/src/src_gw/src_acfreq/mrqmin.f90

http://github.com/exciting/exciting · Fortran Modern · 143 lines · 64 code · 21 blank · 58 comment · 3 complexity · 41e65646a442e08c77946ab366d491d5 MD5 · raw file

  1. !BOP
  2. !
  3. ! !ROUTINE: mrqmin
  4. !
  5. ! !INTERFACE:
  6. subroutine mrqmin(x,y,ndata,a,ma,covar,alpha,nca, &
  7. & chisq,alamda)
  8. ! !DESCRIPTION:
  9. !
  10. !Levenberg-Marquardt method, attempting to reduce the value
  11. !$\chi^2$ of a fit between a set of data points
  12. !\texttt{x(1:ndata)}, \texttt{y(1:ndata)}, and a nonlinear function
  13. !dependent on \texttt{ma} coefficients \texttt{a(1:ma)}. The program
  14. !returns current best-fit values for the
  15. !parameters \texttt{a(1:ma)}, and $\chi^2 = \texttt{chisq}$. The
  16. !arrays \texttt{covar(1:nca,1:nca)}, \texttt{alpha(1:nca,1:nca)}
  17. !with physical dimension \texttt{nca} ($\geq$ the number of fitted
  18. !parameters) are used as working space during most iterations.
  19. ! On the first call provide an initial guess for the
  20. !parameters \texttt{a}, and set $\texttt{alamda}<0$ for
  21. !initialization (which then sets $\texttt{alamda}=.001$). If
  22. !a step succeeds \texttt{chisq} becomes smaller and \texttt{alamda}
  23. !decreases by a factor of 10. If a step fails \texttt{alamda} grows
  24. !by a factor of 10. You must call this routine repeatedly until
  25. !convergence is achieved. Then, make one final call with
  26. !$\texttt{alamda}=0$, so that \texttt{covar(1:ma,1:ma)} returns the
  27. !covariance matrix, and \texttt{alpha} the curvature matrix.
  28. !(Parameters held fixed will return zero covariances.)
  29. !
  30. ! !INPUT PARAMETERS:
  31. implicit none
  32. integer(4), intent(in) :: ndata ! Number of datapoints to be fitted
  33. integer(4), intent(in) :: ma ! Number of coefficients
  34. integer(4), intent(in) :: nca ! Size of working-space arrays
  35. real(8), intent(in) :: x(*) ! abscisas of the datapoints
  36. complex(8), intent(in) :: y(*) ! data value of the datapoint
  37. ! !INPUT/OUTPUT PARAMETERS:
  38. real(8), intent(inout) :: alamda
  39. real(8), intent(inout) :: chisq
  40. real(8), intent(inout) :: a(1:ma)
  41. real(8), intent(inout) :: covar(1:nca,1:nca)
  42. real(8), intent(inout) :: alpha(1:nca,1:nca)
  43. ! !LOCAL VARIABLES:
  44. integer(4) :: j
  45. integer(4) :: k
  46. integer(4) :: l
  47. integer(4), parameter :: max = 50
  48. real(8) :: ochisq
  49. real(8), dimension(1:max) :: atry
  50. real(8), dimension(1:max) :: beta
  51. real(8), dimension(1:max) :: da
  52. save ochisq,atry,beta,da
  53. ! !EXTERNAL ROUTINES:
  54. external covsrt
  55. external gaussj
  56. external mrqcof
  57. ! !REVISION HISTORY:
  58. !
  59. ! Original subroutine: mrqmin.for (c) copr. 1986-92 numerical recipes
  60. ! software &680i..
  61. ! Last modified: 7th. Jul. 2005 by RGA
  62. !
  63. !EOP
  64. !BOC
  65. if(alamda.lt.0.0d0)then ! Initialization.
  66. alamda=1.0d-3
  67. call mrqcof(x,y,ndata,a,ma,alpha,beta,nca,chisq)
  68. ochisq=chisq
  69. do j=1,ma
  70. atry(j)=a(j)
  71. enddo ! j
  72. endif
  73. !
  74. ! Alter linearized fitting matrix, by augmenting diagonal elements.
  75. !
  76. do j=1,ma
  77. do k=1,ma
  78. covar(j,k)=alpha(j,k)
  79. enddo ! k
  80. covar(j,j)=alpha(j,j)*(1.0d0+alamda)
  81. da(j)=beta(j)
  82. enddo ! j
  83. !
  84. call gaussj(covar,ma,nca,da,1,1)
  85. !
  86. ! Once converged, evaluate covariance matrix.
  87. !
  88. ! if(alamda.eq.0.0d0)then
  89. ! call covsrt(covar,nca,ma,ia,mfit)
  90. !
  91. ! Spread out alpha to its full size too.
  92. !
  93. ! call covsrt(alpha,nca,ma,ia,mfit)
  94. ! return
  95. ! endif
  96. j=0
  97. !
  98. ! Did the trial succeed?
  99. !
  100. do l=1,ma
  101. atry(l)=a(l)+da(l)
  102. enddo ! l
  103. call mrqcof(x,y,ndata,atry,ma,covar,da,nca,chisq)
  104. if(chisq.lt.ochisq)then ! Success, accept the new solution.
  105. alamda=0.1d0*alamda
  106. ochisq=chisq
  107. do j=1,ma
  108. do k=1,ma
  109. alpha(j,k)=covar(j,k)
  110. enddo ! k
  111. beta(j)=da(j)
  112. enddo ! j
  113. do l=1,ma
  114. a(l)=atry(l)
  115. enddo ! l
  116. else ! Failure, increase alamda and return.
  117. alamda=1.0d+1*alamda
  118. chisq=ochisq
  119. endif
  120. return
  121. end subroutine mrqmin
  122. !EOC