilon(self[voice], ChordSpace.epc(chord[voice])) then
- return false
- end
- end
- return true
- end
- -- Returns the equivalent of the chord under pitch-class equivalence,
- -- i.e. the pitch-class set of the chord.
- function Chord:epcs()
- local chord = self:clone()
- for voice = 1, #chord do
- chord[voice] = ChordSpace.epc(chord[voice])
- end
- return chord
- end
- -- Returns whether the chord is within the fundamental domain of
- -- transposition to 0.
- function Chord:iset()
- local et = self:et()
- if not (et == self) then
- return false
- end
- return true
- end
- -- Returns the equivalent of the chord within the fundamental domain of
- -- transposition to 0.
- function Chord:et()
- local min_ = self:min()
- return self:T(-min_)
- end
- -- Returns whether the chord is within the representative fundamental domain
- -- of the indicated range equivalence.
- function Chord:iseR(range)
- --[[ GVLS:
- local max_ = self:max()
- local min_ = self:min()
- if not (max_ <= (min_ + range)) then
- return false
- end
- local layer_ = self:layer()
- if not ((0 <= layer_) and (layer_ <= range)) then
- return false
- end
- return true
- --]]
- --[[ GVLS modified:
- local max_ = self:max()
- local min_ = self:min()
- if not ChordSpace.le_epsilon(max_, (min_ + range)) then
- return false
- end
- local layer_ = self:layer()
- if not (ChordSpace.le_epsilon(0, layer_) and ChordSpace.le_epsilon(layer_, range)) then
- return false
- end
- return true
- --]]
- ----[[ MKG several equivalents of boundary points in domain:
- local max_ = self:max()
- local min_ = self:min()
- if not ChordSpace.le_epsilon(max_, (min_ + range)) then
- return false
- end
- local layer_ = self:layer()
- if not (ChordSpace.le_epsilon(0, layer_) and ChordSpace.le_epsilon(layer_, range)) then
- return false
- end
- return true
- --]]
- end
- -- Returns whether the chord is within the representative fundamental domain
- -- of octave equivalence.
- function Chord:iseO()
- return self:iseR(ChordSpace.OCTAVE)
- end
- -- Returns the equivalent of the chord within the representative fundamental
- -- domain of a range equivalence.
- function Chord:eR(range)
- local chord = self:clone()
- --if chord:iseR(range) then
- -- return chord
- --end
- -- The clue here is that at least one voice must be >= 0,
- -- but no voice can be > range.
- -- First, move all pitches inside the interval [0, OCTAVE),
- -- which is not the same as the fundamental domain.
- chord = self:epcs()
- -- Then, reflect voices that are outside of the fundamental domain
- -- back into it, which will revoice the chord, i.e.
- -- the sum of pitches is in [0, OCTAVE].
- --while chord:layer() > range do
- while ChordSpace.gt_epsilon(chord:layer(), range) do
- local maximumPitch, maximumVoice = chord:max()
- -- Because no voice is above the range,
- -- any voices that need to be revoiced will now be negative.
- chord[maximumVoice] = maximumPitch - ChordSpace.OCTAVE
- end
- return chord
- end
- -- Returns the equivalent of the chord within the representative fundamental
- -- domain of octave equivalence.
- function Chord:eO()
- return self:eR(ChordSpace.OCTAVE)
- end
- -- Returns whether the chord is within the representative fundamental domain
- -- of permutational equivalence.
- function Chord:iseP()
- for voice = 2, #self do
- --if not (self[voice - 1] <= self[voice]) then
- if not ChordSpace.le_epsilon(self[voice - 1], self[voice]) then
- return false
- end
- end
- return true
- end
- -- Returns the equivalent of the chord within the representative fundamental
- -- domain of permutational equivalence.
- function Chord:eP()
- clone_ = self:clone()
- table.sort(clone_)
- return clone_
- end
- -- Returns whether the chord is within the representative fundamental domain
- -- of transpositional equivalence.
