/02-development/Hets/Propositional/Morphism.hs
https://bitbucket.org/jmelo_lyncode/thesis · Haskell · 149 lines · 103 code · 14 blank · 32 comment · 18 complexity · 2f32d8d623985ff2ea5cb63024ac7160 MD5 · raw file
- {- |
- Module : $Header$
- Description : Morphisms in Propositional logic
- Copyright : (c) Dominik Luecke, Uni Bremen 2007
- License : GPLv2 or higher, see LICENSE.txt
- Maintainer : luecke@informatik.uni-bremen.de
- Stability : experimental
- Portability : portable
- Definition of morphisms for propositional logic
- copied to "Temporal.Morphism"
- -}
- {-
- Ref.
- Till Mossakowski, Joseph Goguen, Razvan Diaconescu, Andrzej Tarlecki.
- What is a Logic?.
- In Jean-Yves Beziau (Ed.), Logica Universalis, pp. 113-@133. Birkhaeuser.
- 2005.
- -}
- module Propositional.Morphism
- ( Morphism (..) -- datatype for Morphisms
- , pretty -- pretty printing
- , idMor -- identity morphism
- , isLegalMorphism -- check if morhpism is ok
- , composeMor -- composition
- , inclusionMap -- inclusion map
- , mapSentence -- map of sentences
- , mapSentenceH -- map of sentences, without Result type
- , applyMap -- application function for maps
- , applyMorphism -- application function for morphism
- , morphismUnion
- ) where
- import qualified Data.Map as Map
- import qualified Data.Set as Set
- import Propositional.Sign as Sign
- import qualified Common.Result as Result
- import qualified Propositional.AS_BASIC_Propositional as AS_BASIC
- import Common.Id as Id
- import Common.Result
- import Common.Doc
- import Common.DocUtils
- -- | The datatype for morphisms in propositional logic as
- -- maps of sets
- data Morphism = Morphism
- { source :: Sign
- , target :: Sign
- , propMap :: Map.Map Id Id
- } deriving (Eq, Ord, Show)
- instance Pretty Morphism where
- pretty = printMorphism
- -- | Constructs an id-morphism
- idMor :: Sign -> Morphism
- idMor a = inclusionMap a a
- -- | Determines whether a morphism is valid
- isLegalMorphism :: Morphism -> Result ()
- isLegalMorphism pmor =
- let psource = items $ source pmor
- ptarget = items $ target pmor
- pdom = Map.keysSet $ propMap pmor
- pcodom = Set.map (applyMorphism pmor) psource
- in if Set.isSubsetOf pcodom ptarget && Set.isSubsetOf pdom psource
- then return () else fail "illegal Propositional morphism"
- -- | Application funtion for morphisms
- applyMorphism :: Morphism -> Id -> Id
- applyMorphism mor idt = Map.findWithDefault idt idt $ propMap mor
- -- | Application function for propMaps
- applyMap :: Map.Map Id Id -> Id -> Id
- applyMap pmap idt = Map.findWithDefault idt idt pmap
- -- | Composition of morphisms in propositional Logic
- composeMor :: Morphism -> Morphism -> Result Morphism
- composeMor f g =
- let fSource = source f
- gTarget = target g
- fMap = propMap f
- gMap = propMap g
- in return Morphism
- { source = fSource
- , target = gTarget
- , propMap = if Map.null gMap then fMap else
- Set.fold ( \ i -> let j = applyMap gMap (applyMap fMap i) in
- if i == j then id else Map.insert i j)
- Map.empty $ items fSource }
- -- | Pretty printing for Morphisms
- printMorphism :: Morphism -> Doc
- printMorphism m = pretty (source m) <> text "-->" <> pretty (target m)
- <> vcat (map ( \ (x, y) -> lparen <> pretty x <> text ","
- <> pretty y <> rparen) $ Map.assocs $ propMap m)
- -- | Inclusion map of a subsig into a supersig
- inclusionMap :: Sign.Sign -> Sign.Sign -> Morphism
- inclusionMap s1 s2 = Morphism
- { source = s1
- , target = s2
- , propMap = Map.empty }
- -- | sentence translation along signature morphism
- -- here just the renaming of formulae
- mapSentence :: Morphism -> AS_BASIC.FORMULA -> Result.Result AS_BASIC.FORMULA
- mapSentence mor = return . mapSentenceH mor
- mapSentenceH :: Morphism -> AS_BASIC.FORMULA -> AS_BASIC.FORMULA
- mapSentenceH mor frm = case frm of
- AS_BASIC.Negation form rn -> AS_BASIC.Negation (mapSentenceH mor form) rn
- AS_BASIC.Conjunction form rn ->
- AS_BASIC.Conjunction (map (mapSentenceH mor) form) rn
- AS_BASIC.Disjunction form rn ->
- AS_BASIC.Disjunction (map (mapSentenceH mor) form) rn
- AS_BASIC.Implication form1 form2 rn -> AS_BASIC.Implication
- (mapSentenceH mor form1) (mapSentenceH mor form2) rn
- AS_BASIC.Equivalence form1 form2 rn -> AS_BASIC.Equivalence
- (mapSentenceH mor form1) (mapSentenceH mor form2) rn
- AS_BASIC.True_atom rn -> AS_BASIC.True_atom rn
- AS_BASIC.False_atom rn -> AS_BASIC.False_atom rn
- AS_BASIC.Predication predH -> AS_BASIC.Predication
- $ id2SimpleId $ applyMorphism mor $ Id.simpleIdToId predH
- morphismUnion :: Morphism -> Morphism -> Result.Result Morphism
- morphismUnion mor1 mor2 =
- let pmap1 = propMap mor1
- pmap2 = propMap mor2
- p1 = source mor1
- p2 = source mor2
- up1 = Set.difference (items p1) $ Map.keysSet pmap1
- up2 = Set.difference (items p2) $ Map.keysSet pmap2
- (pds, pmap) = foldr ( \ (i, j) (ds, m) -> case Map.lookup i m of
- Nothing -> (ds, Map.insert i j m)
- Just k -> if j == k then (ds, m) else
- (Diag Error
- ("incompatible mapping of prop " ++ showId i " to "
- ++ showId j " and " ++ showId k "")
- nullRange : ds, m)) ([], pmap1)
- (Map.toList pmap2 ++ map (\ a -> (a, a))
- (Set.toList $ Set.union up1 up2))
- in if null pds then return Morphism
- { source = unite p1 p2
- , target = unite (target mor1) $ target mor2
- , propMap = pmap } else Result pds Nothing