/octave-3.6.2/scripts/general/interp2.m
# · Objective C · 610 lines · 547 code · 63 blank · 0 comment · 81 complexity · 7b378071460a9ccb2d26057d4b279319 MD5 · raw file
- ## Copyright (C) 2000-2012 Kai Habel
- ## Copyright (C) 2009 Jaroslav Hajek
- ##
- ## This file is part of Octave.
- ##
- ## Octave is free software; you can redistribute it and/or modify it
- ## under the terms of the GNU General Public License as published by
- ## the Free Software Foundation; either version 3 of the License, or (at
- ## your option) any later version.
- ##
- ## Octave is distributed in the hope that it will be useful, but
- ## WITHOUT ANY WARRANTY; without even the implied warranty of
- ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- ## General Public License for more details.
- ##
- ## You should have received a copy of the GNU General Public License
- ## along with Octave; see the file COPYING. If not, see
- ## <http://www.gnu.org/licenses/>.
- ## -*- texinfo -*-
- ## @deftypefn {Function File} {@var{zi} =} interp2 (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi})
- ## @deftypefnx {Function File} {@var{zi} =} interp2 (@var{Z}, @var{xi}, @var{yi})
- ## @deftypefnx {Function File} {@var{zi} =} interp2 (@var{Z}, @var{n})
- ## @deftypefnx {Function File} {@var{zi} =} interp2 (@dots{}, @var{method})
- ## @deftypefnx {Function File} {@var{zi} =} interp2 (@dots{}, @var{method}, @var{extrapval})
- ##
- ## Two-dimensional interpolation. @var{x}, @var{y} and @var{z} describe a
- ## surface function. If @var{x} and @var{y} are vectors their length
- ## must correspondent to the size of @var{z}. @var{x} and @var{y} must be
- ## monotonic. If they are matrices they must have the @code{meshgrid}
- ## format.
- ##
- ## @table @code
- ## @item interp2 (@var{x}, @var{y}, @var{Z}, @var{xi}, @var{yi}, @dots{})
- ## Returns a matrix corresponding to the points described by the
- ## matrices @var{xi}, @var{yi}.
- ##
- ## If the last argument is a string, the interpolation method can
- ## be specified. The method can be 'linear', 'nearest' or 'cubic'.
- ## If it is omitted 'linear' interpolation is assumed.
- ##
- ## @item interp2 (@var{z}, @var{xi}, @var{yi})
- ## Assumes @code{@var{x} = 1:rows (@var{z})} and @code{@var{y} =
- ## 1:columns (@var{z})}
- ##
- ## @item interp2 (@var{z}, @var{n})
- ## Interleaves the matrix @var{z} n-times. If @var{n} is omitted a value
- ## of @code{@var{n} = 1} is assumed.
- ## @end table
- ##
- ## The variable @var{method} defines the method to use for the
- ## interpolation. It can take one of the following values
- ##
- ## @table @asis
- ## @item 'nearest'
- ## Return the nearest neighbor.
- ##
- ## @item 'linear'
- ## Linear interpolation from nearest neighbors.
- ##
- ## @item 'pchip'
- ## Piecewise cubic Hermite interpolating polynomial.
- ##
- ## @item 'cubic'
- ## Cubic interpolation from four nearest neighbors.
- ##
- ## @item 'spline'
- ## Cubic spline interpolation---smooth first and second derivatives
- ## throughout the curve.
- ## @end table
- ##
- ## If a scalar value @var{extrapval} is defined as the final value, then
- ## values outside the mesh as set to this value. Note that in this case
- ## @var{method} must be defined as well. If @var{extrapval} is not
- ## defined then NA is assumed.
- ##
- ## @seealso{interp1}
- ## @end deftypefn
- ## Author: Kai Habel <kai.habel@gmx.de>
- ## 2005-03-02 Thomas Weber <weber@num.uni-sb.de>
- ## * Add test cases
- ## 2005-03-02 Paul Kienzle <pkienzle@users.sf.net>
- ## * Simplify
- ## 2005-04-23 Dmitri A. Sergatskov <dasergatskov@gmail.com>
- ## * Modified demo and test for new gnuplot interface
- ## 2005-09-07 Hoxide <hoxide_dirac@yahoo.com.cn>
- ## * Add bicubic interpolation method
- ## * Fix the eat line bug when the last element of XI or YI is
- ## negative or zero.
