/jquery.jcryption.js
https://github.com/madhavvyas/jCryption · JavaScript · 2487 lines · 1694 code · 258 blank · 535 comment · 243 complexity · 8997094fff36d06072f499554a26655e MD5 · raw file
Large files are truncated click here to view the full file
- /*
- * jCryption JavaScript data encryption v1.2
- * http://www.jcryption.org/
- *
- * Copyright (c) 2010 Daniel Griesser
- * Dual licensed under the MIT and GPL licenses.
- * http://www.opensource.org/licenses/mit-license.php
- * http://www.opensource.org/licenses/gpl-2.0.php
- *
- * If you need any further information about this plugin please
- * visit my homepage or contact me under daniel.griesser@jcryption.org
- */
- (function($) {
- $.jCryption = function(el, options) {
- var base = this;
-
- base.$el = $(el);
- base.el = el;
- base.$el.data("jCryption", base);
- base.$el.data("salt", null);
- base.$el.data("key", null);
-
- base.init = function() {
- base.options = $.extend({}, $.jCryption.defaultOptions, options);
- // Making a good random salt
- base.$el.bind('mousemove', function(e) {
- if (base.$el.data("salt") === null) {
- base.$el.data("salt", (e.pageX + e.pageY) * Math.random());
- } else {
- base.$el.unbind('mousemove');
- }
- });
-
- $encryptedElement = $("<input />",{
- type:'hidden',
- name:base.options.postVariable
- });
- if (base.options.submitElement !== false) {
- var $submitElement = base.options.submitElement;
- } else {
- var $submitElement = base.$el.find(":input:submit");
- }
- $submitElement.bind(base.options.submitEvent, function() {
- $(this).attr("disabled", true);
- if (base.options.beforeEncryption()) {
- base.authenticate(
- function(AESEncryptionKey) {
- var toEncrypt = base.$el.serialize();
- if ($submitElement.is(":submit")) {
- toEncrypt = toEncrypt + "&" + $submitElement.attr("name") + "=" + $submitElement.val();
- }
- $encryptedElement.val($.jCryption.encrypt(toEncrypt, AESEncryptionKey));
- $(base.$el).find(base.options.formFieldSelector)
- .attr("disabled", true).end()
- .append($encryptedElement).submit();
- },
- function() {
- // Authentication with AES Failed ... sending form without protection
- $(base.$el).submit();
- }
- );
- }
- return false;
- });
- };
-
- base.init();
-
- /**
- * Creates a random string(key) for use in the AES algorithm
- */
- base.getKey = function() {
- if (base.$el.data("key") !== null) {
- return base.$el.data("key");
- }
- // no good salt available
- var seed = base.$el.data("salt");
- if (seed === null) {
- // generating weak seed
- seed = Math.floor(Math.random() * Math.random());
- }
- var hashObj = new jsSHA(seed.toString(), "ASCII");
- base.$el.data("key", hashObj.getHash("SHA-512", "HEX"));
- return base.getKey();
- };
-
- /**
- * Authenticate with the server (One way)
- * @param {function} success The function to call if the operation was successfull
- * @param {function} failure The function to call if an error has occurred
- */
- base.authenticate = function(success, failure) {
- var key = base.getKey();
- $.jCryption.authenticate(key, base.options.getKeysURL, base.options.handshakeURL, success, failure);
- };
- };
-
- /**
- * Authenticates with the server
- * @param {string} AESEncryptionKey The AES key
- * @param {string} publicKeyURL The public key URL
- * @param {string} handshakeURL The handshake URL
- * @param {function} success The function to call if the operation was successfull
- * @param {function} failure The function to call if an error has occurred
- */
- $.jCryption.authenticate = function(AESEncryptionKey, publicKeyURL, handshakeURL, success, failure) {
- $.jCryption.getKeys(publicKeyURL, function(keys) {
- $.jCryption.encryptKey(AESEncryptionKey, keys, function(encryptedKey) {
- $.jCryption.handshake(handshakeURL, encryptedKey, function(response) {
- if ($.jCryption.challenge(response.challenge, AESEncryptionKey)) {
- success.call(this, AESEncryptionKey);
- } else {
- failure.call(this);
- }
- });
- });
- });
- };
-
- /**
- * Gets the RSA keys from the specified url, and saves it into a RSA keypair
- * @param {string} url The url to contact
- * @param {function} callback The function to call when the operation has finshed
- */
- $.jCryption.getKeys = function(url, callback) {
- var jCryptionKeyPair = function(encryptionExponent, modulus, maxdigits) {
- setMaxDigits(parseInt(maxdigits,10));
- this.e = biFromHex(encryptionExponent);
- this.m = biFromHex(modulus);
- this.chunkSize = 2 * biHighIndex(this.m);
- this.radix = 16;
- this.barrett = new BarrettMu(this.m);
- };
- /**
- * Gets the data from the specified url, and converts it into a RSA keypair
- * @param {string} url The URL to contact
- * @param {string} data The JSON data
- */
- $.getJSON(url, function(data) {
- var keys = new jCryptionKeyPair(data.e, data.n, data.maxdigits);
- if($.isFunction(callback)) {
- callback.call(this, keys);
- }
- });
- };
-
- /**
- * Decrypts data using AES 256
- * @param {string} data The data to decrypt(Ciphertext)
- * @param {string} key The AES key
- * @returns {string} The result of the decryption(Plaintext)
- */
- $.jCryption.decrypt = function(data, key) {