- function Chord:iseT()
- ----[[ GVLS:
- local layer_ = self:layer()
- if not ChordSpace.eq_epsilon(layer_, 0) then
- return false
- end
- return true
- --]]
- --[[ MKG:
- g = g or 1
- local ep = self:eP()
- if not (ep == ep:eT(g):eP()) then
- return false
- end
- return true
- --]]
- end
- -- Returns the equivalent of the chord within the representative fundamental
- -- domain of transpositonal equivalence.
- function Chord:eT()
- ----[[ GVLS:
- local layer_ = self:layer()
- local sumPerVoice = layer_ / #self
- return self:T(-sumPerVoice)
- --]]
- --[[ MKG:
- g = g or 1
- local iterator = self
- -- Transpose down to layer 0 or just below.
- while iterator:layer() > 0 do
- iterator = iterator:T(-g)
- end
- -- Transpose up to layer 0 or just above.
- while iterator:layer() < 0 do
- iterator = iterator:T(g)
- end
- return iterator
- --]]
- end
- -- Returns the equivalent of the chord within the representative fundamental
- -- domain of transpositonal equivalence and the equal temperament generated
- -- by g. I.e., returns the chord transposed such that its layer is 0 or, under
- -- transposition, the positive layer closest to 0. NOTE: Does NOT return the
- -- result under any other equivalence class.
- function Chord:eTT(g)
- g = g or 1
- local et = self:eT()
- local transposition = math.ceil(et[1]) - et[1]
- local ett = et:T(transposition)
- return ett
- end
- -- Returns whether the chord is within the representative fundamental domain
- -- of translational equivalence and the equal temperament generated by g.
- function Chord:iseTT(g)
- g = g or 1
- local ep = self:eP()
- if not (ep == ep:eTT(g)) then
- return false
- end
- return true
- end
- -- Returns whether the chord is within the representative fundamental domain
- -- of inversional equivalence.
- function Chord:iseI(inverse)
- --[[ GLVS:
- local chord = self:clone()
- local lowerVoice = 2
- local upperVoice = #chord
- while lowerVoice < upperVoice do
- -- GVLS: tests only 1 interval: x[2] - x[1] <= x[#x] - x[#x - 1]
- local lowerInterval = chord[lowerVoice] - chord[lowerVoice - 1]
- local upperInterval = chord[upperVoice] - chord[upperVoice - 1]
- if lowerInterval < upperInterval then
- return true
- end
- if lowerInterval > upperInterval then
- return false
- end
- lowerVoice = lowerVoice + 1
- upperVoice = upperVoice - 1
- end
- return true
- --]]
- ----[[ MKG:
- inverse = inverse or self:I()
- if not self:__le(inverse) then
- return false
- end
- return true
- --]]
- --[[ MKG:
- inverse = self:I()
- if not self:__le(inverse) then
- return false
- end
- return true
- --]]
- end
- -- Returns the equivalent of the chord within the representative fundamental
- -- domain of inversional equivalence.
- function Chord:eI()
- if self:iseI() then
- return self:clone()
- end
- return self:I()
- end
- -- Returns whether the chord is within the representative fundamental domain
- -- of range and permutational equivalence.
- function Chord:iseRP(range)
- --[[ GVLS:
- for voice = 2, #self do
- if not (self[voice - 1] <= self[voice]) then
- return false
- end
- end
- if not (self[#self] <= (self[1] + range)) then
- return false
- end
- local layer_ = self:layer()
- if not ((0 <= layer_) and (layer_ <= range)) then
- return false
- end
- return true
- --]]
- ----[[ MKG:
- if not self:iseR(range) then
- return false
- end
- if not self:iseP() then
- return false
- end
- return true
- --]]
- end
- -- Returns whether the chord is within the representative fundamental domain
- -- of octave and permutational equivalence.
- function Chord:iseOP()
- return self:iseRP(ChordSpace.OCTAVE)
- end
- -- Returns the equivalent of the chord within the representative fundamental
- -- domain of range and permutational equivalence.