- ## 2005-11-26 Pierre Baldensperger <balden@libertysurf.fr>
- ## * Rather big modification (XI,YI no longer need to be
- ## "meshgridded") to be consistent with the help message
- ## above and for compatibility.
- function ZI = interp2 (varargin)
- Z = X = Y = XI = YI = n = [];
- method = "linear";
- extrapval = NA;
- switch (nargin)
- case 1
- Z = varargin{1};
- n = 1;
- case 2
- if (ischar (varargin{2}))
- [Z, method] = deal (varargin{:});
- n = 1;
- else
- [Z, n] = deal (varargin{:});
- endif
- case 3
- if (ischar (varargin{3}))
- [Z, n, method] = deal (varargin{:});
- else
- [Z, XI, YI] = deal (varargin{:});
- endif
- case 4
- if (ischar (varargin{4}))
- [Z, XI, YI, method] = deal (varargin{:});
- else
- [Z, n, method, extrapval] = deal (varargin{:});
- endif
- case 5
- if (ischar (varargin{4}))
- [Z, XI, YI, method, extrapval] = deal (varargin{:});
- else
- [X, Y, Z, XI, YI] = deal (varargin{:});
- endif
- case 6
- [X, Y, Z, XI, YI, method] = deal (varargin{:});
- case 7
- [X, Y, Z, XI, YI, method, extrapval] = deal (varargin{:});
- otherwise
- print_usage ();
- endswitch
- ## Type checking.
- if (!ismatrix (Z))
- error ("interp2: Z must be a matrix");
- endif
- if (!isempty (n) && !isscalar (n))
- error ("interp2: N must be a scalar");
- endif
- if (!ischar (method))
- error ("interp2: METHOD must be a string");
- endif
- if (ischar (extrapval) || strcmp (extrapval, "extrap"))
- extrapval = [];
- elseif (!isscalar (extrapval))
- error ("interp2: EXTRAPVAL must be a scalar");
- endif
- ## Define X, Y, XI, YI if needed
- [zr, zc] = size (Z);
- if (isempty (X))
- X = 1:zc;
- Y = 1:zr;
- endif
- if (! isnumeric (X) || ! isnumeric (Y))
- error ("interp2: X, Y must be numeric matrices");
- endif
- if (! isempty (n))
- ## Calculate the interleaved input vectors.
- p = 2^n;
- XI = (p:p*zc)/p;
- YI = (p:p*zr)'/p;
- endif
- if (! isnumeric (XI) || ! isnumeric (YI))
- error ("interp2: XI, YI must be numeric");
- endif
- if (strcmp (method, "linear") || strcmp (method, "nearest") ...
- || strcmp (method, "pchip"))
- ## If X and Y vectors produce a grid from them
- if (isvector (X) && isvector (Y))
- X = X(:); Y = Y(:);
- elseif (size_equal (X, Y))
- X = X(1,:)'; Y = Y(:,1);
- else
- error ("interp2: X and Y must be matrices of same size");
- endif
- if (columns (Z) != length (X) || rows (Z) != length (Y))
- error ("interp2: X and Y size must match the dimensions of Z");
- endif
- ## If Xi and Yi are vectors of different orientation build a grid
- if ((rows (XI) == 1 && columns (YI) == 1)
- || (columns (XI) == 1 && rows (YI) == 1))
- [XI, YI] = meshgrid (XI, YI);
- elseif (! size_equal (XI, YI))
- error ("interp2: XI and YI must be matrices of equal size");
- endif
- ## if XI, YI are vectors, X and Y should share their orientation.
- if (rows (XI) == 1)
- if (rows (X) != 1)
- X = X.';
- endif
- if (rows (Y) != 1)
- Y = Y.';
- endif
- elseif (columns (XI) == 1)
- if (columns (X) != 1)
- X = X.';
- endif
- if (columns (Y) != 1)
- Y = Y.';
- endif
- endif
- xidx = lookup (X, XI, "lr");
- yidx = lookup (Y, YI, "lr");
- if (strcmp (method, "linear"))
- ## each quad satisfies the equation z(x,y)=a+b*x+c*y+d*xy
- ##
- ## a-b
- ## | |
- ## c-d
- a = Z(1:(zr - 1), 1:(zc - 1));
- b = Z(1:(zr - 1), 2:zc) - a;
- c = Z(2:zr, 1:(zc - 1)) - a;
- d = Z(2:zr, 2:zc) - a - b - c;
- ## scale XI, YI values to a 1-spaced grid
- Xsc = (XI - X(xidx)) ./ (diff (X)(xidx));
- Ysc = (YI - Y(yidx)) ./ (diff (Y)(yidx));
- ## Get 2D index.