- return Aes.Ctr.decrypt(data, key , 256);
- };
-
- /**
- * Encrypts data using AES 256
- * @param {string} data The data to encrypt(Plaintext)
- * @param {string} key The AES key
- * @returns {string} The result of the encryption(Ciphertext)
- */
- $.jCryption.encrypt = function(data, key) {
- return Aes.Ctr.encrypt(data, key , 256);
- };
-
- /**
- * Makes sure that the challenge the client sent, is correct
- * @param {string} challenge The challenge string
- * @param {string} key The AES key
- */
- $.jCryption.challenge = function(challenge, key) {
- if ($.jCryption.decrypt(challenge, key) == key) {
- return true;
- }
- return false;
- };
-
- /**
- * Executes a handshake with the server
- * @param {string} url The url to connect to
- * @param {string} key The encrypted AES key
- * @param {function} callback The function to call when the handshaking has finished
- */
- $.jCryption.handshake = function(url, key, callback) {
- $.ajax({
- url: url,
- dataType: "json",
- type: "POST",
- data: {
- key: key
- },
- success: function(response) {
- callback.call(this, response);
- }
- });
- };
-
- /**
- * Encrypts the AES key using RSA
- * @param {string} string The AES key
- * @param {keypair} keyPair The RSA keypair to use
- * @param {function} callback The function to call when the encryption has finished
- */
- $.jCryption.encryptKey = function(string, keyPair, callback) {
- var charSum = 0;
- for(var i = 0; i < string.length; i++){
- charSum += string.charCodeAt(i);
- }
- var tag = '0123456789abcdef';
- var hex = '';
- hex += tag.charAt((charSum & 0xF0) >> 4) + tag.charAt(charSum & 0x0F);
- var taggedString = hex + string;
- var encrypt = [];
- var j = 0;
- while (j < taggedString.length) {
- encrypt[j] = taggedString.charCodeAt(j);
- j++;
- }
- while (encrypt.length % keyPair.chunkSize !== 0) {
- encrypt[j++] = 0;
- }
- function encryption(encryptObject) {
- var charCounter = 0;
- var j, block;
- var encrypted = "";
- function encryptChar() {
- block = new BigInt();
- j = 0;
- for (var k = charCounter; k < charCounter+keyPair.chunkSize; ++j) {
- block.digits[j] = encryptObject[k++];
- block.digits[j] += encryptObject[k++] << 8;
- }
- var crypt = keyPair.barrett.powMod(block, keyPair.e);
- var text = keyPair.radix == 16 ? biToHex(crypt) : biToString(crypt, keyPair.radix);
- encrypted += text + " ";
- charCounter += keyPair.chunkSize;
- if (charCounter < encryptObject.length) {
- setTimeout(encryptChar, 1)
- } else {
- var encryptedString = encrypted.substring(0, encrypted.length - 1);
- if($.isFunction(callback)) {
- callback(encryptedString);
- } else {
- return encryptedString;
- }
- }
- }
- setTimeout(encryptChar, 1);
- }
- encryption(encrypt);
- };
-
- $.jCryption.defaultOptions = {
- submitElement: false,
- submitEvent: "click",
- getKeysURL: "main.php?generateKeypair=true",
- handshakeURL: "main.php?handshake=true",
- beforeEncryption: function() { return true },
- postVariable: "jCryption",
- formFieldSelector: ":input"
- };
- $.fn.jCryption = function(options) {
- return this.each(function(){
- (new $.jCryption(this, options));
- });
- };
- })(jQuery);
- /*
- * BigInt, a suite of routines for performing multiple-precision arithmetic in
- * JavaScript.
- * BarrettMu, a class for performing Barrett modular reduction computations in
- * JavaScript.
- *
- *
- * Copyright 1998-2005 David Shapiro.
- * dave@ohdave.com
- *
- * changed and improved by Daniel Griesser
- * http://www.jcryption.org/
- * Daniel Griesser <daniel.griesser@jcryption.org>
- */
- var biRadixBase = 2;
- var biRadixBits = 16;
- var bitsPerDigit = biRadixBits;
- var biRadix = 1 << 16;
- var biHalfRadix = biRadix >>> 1;
- var biRadixSquared = biRadix * biRadix;
- var maxDigitVal = biRadix - 1;
- var maxInteger = 9999999999999998;
- var maxDigits;
- var ZERO_ARRAY;
- var bigZero, bigOne;
- var dpl10 = 15;
- var highBitMasks = new Array(0x0000, 0x8000, 0xC000, 0xE000, 0xF000, 0xF800,
- 0xFC00, 0xFE00, 0xFF00, 0xFF80, 0xFFC0, 0xFFE0,
- 0xFFF0, 0xFFF8, 0xFFFC, 0xFFFE, 0xFFFF);
- var hexatrigesimalToChar = new Array(
- '0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
- 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
- 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't',
- 'u', 'v', 'w', 'x', 'y', 'z'
- );
- var hexToChar = new Array('0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
- 'a', 'b', 'c', 'd', 'e', 'f');
- var lowBitMasks = new Array(0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F,
- 0x003F, 0x007F, 0x00FF, 0x01FF, 0x03FF, 0x07FF,
- 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF);
- function setMaxDigits(value) {
- maxDigits = value;
- ZERO_ARRAY = new Array(maxDigits);
- for (var iza = 0; iza < ZERO_ARRAY.length; iza++) ZERO_ARRAY[iza] = 0;
- bigZero = new BigInt();
- bigOne = new BigInt();
- bigOne.digits[0] = 1;
- }
- function BigInt(flag) {
- if (typeof flag == "boolean" && flag == true) {
- this.digits = null;
- }
- else {
- this.digits = ZERO_ARRAY.slice(0);
- }
- this.isNeg = false;
- }
- function biFromDecimal(s) {
- var isNeg = s.charAt(0) == '-';
