/samples/python/squares.py
https://github.com/nielsgm/opencv · Python · 153 lines · 89 code · 16 blank · 48 comment · 18 complexity · 6e9890ec1a2d3a86712b82adce66ecf9 MD5 · raw file
- #!/usr/bin/python
- #
- # The full "Square Detector" program.
- # It loads several images subsequentally and tries to find squares in
- # each image
- #
- import urllib2
- from math import sqrt
- import cv2.cv as cv
- thresh = 50
- img = None
- img0 = None
- storage = None
- wndname = "Square Detection Demo"
- def angle(pt1, pt2, pt0):
- dx1 = pt1.x - pt0.x
- dy1 = pt1.y - pt0.y
- dx2 = pt2.x - pt0.x
- dy2 = pt2.y - pt0.y
- return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10)
- def findSquares4(img, storage):
- N = 11
- sz = (img.width & -2, img.height & -2)
- timg = cv.CloneImage(img); # make a copy of input image
- gray = cv.CreateImage(sz, 8, 1)
- pyr = cv.CreateImage((sz.width/2, sz.height/2), 8, 3)
- # create empty sequence that will contain points -
- # 4 points per square (the square's vertices)
- squares = cv.CreateSeq(0, sizeof_CvSeq, sizeof_CvPoint, storage)
- squares = CvSeq_CvPoint.cast(squares)
- # select the maximum ROI in the image
- # with the width and height divisible by 2
- subimage = cv.GetSubRect(timg, cv.Rect(0, 0, sz.width, sz.height))
- # down-scale and upscale the image to filter out the noise
- cv.PyrDown(subimage, pyr, 7)
- cv.PyrUp(pyr, subimage, 7)
- tgray = cv.CreateImage(sz, 8, 1)
- # find squares in every color plane of the image
- for c in range(3):
- # extract the c-th color plane
- channels = [None, None, None]
- channels[c] = tgray
- cv.Split(subimage, channels[0], channels[1], channels[2], None)
- for l in range(N):
- # hack: use Canny instead of zero threshold level.
- # Canny helps to catch squares with gradient shading
- if(l == 0):
- # apply Canny. Take the upper threshold from slider
- # and set the lower to 0 (which forces edges merging)
- cv.Canny(tgray, gray, 0, thresh, 5)
- # dilate canny output to remove potential
- # holes between edge segments
- cv.Dilate(gray, gray, None, 1)
- else:
- # apply threshold if l!=0:
- # tgray(x, y) = gray(x, y) < (l+1)*255/N ? 255 : 0
- cv.Threshold(tgray, gray, (l+1)*255/N, 255, cv.CV_THRESH_BINARY)
- # find contours and store them all as a list
- count, contours = cv.FindContours(gray, storage, sizeof_CvContour,
- cv.CV_RETR_LIST, cv. CV_CHAIN_APPROX_SIMPLE, (0, 0))
- if not contours:
- continue
- # test each contour
- for contour in contours.hrange():
- # approximate contour with accuracy proportional
- # to the contour perimeter
- result = cv.ApproxPoly(contour, sizeof_CvContour, storage,
- cv.CV_POLY_APPROX_DP, cv.ContourPerimeter(contours)*0.02, 0)
- # square contours should have 4 vertices after approximation
- # relatively large area (to filter out noisy contours)
- # and be convex.
- # Note: absolute value of an area is used because
- # area may be positive or negative - in accordance with the
- # contour orientation
- if(result.total == 4 and
- abs(cv.ContourArea(result)) > 1000 and
- cv.CheckContourConvexity(result)):
- s = 0
- for i in range(5):
- # find minimum angle between joint
- # edges (maximum of cosine)
- if(i >= 2):
- t = abs(angle(result[i], result[i-2], result[i-1]))
- if s<t:
- s=t
- # if cosines of all angles are small
- # (all angles are ~90 degree) then write quandrange
- # vertices to resultant sequence
- if(s < 0.3):
- for i in range(4):
- squares.append(result[i])
- return squares
- # the function draws all the squares in the image
- def drawSquares(img, squares):
- cpy = cv.CloneImage(img)
- # read 4 sequence elements at a time (all vertices of a square)
- i=0
- while i<squares.total:
- pt = []
- # read 4 vertices
- pt.append(squares[i])
- pt.append(squares[i+1])
- pt.append(squares[i+2])
- pt.append(squares[i+3])
- # draw the square as a closed polyline
- cv.PolyLine(cpy, [pt], 1, cv.CV_RGB(0, 255, 0), 3, cv. CV_AA, 0)
- i+=4
- # show the resultant image
- cv.ShowImage(wndname, cpy)
- def on_trackbar(a):
- if(img):
- drawSquares(img, findSquares4(img, storage))
- names = ["../c/pic1.png", "../c/pic2.png", "../c/pic3.png",
- "../c/pic4.png", "../c/pic5.png", "../c/pic6.png" ]
- if __name__ == "__main__":
- # create memory storage that will contain all the dynamic data
- storage = cv.CreateMemStorage(0)
- for name in names:
- img0 = cv.LoadImage(name, 1)
- if not img0:
- print "Couldn't load %s" % name
- continue
- img = cv.CloneImage(img0)
- # create window and a trackbar (slider) with parent "image" and set callback
- # (the slider regulates upper threshold, passed to Canny edge detector)
- cv.NamedWindow(wndname, 1)
- cv.CreateTrackbar("canny thresh", wndname, thresh, 1000, on_trackbar)
- # force the image processing
- on_trackbar(0)
- # wait for key.
- # Also the function cv.WaitKey takes care of event processing
- c = cv.WaitKey(0) % 0x100
- # clear memory storage - reset free space position
- cv.ClearMemStorage(storage)
- if(c == '\x1b'):
- break
- cv.DestroyWindow(wndname)