- idx = sub2ind (size (a), yidx, xidx);
- ## We can dispose of the 1D indices at this point to save memory.
- clear xidx yidx;
- ## apply plane equation
- ZI = a(idx) + b(idx).*Xsc + c(idx).*Ysc + d(idx).*Xsc.*Ysc;
- elseif (strcmp (method, "nearest"))
- ii = (XI - X(xidx) >= X(xidx + 1) - XI);
- jj = (YI - Y(yidx) >= Y(yidx + 1) - YI);
- idx = sub2ind (size (Z), yidx+jj, xidx+ii);
- ZI = Z(idx);
- elseif (strcmp (method, "pchip"))
- if (length (X) < 2 || length (Y) < 2)
- error ("interp2: pchip2 requires at least 2 points in each dimension");
- endif
- ## first order derivatives
- DX = __pchip_deriv__ (X, Z, 2);
- DY = __pchip_deriv__ (Y, Z, 1);
- ## Compute mixed derivatives row-wise and column-wise, use the average.
- DXY = (__pchip_deriv__ (X, DY, 2) + __pchip_deriv__ (Y, DX, 1))/2;
- ## do the bicubic interpolation
- hx = diff (X); hx = hx(xidx);
- hy = diff (Y); hy = hy(yidx);
- tx = (XI - X(xidx)) ./ hx;
- ty = (YI - Y(yidx)) ./ hy;
- ## construct the cubic hermite base functions in x, y
- ## formulas:
- ## b{1,1} = ( 2*t.^3 - 3*t.^2 + 1);
- ## b{2,1} = h.*( t.^3 - 2*t.^2 + t );
- ## b{1,2} = (-2*t.^3 + 3*t.^2 );
- ## b{2,2} = h.*( t.^3 - t.^2 );
- ## optimized equivalents of the above:
- t1 = tx.^2;
- t2 = tx.*t1 - t1;
- xb{2,2} = hx.*t2;
- t1 = t2 - t1;
- xb{2,1} = hx.*(t1 + tx);
- t2 += t1;
- xb{1,2} = -t2;
- xb{1,1} = t2 + 1;
- t1 = ty.^2;
- t2 = ty.*t1 - t1;
- yb{2,2} = hy.*t2;
- t1 = t2 - t1;
- yb{2,1} = hy.*(t1 + ty);
- t2 += t1;
- yb{1,2} = -t2;
- yb{1,1} = t2 + 1;
- ZI = zeros (size (XI));
- for i = 1:2
- for j = 1:2
- zidx = sub2ind (size (Z), yidx+(j-1), xidx+(i-1));
- ZI += xb{1,i} .* yb{1,j} .* Z(zidx);
- ZI += xb{2,i} .* yb{1,j} .* DX(zidx);
- ZI += xb{1,i} .* yb{2,j} .* DY(zidx);
- ZI += xb{2,i} .* yb{2,j} .* DXY(zidx);
- endfor
- endfor
- endif
- if (! isempty (extrapval))
- ## set points outside the table to 'extrapval'
- if (X (1) < X (end))
- if (Y (1) < Y (end))
- ZI (XI < X(1,1) | XI > X(end) | YI < Y(1,1) | YI > Y(end)) = ...
- extrapval;
- else
- ZI (XI < X(1) | XI > X(end) | YI < Y(end) | YI > Y(1)) = ...
- extrapval;
- endif
- else
- if (Y (1) < Y (end))
- ZI (XI < X(end) | XI > X(1) | YI < Y(1) | YI > Y(end)) = ...
- extrapval;
- else
- ZI (XI < X(1,end) | XI > X(1) | YI < Y(end) | YI > Y(1)) = ...