- var i = isNeg ? 1 : 0;
- var result;
- while (i < s.length && s.charAt(i) == '0') ++i;
- if (i == s.length) {
- result = new BigInt();
- }
- else {
- var digitCount = s.length - i;
- var fgl = digitCount % dpl10;
- if (fgl == 0) fgl = dpl10;
- result = biFromNumber(Number(s.substr(i, fgl)));
- i += fgl;
- while (i < s.length) {
- result = biAdd(biMultiply(result, biFromNumber(1000000000000000)),
- biFromNumber(Number(s.substr(i, dpl10))));
- i += dpl10;
- }
- result.isNeg = isNeg;
- }
- return result;
- }
- function biCopy(bi) {
- var result = new BigInt(true);
- result.digits = bi.digits.slice(0);
- result.isNeg = bi.isNeg;
- return result;
- }
- function biFromNumber(i) {
- var result = new BigInt();
- result.isNeg = i < 0;
- i = Math.abs(i);
- var j = 0;
- while (i > 0) {
- result.digits[j++] = i & maxDigitVal;
- i >>= biRadixBits;
- }
- return result;
- }
- function reverseStr(s) {
- var result = "";
- for (var i = s.length - 1; i > -1; --i) {
- result += s.charAt(i);
- }
- return result;
- }
- function biToString(x, radix) {
- var b = new BigInt();
- b.digits[0] = radix;
- var qr = biDivideModulo(x, b);
- var result = hexatrigesimalToChar[qr[1].digits[0]];
- while (biCompare(qr[0], bigZero) == 1) {
- qr = biDivideModulo(qr[0], b);
- digit = qr[1].digits[0];
- result += hexatrigesimalToChar[qr[1].digits[0]];
- }
- return (x.isNeg ? "-" : "") + reverseStr(result);
- }
- function biToDecimal(x) {
- var b = new BigInt();
- b.digits[0] = 10;
- var qr = biDivideModulo(x, b);
- var result = String(qr[1].digits[0]);
- while (biCompare(qr[0], bigZero) == 1) {
- qr = biDivideModulo(qr[0], b);
- result += String(qr[1].digits[0]);
- }
- return (x.isNeg ? "-" : "") + reverseStr(result);
- }
- function digitToHex(n) {
- var mask = 0xf;
- var result = "";
- for (i = 0; i < 4; ++i) {
- result += hexToChar[n & mask];
- n >>>= 4;
- }
- return reverseStr(result);
- }
- function biToHex(x) {
- var result = "";
- var n = biHighIndex(x);
- for (var i = biHighIndex(x); i > -1; --i) {
- result += digitToHex(x.digits[i]);
- }
- return result;
- }
- function charToHex(c) {
- var ZERO = 48;
- var NINE = ZERO + 9;
- var littleA = 97;
- var littleZ = littleA + 25;
- var bigA = 65;
- var bigZ = 65 + 25;
- var result;
- if (c >= ZERO && c <= NINE) {
- result = c - ZERO;
- } else if (c >= bigA && c <= bigZ) {
- result = 10 + c - bigA;
- } else if (c >= littleA && c <= littleZ) {
- result = 10 + c - littleA;
- } else {
- result = 0;
- }
- return result;
- }
- function hexToDigit(s) {
- var result = 0;
- var sl = Math.min(s.length, 4);
- for (var i = 0; i < sl; ++i) {
- result <<= 4;
- result |= charToHex(s.charCodeAt(i))
- }
- return result;
- }
- function biFromHex(s) {
- var result = new BigInt();
- var sl = s.length;
- for (var i = sl, j = 0; i > 0; i -= 4, ++j) {
- result.digits[j] = hexToDigit(s.substr(Math.max(i - 4, 0), Math.min(i, 4)));
- }
- return result;
- }
- function biFromString(s, radix) {
- var isNeg = s.charAt(0) == '-';
- var istop = isNeg ? 1 : 0;
- var result = new BigInt();
- var place = new BigInt();
- place.digits[0] = 1; // radix^0
- for (var i = s.length - 1; i >= istop; i--) {
- var c = s.charCodeAt(i);
- var digit = charToHex(c);
- var biDigit = biMultiplyDigit(place, digit);
- result = biAdd(result, biDigit);
- place = biMultiplyDigit(place, radix);
- }
- result.isNeg = isNeg;
- return result;
- }
- function biDump(b) {
- return (b.isNeg ? "-" : "") + b.digits.join(" ");
- }
- function biAdd(x, y) {
- var result;
- if (x.isNeg != y.isNeg) {
- y.isNeg = !y.isNeg;
- result = biSubtract(x, y);
- y.isNeg = !y.isNeg;
- }
- else {
- result = new BigInt();
- var c = 0;
- var n;
- for (var i = 0; i < x.digits.length; ++i) {
- n = x.digits[i] + y.digits[i] + c;
- result.digits[i] = n & 0xffff;
- c = Number(n >= biRadix);
- }
- result.isNeg = x.isNeg;
- }
- return result;
- }
- function biSubtract(x, y) {
- var result;
- if (x.isNeg != y.isNeg) {
- y.isNeg = !y.isNeg;
- result = biAdd(x, y);
- y.isNeg = !y.isNeg;
- } else {
- result = new BigInt();
- var n, c;
- c = 0;
- for (var i = 0; i < x.digits.length; ++i) {
- n = x.digits[i] - y.digits[i] + c;
- result.digits[i] = n & 0xffff;
- if (result.digits[i] < 0) result.digits[i] += biRadix;
- c = 0 - Number(n < 0);
- }
- if (c == -1) {
- c = 0;
- for (var i = 0; i < x.digits.length; ++i) {
- n = 0 - result.digits[i] + c;
- result.digits[i] = n & 0xffff;
- if (result.digits[i] < 0) result.digits[i] += biRadix;
- c = 0 - Number(n < 0);
- }
- result.isNeg = !x.isNeg;
- } else {
- result.isNeg = x.isNeg;
- }
- }
- return result;
- }
- function biHighIndex(x) {
- var result = x.digits.length - 1;
- while (result > 0 && x.digits[result] == 0) --result;
- return result;
- }
- function biNumBits(x) {
- var n = biHighIndex(x);
- var d = x.digits[n];
- var m = (n + 1) * bitsPerDigit;
- var result;
- for (result = m; result > m - bitsPerDigit; --result) {
- if ((d & 0x8000) != 0) break;
- d <<= 1;
- }
- return result;
- }
- function biMultiply(x, y) {
- var result = new BigInt();
- var c;
- var n = biHighIndex(x);
- var t = biHighIndex(y);
- var u, uv, k;