- function Chord:eRP(range)
- return self:eR(range):eP()
- end
- -- Returns the equivalent of the chord within the representative fundamental
- -- domain of octave and permutational equivalence.
- function Chord:eOP()
- return self:eRP(ChordSpace.OCTAVE)
- end
- -- Returns a copy of the chord cyclically permuted by a stride, by default 1.
- -- The direction of rotation is the same as musicians' first inversion, second
- -- inversion, and so on.
- function Chord:cycle(stride)
- stride = stride or 1
- local clone_ = self:clone()
- if stride < 0 then
- for i = 1, stride do
- local tail = table.remove(clone_)
- table.insert(clone_, 1, tail)
- end
- return chord
- end
- if stride > 0 then
- for i = 1, math.abs(stride) do
- local head = table.remove(clone_, 1)
- table.insert(clone_, head)
- end
- end
- return clone_
- end
- -- Returns the permutations of the pitches in a chord. The permutations from
- -- each particular permutation are always returned in the same order.
- function Chord:permutations()
- local chord = self:clone()
- local permutations_ = {}
- permutations_[1] = chord
- for i = 2, #self do
- chord = chord:cycle()
- permutations_[i] = chord
- end
- table.sort(permutations_)
- return permutations_
- end
- -- Returns whether the chord is within the representative fundamental domain
- -- of voicing equivalence.
- function Chord:iseV()
- local eV = self:eV()
- --print(string.format('chord: %s eV: %s', tostring(self), tostring(eV)))
- if not (self == eV) then
- return false
- end
- return true
- end
- -- Returns the equivalent of the chord within the representative fundamental
- -- domain of voicing equivalence.
- function Chord:eV()
- ----[[
- for index, voicing in ipairs(self:permutations()) do
- local wraparound = voicing[1] + ChordSpace.OCTAVE - voicing[#voicing]
- local iseV_ = true
- for voice = 1, #voicing - 1 do
- local inner = voicing[voice + 1] - voicing[voice]
- if not ChordSpace.ge_epsilon(wraparound, inner) then
- --if inner > wraparound then
- iseV_ = false
- end
- end
- if iseV_ then
- return voicing
- end
- end
- --]]
- --[[
- local voicings = self:permutations()
- local distancesForIndexes = {}
- for i = 1, #voicings do
- distancesForIndexes[i] = voicings[i]:distanceToUnisonDiagonal()
- end
- local minimumDistanceToUnisonDiagonal = distancesForIndexes[1]
- for i = 2, #voicings do
- if distancesForIndexes[i] < minimumDistanceToUnisonDiagonal then
- minimumDistanceToUnisonDiagonal = distancesForIndexes[i]
- end
- end
- for i = 1, #voicings do
- if distancesForIndexes[i] == minimumDistanceToUnisonDiagonal then
- return voicings[i]
- end
- end
- --]]
- end
- -- Returns whether the chord is within the representative fundamental domain
- -- of range, permutational, and transpositional equivalence.
- function Chord:iseRPT(range)
- --[[ GVLS:
- -- GVLS: if not (self[#self] <= self[1] + ChordSpace.OCTAVE) then
- if not (ChordSpace.le_epsilon(self[#self], (self[1] + range))) then
- return false
- end
- local layer_ = self:layer()
- -- GVLS: if not (layer_ == 0) then
- if not ChordSpace.eq_epsilon(layer_, 0) then
- return false
- end
- if #self < 2 then
- return true
- end
- local wraparound = self[1] + range - self[#self]
- for voice = 1, #self - 1 do
- local inner = self[voice + 1] - self[voice]
- if not ChordSpace.le_epsilon(wraparound, inner) then
- return false
- end
- end
- return true
- --]]
- ----[[ MKG:
- if not self:iseR(range) then
- return false
- end
- if not self:iseP() then
- return false
- end
- if not self:iseT() then
- return false
- end
- if not self:iseV() then
- return false
- end
- return true
- --]]
- end
- function Chord:iseRPTT(range)
- if not self:iseP() then
- return false
- end
- if not self:iseR(range) then
- return false
- end…