- extrapval;
- endif
- endif
- endif
- else
- ## Check dimensions of X and Y
- if (isvector (X) && isvector (Y))
- X = X(:).';
- Y = Y(:);
- if (!isequal ([length(Y), length(X)], size(Z)))
- error ("interp2: X and Y size must match the dimensions of Z");
- endif
- elseif (!size_equal (X, Y))
- error ("interp2: X and Y must be matrices of equal size");
- if (! size_equal (X, Z))
- error ("interp2: X and Y size must match the dimensions of Z");
- endif
- endif
- ## Check dimensions of XI and YI
- if (isvector (XI) && isvector (YI) && ! size_equal (XI, YI))
- XI = XI(:).';
- YI = YI(:);
- [XI, YI] = meshgrid (XI, YI);
- elseif (! size_equal (XI, YI))
- error ("interp2: XI and YI must be matrices of equal size");
- endif
- if (strcmp (method, "cubic"))
- if (isgriddata (XI) && isgriddata (YI'))
- ZI = bicubic (X, Y, Z, XI (1, :), YI (:, 1), extrapval);
- elseif (isgriddata (X) && isgriddata (Y'))
- ## Allocate output
- ZI = zeros (size (X));
- ## Find inliers
- inside = !(XI < X (1) | XI > X (end) | YI < Y (1) | YI > Y (end));
- ## Scale XI and YI to match indices of Z
- XI = (columns (Z) - 1) * (XI - X (1)) / (X (end) - X (1)) + 1;
- YI = (rows (Z) - 1) * (YI - Y (1)) / (Y (end) - Y (1)) + 1;
- ## Start the real work
- K = floor (XI);
- L = floor (YI);
- ## Coefficients
- AY1 = bc ((YI - L + 1));
- AX1 = bc ((XI - K + 1));
- AY0 = bc ((YI - L + 0));
- AX0 = bc ((XI - K + 0));
- AY_1 = bc ((YI - L - 1));
- AX_1 = bc ((XI - K - 1));
- AY_2 = bc ((YI - L - 2));
- AX_2 = bc ((XI - K - 2));
- ## Perform interpolation
- sz = size(Z);
- ZI = AY_2 .* AX_2 .* Z (sym_sub2ind (sz, L+2, K+2)) ...
- + AY_2 .* AX_1 .* Z (sym_sub2ind (sz, L+2, K+1)) ...
- + AY_2 .* AX0 .* Z (sym_sub2ind (sz, L+2, K)) ...
- + AY_2 .* AX1 .* Z (sym_sub2ind (sz, L+2, K-1)) ...
- + AY_1 .* AX_2 .* Z (sym_sub2ind (sz, L+1, K+2)) ...
- + AY_1 .* AX_1 .* Z (sym_sub2ind (sz, L+1, K+1)) ...
- + AY_1 .* AX0 .* Z (sym_sub2ind (sz, L+1, K)) ...
- + AY_1 .* AX1 .* Z (sym_sub2ind (sz, L+1, K-1)) ...
- + AY0 .* AX_2 .* Z (sym_sub2ind (sz, L, K+2)) ...
- + AY0 .* AX_1 .* Z (sym_sub2ind (sz, L, K+1)) ...
- + AY0 .* AX0 .* Z (sym_sub2ind (sz, L, K)) ...
- + AY0 .* AX1 .* Z (sym_sub2ind (sz, L, K-1)) ...
- + AY1 .* AX_2 .* Z (sym_sub2ind (sz, L-1, K+2)) ...
- + AY1 .* AX_1 .* Z (sym_sub2ind (sz, L-1, K+1)) ...
- + AY1 .* AX0 .* Z (sym_sub2ind (sz, L-1, K)) ...