- for (var i = 0; i <= t; ++i) {
- c = 0;
- k = i;
- for (j = 0; j <= n; ++j, ++k) {
- uv = result.digits[k] + x.digits[j] * y.digits[i] + c;
- result.digits[k] = uv & maxDigitVal;
- c = uv >>> biRadixBits;
- }
- result.digits[i + n + 1] = c;
- }
- result.isNeg = x.isNeg != y.isNeg;
- return result;
- }
- function biMultiplyDigit(x, y) {
- var n, c, uv;
- var result = new BigInt();
- n = biHighIndex(x);
- c = 0;
- for (var j = 0; j <= n; ++j) {
- uv = result.digits[j] + x.digits[j] * y + c;
- result.digits[j] = uv & maxDigitVal;
- c = uv >>> biRadixBits;
- }
- result.digits[1 + n] = c;
- return result;
- }
- function arrayCopy(src, srcStart, dest, destStart, n) {
- var m = Math.min(srcStart + n, src.length);
- for (var i = srcStart, j = destStart; i < m; ++i, ++j) {
- dest[j] = src[i];
- }
- }
- function biShiftLeft(x, n) {
- var digitCount = Math.floor(n / bitsPerDigit);
- var result = new BigInt();
- arrayCopy(x.digits, 0, result.digits, digitCount,result.digits.length - digitCount);
- var bits = n % bitsPerDigit;
- var rightBits = bitsPerDigit - bits;
- for (var i = result.digits.length - 1, i1 = i - 1; i > 0; --i, --i1) {
- result.digits[i] = ((result.digits[i] << bits) & maxDigitVal) |
- ((result.digits[i1] & highBitMasks[bits]) >>>
- (rightBits));
- }
- result.digits[0] = ((result.digits[i] << bits) & maxDigitVal);
- result.isNeg = x.isNeg;
- return result;
- }
- function biShiftRight(x, n) {
- var digitCount = Math.floor(n / bitsPerDigit);
- var result = new BigInt();
- arrayCopy(x.digits, digitCount, result.digits, 0,x.digits.length - digitCount);
- var bits = n % bitsPerDigit;
- var leftBits = bitsPerDigit - bits;
- for (var i = 0, i1 = i + 1; i < result.digits.length - 1; ++i, ++i1) {
- result.digits[i] = (result.digits[i] >>> bits) |
- ((result.digits[i1] & lowBitMasks[bits]) << leftBits);
- }
- result.digits[result.digits.length - 1] >>>= bits;
- result.isNeg = x.isNeg;
- return result;
- }
- function biMultiplyByRadixPower(x, n) {
- var result = new BigInt();
- arrayCopy(x.digits, 0, result.digits, n, result.digits.length - n);
- return result;
- }
- function biDivideByRadixPower(x, n)
- {
- var result = new BigInt();
- arrayCopy(x.digits, n, result.digits, 0, result.digits.length - n);
- return result;
- }
- function biModuloByRadixPower(x, n)
- {
- var result = new BigInt();
- arrayCopy(x.digits, 0, result.digits, 0, n);
- return result;
- }
- function biCompare(x, y) {
- if (x.isNeg != y.isNeg) {
- return 1 - 2 * Number(x.isNeg);
- }
- for (var i = x.digits.length - 1; i >= 0; --i) {
- if (x.digits[i] != y.digits[i]) {
- if (x.isNeg) {
- return 1 - 2 * Number(x.digits[i] > y.digits[i]);
- } else {
- return 1 - 2 * Number(x.digits[i] < y.digits[i]);
- }
- }
- }
- return 0;
- }
- function biDivideModulo(x, y) {
- var nb = biNumBits(x);
- var tb = biNumBits(y);
- var origYIsNeg = y.isNeg;
- var q, r;
- if (nb < tb) {
- if (x.isNeg) {
- q = biCopy(bigOne);
- q.isNeg = !y.isNeg;
- x.isNeg = false;
- y.isNeg = false;
- r = biSubtract(y, x);
- x.isNeg = true;
- y.isNeg = origYIsNeg;
- } else {
- q = new BigInt();
- r = biCopy(x);
- }
- return new Array(q, r);
- }
- q = new BigInt();
- r = x;
- var t = Math.ceil(tb / bitsPerDigit) - 1;
- var lambda = 0;
- while (y.digits[t] < biHalfRadix) {
- y = biShiftLeft(y, 1);
- ++lambda;
- ++tb;
- t = Math.ceil(tb / bitsPerDigit) - 1;
- }
- r = biShiftLeft(r, lambda);
- nb += lambda;
- var n = Math.ceil(nb / bitsPerDigit) - 1;
- var b = biMultiplyByRadixPower(y, n - t);
- while (biCompare(r, b) != -1) {
- ++q.digits[n - t];
- r = biSubtract(r, b);
- }
- for (var i = n; i > t; --i) {
- var ri = (i >= r.digits.length) ? 0 : r.digits[i];
- var ri1 = (i - 1 >= r.digits.length) ? 0 : r.digits[i - 1];
- var ri2 = (i - 2 >= r.digits.length) ? 0 : r.digits[i - 2];
- var yt = (t >= y.digits.length) ? 0 : y.digits[t];
- var yt1 = (t - 1 >= y.digits.length) ? 0 : y.digits[t - 1];
- if (ri == yt) {
- q.digits[i - t - 1] = maxDigitVal;
- } else {
- q.digits[i - t - 1] = Math.floor((ri * biRadix + ri1) / yt);
- }
- var c1 = q.digits[i - t - 1] * ((yt * biRadix) + yt1);
- var c2 = (ri * biRadixSquared) + ((ri1 * biRadix) + ri2);
- while (c1 > c2) {
- --q.digits[i - t - 1];
- c1 = q.digits[i - t - 1] * ((yt * biRadix) | yt1);
- c2 = (ri * biRadix * biRadix) + ((ri1 * biRadix) + ri2);
- }
- b = biMultiplyByRadixPower(y, i - t - 1);
- r = biSubtract(r, biMultiplyDigit(b, q.digits[i - t - 1]));
- if (r.isNeg) {
- r = biAdd(r, b);
- --q.digits[i - t - 1];
- }
- }
- r = biShiftRight(r, lambda);
- q.isNeg = x.isNeg != origYIsNeg;
- if (x.isNeg) {
- if (origYIsNeg) {
- q = biAdd(q, bigOne);
- } else {
- q = biSubtract(q, bigOne);
- }
- y = biShiftRight(y, lambda);
- r = biSubtract(y, r);
- }
- if (r.digits[0] == 0 && biHighIndex(r) == 0) r.isNeg = false;
- return new Array(q, r);
- }
- function biDivide(x, y) {
- return biDivideModulo(x, y)[0];
- }
- function biModulo(x, y) {
- return biDivideModulo(x, y)[1];
- }
- function biMultiplyMod(x, y, m) {
- return biModulo(biMultiply(x, y), m);
- }
- function biPow(x, y) {
- var result = bigOne;
- var a = x;
- while (true) {
- if ((y & 1) != 0) result = biMultiply(result, a);
- y >>= 1;
- if (y == 0) break;
- a = biMultiply(a, a);
- }
- return result;
- }
- function biPowMod(x, y, m) {
- var result = bigOne;
- var a = x;
- var k = y;
- while (true) {
- if ((k.digits[0] & 1) != 0) result = biMultiplyMod(result, a, m);
- k = biShiftRight(k, 1);
- if (k.digits[0] == 0 && biHighIndex(k) == 0) break;
- a = biMultiplyMod(a, a, m);
- }
- return result;
- }
- function BarrettMu(m) {
- this.modulus = biCopy(m);
- this.k = biHighIndex(this.modulus) + 1;
- var b2k = new BigInt();
- b2k.digits[2 * this.k] = 1;
- this.mu = biDivide(b2k, this.modulus);
- this.bkplus1 = new BigInt();
- this.bkplus1.digits[this.k + 1] = 1;
- this.modulo = BarrettMu_modulo;
- this.multiplyMod = BarrettMu_multiplyMod;
- this.powMod = BarrettMu_powMod;
- }
- function BarrettMu_modulo(x) {
- var q1 = biDivideByRadixPower(x, this.k - 1);
- var q2 = biMultiply(q1, this.mu);
- var q3 = biDivideByRadixPower(q2, this.k + 1);
- var r1 = biModuloByRadixPower(x, this.k + 1);
- var r2term = biMultiply(q3, this.modulus);
- var r2 = biModuloByRadixPower(r2term, this.k + 1);
- var r = biSubtract(r1, r2);
- if (r.isNeg) {
- r = biAdd(r, this.bkplus1);
- }
- var rgtem = biCompare(r, this.modulus) >= 0;
- while (rgtem) {
- r = biSubtract(r, this.modulus);
- rgtem = biCompare(r, this.modulus) >= 0;
- }
- return r;
- }
- function BarrettMu_multiplyMod(x, y) {
- var xy = biMultiply(x, y);
- return this.modulo(xy);
- }
- function BarrettMu_powMod(x, y) {
- var result = new BigInt();
- result.digits[0] = 1;
- while (true) {
- if ((y.digits[0] & 1) != 0) result = this.multiplyMod(result, x);
- y = biShiftRight(y, 1);
- if (y.digits[0] == 0 && biHighIndex(y) == 0) break;
- x = this.multiplyMod(x, x);
- }
- return result;
- }
- /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
- /* AES implementation in JavaScript (c) Chris Veness 2005-2011 */
- /* - see http://csrc.nist.gov/publications/PubsFIPS.html#197 */
- /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
- var Aes = {}; // Aes namespace
- /**
- * AES Cipher function: encrypt 'input' state with Rijndael algorithm
- * applies Nr rounds (10/12/14) using key schedule w for 'add round key' stage
- *
- * @param {Number[]} input 16-byte (128-bit) input state array
- * @param {Number[][]} w Key schedule as 2D byte-array (Nr+1 x Nb bytes)
- * @returns {Number[]} Encrypted output state array
- */
- Aes.cipher = function(input, w) { // main Cipher function [§5.1]
- var Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES)
- var Nr = w.length/Nb - 1; // no of rounds: 10/12/14 for 128/192/256-bit keys
- var state = [[],[],[],[]]; // initialise 4xNb byte-array 'state' with input [§3.4]
- for (var i=0; i<4*Nb; i++) state[i%4][Math.floor(i/4)] = input[i];
- state = Aes.addRoundKey(state, w, 0, Nb);
- for (var round=1; round<Nr; round++) {
- state = Aes.subBytes(state, Nb);
- state = Aes.shiftRows(state, Nb);
- state = Aes.mixColumns(state, Nb);
- state = Aes.addRoundKey(state, w, round, Nb);
- }
- state = Aes.subBytes(state, Nb);
- state = Aes.shiftRows(state, Nb);
- state = Aes.addRoundKey(state, w, Nr, Nb);
- var output = new Array(4*Nb); // convert state to 1-d array before returning [§3.4]
- for (var i=0; i<4*Nb; i++) output[i] = state[i%4][Math.floor(i/4)];
- return output;
- }
- /**
- * Perform Key Expansion to generate a Key Schedule
- *
- * @param {Number[]} key Key as 16/24/32-byte array
- * @returns {Number[][]} Expanded key schedule as 2D byte-array (Nr+1 x Nb bytes)
- */
- Aes.keyExpansion = function(key) { // generate Key Schedule (byte-array Nr+1 x Nb) from Key [§5.2]
- var Nb = 4; // block size (in words): no of columns in state (fixed at 4 for AES)
- var Nk = key.length/4 // key length (in words): 4/6/8 for 128/192/256-bit keys
- var Nr = Nk + 6; // no of rounds: 10/12/14 for 128/192/256-bit keys
- var w = new Array(Nb*(Nr+1));
- var temp = new Array(4);
- for (var i=0; i<Nk; i++) {
- var r = [key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]];
- w[i] = r;
- }
- for (var i=Nk; i<(Nb*(Nr+1)); i++) {
- w[i] = new Array(4);
- for (var t=0; t<4; t++) temp[t] = w[i-1][t];
- if (i % Nk == 0) {
- temp = Aes.subWord(Aes.rotWord(temp));
- for (var t=0; t<4; t++) temp[t] ^= Aes.rCon[i/Nk][t];
- } else if (Nk > 6 && i%Nk == 4) {
- temp = Aes.subWord(temp);
- }
- for (var t=0; t<4; t++) w[i][t] = w[i-Nk][t] ^ temp[t];
- }
- return w;
- }
- /*
- * ---- remaining routines are private, not called externally ----
- */
-
- Aes.subBytes = function(s, Nb) { // apply SBox to state S [§5.1.1]
- for (var r=0; r<4; r++) {
- for (var c=0; c<Nb; c++) s[r][c] = Aes.sBox[s[r][c]];
- }
- return s;
- }
- Aes.shiftRows = function(s, Nb) { // shift row r of state S left by r bytes [§5.1.2]
- var t = new Array(4);
- for (var r=1; r<4; r++) {
- for (var c=0; c<4; c++) t[c] = s[r][(c+r)%Nb]; // shift into temp copy
- for (var c=0; c<4; c++) s[r][c] = t[c]; // and copy back
- } // note that this will work for Nb=4,5,6, but not 7,8 (always 4 for AES):
- return s; // see asmaes.sourceforge.net/rijndael/rijndaelImplementation.pdf