- + AY1 .* AX1 .* Z (sym_sub2ind (sz, L-1, K-1));
- ZI (!inside) = extrapval;
- else
- error ("interp2: input data must have `meshgrid' format");
- endif
- elseif (strcmp (method, "spline"))
- if (isgriddata (XI) && isgriddata (YI'))
- ZI = __splinen__ ({Y(:,1).', X(1,:)}, Z, {YI(:,1), XI(1,:)}, extrapval,
- "spline");
- else
- error ("interp2: input data must have `meshgrid' format");
- endif
- else
- error ("interp2: interpolation METHOD not recognized");
- endif
- endif
- endfunction
- function b = isgriddata (X)
- d1 = diff (X, 1, 1);
- b = all (d1 (:) == 0);
- endfunction
- ## Compute the bicubic interpolation coefficients
- function o = bc(x)
- x = abs(x);
- o = zeros(size(x));
- idx1 = (x < 1);
- idx2 = !idx1 & (x < 2);
- o(idx1) = 1 - 2.*x(idx1).^2 + x(idx1).^3;
- o(idx2) = 4 - 8.*x(idx2) + 5.*x(idx2).^2 - x(idx2).^3;
- endfunction
- ## This version of sub2ind behaves as if the data was symmetrically padded
- function ind = sym_sub2ind(sz, Y, X)
- Y (Y < 1) = 1 - Y (Y < 1);
- while (any (Y (:) > 2 * sz (1)))
- Y (Y > 2 * sz (1)) = round (Y (Y > 2 * sz (1)) / 2);
- endwhile
- Y (Y > sz (1)) = 1 + 2 * sz (1) - Y (Y > sz (1));
- X (X < 1) = 1 - X (X < 1);
- while (any (X (:) > 2 * sz (2)))
- X (X > 2 * sz (2)) = round (X (X > 2 * sz (2)) / 2);
- endwhile
- X (X > sz (2)) = 1 + 2 * sz (2) - X (X > sz (2));
- ind = sub2ind(sz, Y, X);
- endfunction
- %!demo
- %! A=[13,-1,12;5,4,3;1,6,2];
- %! x=[0,1,4]; y=[10,11,12];
- %! xi=linspace(min(x),max(x),17);
- %! yi=linspace(min(y),max(y),26)';
- %! mesh(xi,yi,interp2(x,y,A,xi,yi,'linear'));
- %! [x,y] = meshgrid(x,y);
- %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off;
- %!demo
- %! [x,y,A] = peaks(10);
- %! x = x(1,:)'; y = y(:,1);
- %! xi=linspace(min(x),max(x),41);
- %! yi=linspace(min(y),max(y),41)';
- %! mesh(xi,yi,interp2(x,y,A,xi,yi,'linear'));
- %! [x,y] = meshgrid(x,y);
- %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off;
- %!demo
- %! A=[13,-1,12;5,4,3;1,6,2];
- %! x=[0,1,4]; y=[10,11,12];
- %! xi=linspace(min(x),max(x),17);
- %! yi=linspace(min(y),max(y),26)';
- %! mesh(xi,yi,interp2(x,y,A,xi,yi,'nearest'));
- %! [x,y] = meshgrid(x,y);
- %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off;
- %!demo
- %! [x,y,A] = peaks(10);
- %! x = x(1,:)'; y = y(:,1);
- %! xi=linspace(min(x),max(x),41);
- %! yi=linspace(min(y),max(y),41)';
- %! mesh(xi,yi,interp2(x,y,A,xi,yi,'nearest'));
- %! [x,y] = meshgrid(x,y);
- %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off;
- %!demo
- %! A=[13,-1,12;5,4,3;1,6,2];
- %! x=[0,1,2]; y=[10,11,12];
- %! xi=linspace(min(x),max(x),17);
- %! yi=linspace(min(y),max(y),26)';
- %! mesh(xi,yi,interp2(x,y,A,xi,yi,'pchip'));
- %! [x,y] = meshgrid(x,y);
- %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off;
- %!demo
- %! [x,y,A] = peaks(10);
- %! x = x(1,:)'; y = y(:,1);
- %! xi=linspace(min(x),max(x),41);
- %! yi=linspace(min(y),max(y),41)';
- %! mesh(xi,yi,interp2(x,y,A,xi,yi,'pchip'));
- %! [x,y] = meshgrid(x,y);
- %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off;
- %!demo
- %! A=[13,-1,12;5,4,3;1,6,2];
- %! x=[0,1,2]; y=[10,11,12];
- %! xi=linspace(min(x),max(x),17);
- %! yi=linspace(min(y),max(y),26)';
- %! mesh(xi,yi,interp2(x,y,A,xi,yi,'cubic'));
- %! [x,y] = meshgrid(x,y);
- %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off;
- %!demo
- %! [x,y,A] = peaks(10);
- %! x = x(1,:)'; y = y(:,1);
- %! xi=linspace(min(x),max(x),41);
- %! yi=linspace(min(y),max(y),41)';
- %! mesh(xi,yi,interp2(x,y,A,xi,yi,'cubic'));
- %! [x,y] = meshgrid(x,y);
- %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off;
- %!demo
- %! A=[13,-1,12;5,4,3;1,6,2];
- %! x=[0,1,2]; y=[10,11,12];
- %! xi=linspace(min(x),max(x),17);
- %! yi=linspace(min(y),max(y),26)';
- %! mesh(xi,yi,interp2(x,y,A,xi,yi,'spline'));
- %! [x,y] = meshgrid(x,y);
- %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off;
- %!demo
- %! [x,y,A] = peaks(10);
- %! x = x(1,:)'; y = y(:,1);
- %! xi=linspace(min(x),max(x),41);
- %! yi=linspace(min(y),max(y),41)';
- %! mesh(xi,yi,interp2(x,y,A,xi,yi,'spline'));
- %! [x,y] = meshgrid(x,y);
- %! hold on; plot3(x(:),y(:),A(:),"b*"); hold off;
- %!test % simple test
- %! x = [1,2,3];
- %! y = [4,5,6,7];
- %! [X, Y] = meshgrid(x,y);
- %! Orig = X.^2 + Y.^3;
- %! xi = [1.2,2, 1.5];
- %! yi = [6.2, 4.0, 5.0]';
- %!