- }
- Aes.mixColumns = function(s, Nb) { // combine bytes of each col of state S [§5.1.3]
- for (var c=0; c<4; c++) {
- var a = new Array(4); // 'a' is a copy of the current column from 's'
- var b = new Array(4); // 'b' is a•{02} in GF(2^8)
- for (var i=0; i<4; i++) {
- a[i] = s[i][c];
- b[i] = s[i][c]&0x80 ? s[i][c]<<1 ^ 0x011b : s[i][c]<<1;
- }
- // a[n] ^ b[n] is a•{03} in GF(2^8)
- s[0][c] = b[0] ^ a[1] ^ b[1] ^ a[2] ^ a[3]; // 2*a0 + 3*a1 + a2 + a3
- s[1][c] = a[0] ^ b[1] ^ a[2] ^ b[2] ^ a[3]; // a0 * 2*a1 + 3*a2 + a3
- s[2][c] = a[0] ^ a[1] ^ b[2] ^ a[3] ^ b[3]; // a0 + a1 + 2*a2 + 3*a3
- s[3][c] = a[0] ^ b[0] ^ a[1] ^ a[2] ^ b[3]; // 3*a0 + a1 + a2 + 2*a3
- }
- return s;
- }
- Aes.addRoundKey = function(state, w, rnd, Nb) { // xor Round Key into state S [§5.1.4]
- for (var r=0; r<4; r++) {
- for (var c=0; c<Nb; c++) state[r][c] ^= w[rnd*4+c][r];
- }
- return state;
- }
- Aes.subWord = function(w) { // apply SBox to 4-byte word w
- for (var i=0; i<4; i++) w[i] = Aes.sBox[w[i]];
- return w;
- }
- Aes.rotWord = function(w) { // rotate 4-byte word w left by one byte
- var tmp = w[0];
- for (var i=0; i<3; i++) w[i] = w[i+1];
- w[3] = tmp;
- return w;
- }
- // sBox is pre-computed multiplicative inverse in GF(2^8) used in subBytes and keyExpansion [§5.1.1]
- Aes.sBox = [0x63,0x7c,0x77,0x7b,0xf2,0x6b,0x6f,0xc5,0x30,0x01,0x67,0x2b,0xfe,0xd7,0xab,0x76,
- 0xca,0x82,0xc9,0x7d,0xfa,0x59,0x47,0xf0,0xad,0xd4,0xa2,0xaf,0x9c,0xa4,0x72,0xc0,
- 0xb7,0xfd,0x93,0x26,0x36,0x3f,0xf7,0xcc,0x34,0xa5,0xe5,0xf1,0x71,0xd8,0x31,0x15,
- 0x04,0xc7,0x23,0xc3,0x18,0x96,0x05,0x9a,0x07,0x12,0x80,0xe2,0xeb,0x27,0xb2,0x75,
- 0x09,0x83,0x2c,0x1a,0x1b,0x6e,0x5a,0xa0,0x52,0x3b,0xd6,0xb3,0x29,0xe3,0x2f,0x84,
- 0x53,0xd1,0x00,0xed,0x20,0xfc,0xb1,0x5b,0x6a,0xcb,0xbe,0x39,0x4a,0x4c,0x58,0xcf,
- 0xd0,0xef,0xaa,0xfb,0x43,0x4d,0x33,0x85,0x45,0xf9,0x02,0x7f,0x50,0x3c,0x9f,0xa8,
- 0x51,0xa3,0x40,0x8f,0x92,0x9d,0x38,0xf5,0xbc,0xb6,0xda,0x21,0x10,0xff,0xf3,0xd2,
- 0xcd,0x0c,0x13,0xec,0x5f,0x97,0x44,0x17,0xc4,0xa7,0x7e,0x3d,0x64,0x5d,0x19,0x73,
- 0x60,0x81,0x4f,0xdc,0x22,0x2a,0x90,0x88,0x46,0xee,0xb8,0x14,0xde,0x5e,0x0b,0xdb,
- 0xe0,0x32,0x3a,0x0a,0x49,0x06,0x24,0x5c,0xc2,0xd3,0xac,0x62,0x91,0x95,0xe4,0x79,
- 0xe7,0xc8,0x37,0x6d,0x8d,0xd5,0x4e,0xa9,0x6c,0x56,0xf4,0xea,0x65,0x7a,0xae,0x08,
- 0xba,0x78,0x25,0x2e,0x1c,0xa6,0xb4,0xc6,0xe8,0xdd,0x74,0x1f,0x4b,0xbd,0x8b,0x8a,
- 0x70,0x3e,0xb5,0x66,0x48,0x03,0xf6,0x0e,0x61,0x35,0x57,0xb9,0x86,0xc1,0x1d,0x9e,
- 0xe1,0xf8,0x98,0x11,0x69,0xd9,0x8e,0x94,0x9b,0x1e,0x87,0xe9,0xce,0x55,0x28,0xdf,
- 0x8c,0xa1,0x89,0x0d,0xbf,0xe6,0x42,0x68,0x41,0x99,0x2d,0x0f,0xb0,0x54,0xbb,0x16];
- // rCon is Round Constant used for the Key Expansion [1st col is 2^(r-1) in GF(2^8)] [§5.2]
- Aes.rCon = [ [0x00, 0x00, 0x00, 0x00],
- [0x01, 0x00, 0x00, 0x00],
- [0x02, 0x00, 0x00, 0x00],
- [0x04, 0x00, 0x00, 0x00],
- [0x08, 0x00, 0x00, 0x00],
- [0x10, 0x00, 0x00, 0x00],
- [0x20, 0x00, 0x00, 0x00],
- [0x40, 0x00, 0x00, 0x00],
- [0x80, 0x00, 0x00, 0x00],
- [0x1b, 0x00, 0x00, 0x00],
- [0x36, 0x00, 0x00, 0x00] ];
- /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
- /* AES Counter-mode implementation in JavaScript (c) Chris Veness 2005-2011 */
- /* - see http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf */
- /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
- Aes.Ctr = {}; // Aes.Ctr namespace: a subclass or extension of Aes
- /**
- * Encrypt a text using AES encryption in Counter mode of operation
- *
- * Unicode multi-byte character safe
- *
- * @param {String} plaintext Source text to be encrypted
- * @param {String} password The password to use to generate a key
- * @param {Number} nBits Number of bits to be used in the key (128, 192, or 256)
- * @returns {string} Encrypted text
- */
- Aes.Ctr.encrypt = function(plaintext, password, nBits) {
- var blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES
- if (!(nBits==128 || nBits==192 || nBits==256)) return ''; // standard allows 128/192/256 bit keys
- plaintext = Utf8.encode(plaintext);
- password = Utf8.encode(password);
- //var t = new Date(); // timer
-
- // use AES itself to encrypt password to get cipher key (using plain password as source for key
- // expansion) - gives us well encrypted key (though hashed key might be preferred for prod'n use)
- var nBytes = nBits/8; // no bytes in key (16/24/32)
- var pwBytes = new Array(nBytes);
- for (var i=0; i<nBytes; i++) { // use 1st 16/24/32 chars of password for key
- pwBytes[i] = isNaN(password.charCodeAt(i)) ? 0 : password.charCodeAt(i);
- }
- var key = Aes.cipher(pwBytes, Aes.keyExpansion(pwBytes)); // gives us 16-byte key
- key = key.concat(key.slice(0, nBytes-16)); // expand key to 16/24/32 bytes long
- // initialise 1st 8 bytes of counter block with nonce (NIST SP800-38A §B.2): [0-1] = millisec,
- // [2-3] = random, [4-7] = seconds, together giving full sub-millisec uniqueness up to Feb 2106
- var counterBlock = new Array(blockSize);
-
- var nonce = (new Date()).getTime(); // timestamp: milliseconds since 1-Jan-1970
- var nonceMs = nonce%1000;
- var nonceSec = Math.floor(nonce/1000);
- var nonceRnd = Math.floor(Math.random()*0xffff);
-
- for (var i=0; i<2; i++) counterBlock[i] = (nonceMs >>> i*8) & 0xff;
- for (var i=0; i<2; i++) counterBlock[i+2] = (nonceRnd >>> i*8) & 0xff;
- for (var i=0; i<4; i++) counterBlock[i+4] = (nonceSec >>> i*8) & 0xff;
-
- // and convert it to a string to go on the front of the ciphertext
- var ctrTxt = '';
- for (var i=0; i<8; i++) ctrTxt += String.fromCharCode(counterBlock[i]);
- // generate key schedule - an expansion of the key into distinct Key Rounds for each round
- var keySchedule = Aes.keyExpansion(key);
-
- var blockCount = Math.ceil(plaintext.length/blockSize);
- var ciphertxt = new Array(blockCount); // ciphertext as array of strings
-
- for (var b=0; b<blockCount; b++) {
- // set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes)
- // done in two stages for 32-bit ops: using two words allows us to go past 2^32 blocks (68GB)
- for (var c=0; c<4; c++) counterBlock[15-c] = (b >>> c*8) & 0xff;
- for (var c=0; c<4; c++) counterBlock[15-c-4] = (b/0x100000000 >>> c*8)
- var cipherCntr = Aes.cipher(counterBlock, keySchedule); // -- encrypt counter block --
-
- // block size is reduced on final block
- var blockLength = b<blockCount-1 ? blockSize : (plaintext.length-1)%blockSize+1;
- var cipherChar = new Array(blockLength);
-
- for (var i=0; i<blockLength; i++) { // -- xor plaintext with ciphered counter char-by-char --
- cipherChar[i] = cipherCntr[i] ^ plaintext.charCodeAt(b*blockSize+i);
- cipherChar[i] = String.fromCharCode(cipherChar[i]);
- }
- ciphertxt[b] = cipherChar.join('');
- }
- // Array.join is more efficient than repeated string concatenation in IE
- var ciphertext = ctrTxt + ciphertxt.join('');
- ciphertext = Base64.encode(ciphertext); // encode in base64
-
- //alert((new Date()) - t);
- return ciphertext;
- }
- /**
- * Decrypt a text encrypted by AES in counter mode of operation
- *
- * @param {String} ciphertext Source text to be encrypted
- * @param {String} password The password to use to generate a key
- * @param {Number} nBits Number of bits to be used in the key (128, 192, or 256)
- * @returns {String} Decrypted text
- */
- Aes.Ctr.decrypt = function(ciphertext, password, nBits) {
- var blockSize = 16; // block size fixed at 16 bytes / 128 bits (Nb=4) for AES
- if (!(nBits==128 || nBits==192 || nBits==256)) return ''; // standard allows 128/192/256 bit keys
- ciphertext = Base64.decode(ciphertext);
- password = Utf8.encode(password);
- //var t = new Date(); // timer
-
- // use AES to encrypt password (mirroring encrypt routine)
- var nBytes = nBits/8; // no bytes in key
- var pwBytes = new Array(nBytes);
- for (var i=0; i<nBytes; i++) {
- pwBytes[i] = isNaN(password.charCodeAt(i)) ? 0 : password.charCodeAt(i);
- }
- var key = Aes.cipher(pwBytes, Aes.keyExpansion(pwBytes));
- key = key.concat(key.slice(0, nBytes-16)); // expand key to 16/24/32 bytes long
- // recover nonce from 1st 8 bytes of ciphertext
- var counterBlock = new Array(8);
- ctrTxt = ciphertext.slice(0, 8);
- for (var i=0; i<8; i++) counterBlock[i] = ctrTxt.charCodeAt(i);
-
- // generate key schedule
- var keySchedule = Aes.keyExpansion(key);
- // separate ciphertext into blocks (skipping past initial 8 bytes)
- var nBlocks = Math.ceil((ciphertext.length-8) / blockSize);
- var ct = new Array(nBlocks);
- for (var b=0; b<nBlocks; b++) ct[b] = ciphertext.slice(8+b*blockSize, 8+b*blockSize+blockSize);
- ciphertext = ct; // ciphertext is now array of block-length strings
- // plaintext will get generated block-by-block into array of block-length strings
- var plaintxt = new Array(ciphertext.length);
- for (var b=0; b<nBlocks; b++) {
- // set counter (block #) in last 8 bytes of counter block (leaving nonce in 1st 8 bytes)
- for (var c=0; c<4; c++) counterBlock[15-c] = ((b) >>> c*8) & 0xff;
- for (var c=0; c<4; c++) counterBlock[15-c-4] = (((b+1)/0x100000000-1) >>> c*8) & 0xff;
- var cipherCntr = Aes.cipher(counterBlock, keySchedule); // encrypt counter block
- var plaintxtByte = new Array(ciphertext[b].length);
- for (var i=0; i<ciphertext[b].length; i++) {
- // -- xor plaintxt with ciphered counter byte-by-byte --
- plaintxtByte[i] = cipherCntr[i] ^ ciphertext[b].charCodeAt(i);
- plaintxtByte[i] = String.fromCharCode(plaintxtByte[i]);
- }
- plaintxt[b] = plaintxtByte.join('');
- }
- // join array of blocks into single plaintext string
- var plaintext = plaintxt.join('');
- plaintext = Utf8.decode(plaintext); // decode from UTF8 back to Unicode multi-byte chars
-
- //alert((new Date()) - t);
- return plaintext;
- }
- /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
- /* Base64 class: Base 64 encoding / decoding (c) Chris Veness 2002-2011 */
- /* note: depends on Utf8 class */
- /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
- var Base64 = {}; // Base64 namespace
- Base64.code = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=";
- /**
- * Encode string into Base64, as defined by RFC 4648 [http://tools.ietf.org/html/rfc4648]
- * (instance method extending String object). As per RFC 4648, no newlines are added.