- %! Expected = ...
- %! [243, 245.4, 243.9;
- %! 65.6, 68, 66.5;
- %! 126.6, 129, 127.5];
- %! Result = interp2(x,y,Orig, xi, yi);
- %!
- %! assert(Result, Expected, 1000*eps);
- %!test % 2^n form
- %! x = [1,2,3];
- %! y = [4,5,6,7];
- %! [X, Y] = meshgrid(x,y);
- %! Orig = X.^2 + Y.^3;
- %! xi = [1:0.25:3]; yi = [4:0.25:7]';
- %! Expected = interp2(x,y,Orig, xi, yi);
- %! Result = interp2(Orig,2);
- %!
- %! assert(Result, Expected, 10*eps);
- %!test % matrix slice
- %! A = eye(4);
- %! assert(interp2(A,[1:4],[1:4]),[1,1,1,1]);
- %!test % non-gridded XI,YI
- %! A = eye(4);
- %! assert(interp2(A,[1,2;3,4],[1,3;2,4]),[1,0;0,1]);
- %!test % for values outside of boundaries
- %! x = [1,2,3];
- %! y = [4,5,6,7];
- %! [X, Y] = meshgrid(x,y);
- %! Orig = X.^2 + Y.^3;
- %! xi = [0,4];
- %! yi = [3,8]';
- %! assert(interp2(x,y,Orig, xi, yi),[NA,NA;NA,NA]);
- %! assert(interp2(x,y,Orig, xi, yi,'linear', 0),[0,0;0,0]);
- %!test % for values at boundaries
- %! A=[1,2;3,4];
- %! x=[0,1];
- %! y=[2,3]';
- %! assert(interp2(x,y,A,x,y,'linear'), A);
- %! assert(interp2(x,y,A,x,y,'nearest'), A);
- %!test % for Matlab-compatible rounding for 'nearest'
- %! X = meshgrid (1:4);
- %! assert (interp2 (X, 2.5, 2.5, 'nearest'), 3);
- %!shared z, zout, tol
- %! z = [1 3 5; 3 5 7; 5 7 9];
- %! zout = [1 2 3 4 5; 2 3 4 5 6; 3 4 5 6 7; 4 5 6 7 8; 5 6 7 8 9];
- %! tol = 2 * eps;
- %!assert (interp2 (z), zout, tol);
- %!assert (interp2 (z, "linear"), zout, tol);
- %!assert (interp2 (z, "pchip"), zout, tol);
- %!assert (interp2 (z, "cubic"), zout, 10 * tol);
- %!assert (interp2 (z, "spline"), zout, tol);
- %!assert (interp2 (z, [2 3 1], [2 2 2]', "linear"), repmat ([5, 7, 3], [3, 1]), tol)
- %!assert (interp2 (z, [2 3 1], [2 2 2]', "pchip"), repmat ([5, 7, 3], [3, 1]), tol)
- %!assert (interp2 (z, [2 3 1], [2 2 2]', "cubic"), repmat ([5, 7, 3], [3, 1]), 10 * tol)
- %!assert (interp2 (z, [2 3 1], [2 2 2]', "spline"), repmat ([5, 7, 3], [3, 1]), tol)
- %!assert (interp2 (z, [2 3 1], [2 2 2], "linear"), [5 7 3], tol);
- %!assert (interp2 (z, [2 3 1], [2 2 2], "pchip"), [5 7 3], tol);
- %!assert (interp2 (z, [2 3 1], [2 2 2], "cubic"), [5 7 3], 10 * tol);
- %!assert (interp2 (z, [2 3 1], [2 2 2], "spline"), [5 7 3], tol);