- *
- * @param {String} str The string to be encoded as base-64
- * @param {Boolean} [utf8encode=false] Flag to indicate whether str is Unicode string to be encoded
- * to UTF8 before conversion to base64; otherwise string is assumed to be 8-bit characters
- * @returns {String} Base64-encoded string
- */
- Base64.encode = function(str, utf8encode) { // http://tools.ietf.org/html/rfc4648
- utf8encode = (typeof utf8encode == 'undefined') ? false : utf8encode;
- var o1, o2, o3, bits, h1, h2, h3, h4, e=[], pad = '', c, plain, coded;
- var b64 = Base64.code;
-
- plain = utf8encode ? str.encodeUTF8() : str;
-
- c = plain.length % 3; // pad string to length of multiple of 3
- if (c > 0) { while (c++ < 3) { pad += '='; plain += '\0'; } }
- // note: doing padding here saves us doing special-case packing for trailing 1 or 2 chars
-
- for (c=0; c<plain.length; c+=3) { // pack three octets into four hexets
- o1 = plain.charCodeAt(c);
- o2 = plain.charCodeAt(c+1);
- o3 = plain.charCodeAt(c+2);
-
- bits = o1<<16 | o2<<8 | o3;
-
- h1 = bits>>18 & 0x3f;
- h2 = bits>>12 & 0x3f;
- h3 = bits>>6 & 0x3f;
- h4 = bits & 0x3f;
- // use hextets to index into code string
- e[c/3] = b64.charAt(h1) + b64.charAt(h2) + b64.charAt(h3) + b64.charAt(h4);
- }
- coded = e.join(''); // join() is far faster than repeated string concatenation in IE
-
- // replace 'A's from padded nulls with '='s
- coded = coded.slice(0, coded.length-pad.length) + pad;
-
- return coded;
- }
- /**
- * Decode string from Base64, as defined by RFC 4648 [http://tools.ietf.org/html/rfc4648]
- * (instance method extending String object). As per RFC 4648, newlines are not catered for.
- *
- * @param {String} str The string to be decoded from base-64
- * @param {Boolean} [utf8decode=false] Flag to indicate whether str is Unicode string to be decoded
- * from UTF8 after conversion from base64
- * @returns {String} decoded string
- */
- Base64.decode = function(str, utf8decode) {
- utf8decode = (typeof utf8decode == 'undefined') ? false : utf8decode;
- var o1, o2, o3, h1, h2, h3, h4, bits, d=[], plain, coded;
- var b64 = Base64.code;
- coded = utf8decode ? str.decodeUTF8() : str;
-
-
- for (var c=0; c<coded.length; c+=4) { // unpack four hexets into three octets
- h1 = b64.indexOf(coded.charAt(c));
- h2 = b64.indexOf(coded.charAt(c+1));
- h3 = b64.indexOf(coded.charAt(c+2));
- h4 = b64.indexOf(coded.charAt(c+3));
-
- bits = h1<<18 | h2<<12 | h3<<6 | h4;
-
- o1 = bits>>>16 & 0xff;
- o2 = bits>>>8 & 0xff;
- o3 = bits & 0xff;
-
- d[c/4] = String.fromCharCode(o1, o2, o3);
- // check for padding
- if (h4 == 0x40) d[c/4] = String.fromCharCode(o1, o2);
- if (h3 == 0x40) d[c/4] = String.fromCharCode(o1);
- }
- plain = d.join(''); // join() is far faster than repeated string concatenation in IE
-
- return utf8decode ? plain.decodeUTF8() : plain;
- }
- /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
- /* Utf8 class: encode / decode between multi-byte Unicode characters and UTF-8 multiple */
- /* single-byte character encoding (c) Chris Veness 2002-2011 */
- /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
- var Utf8 = {}; // Utf8 namespace
- /**
- * Encode multi-byte Unicode string into utf-8 multiple single-byte characters
- * (BMP / basic multilingual plane only)
- *
- * Chars in range U+0080 - U+07FF are encoded in 2 chars, U+0800 - U+FFFF in 3 chars
- *
- * @param {String} strUni Unicode string to be encoded as UTF-8
- * @returns {String} encoded string
- */
- Utf8.encode = function(strUni) {
- // use regular expressions & String.replace callback function for better efficiency
- // than procedural approaches
- var strUtf = strUni.replace(
- /[\u0080-\u07ff]/g, // U+0080 - U+07FF => 2 bytes 110yyyyy, 10zzzzzz
- function(c) {
- var cc = c.charCodeAt(0);
- return String.fromCharCode(0xc0 | cc>>6, 0x80 | cc&0x3f); }
- );
- strUtf = strUtf.replace(
- /[\u0800-\uffff]/g, // U+0800 - U+FFFF => 3 bytes 1110xxxx, 10yyyyyy, 10zzzzzz
- function(c) {
- var cc = c.charCodeAt(0);
- return String.fromCharCode(0xe0 | cc>>12, 0x80 | cc>>6&0x3F, 0x80 | cc&0x3f); }
- );
- return strUtf;
- }
- /**
- * Decode utf-8 encoded string back into multi-byte Unicode characters
- *
- * @param {String} strUtf UTF-8 string to be decoded back to Unicode
- * @returns {String} decoded string
- */
- Utf8.decode = function(strUtf) {
- // note: decode 3-byte chars first as decoded 2-byte strings could appear to be 3-byte char!
- var strUni = strUtf.replace(
- /[\u00e0-\u00ef][\u0080-\u00bf][\u0080-\u00bf]/g, // 3-byte chars
- function(c) { // (note parentheses for precence)
- var cc = ((c.charCodeAt(0)&0x0f)<<12) | ((c.charCodeAt(1)&0x3f)<<6) | ( c.charCodeAt(2)&0x3f);
- return String.fromCharCode(cc); }
- );
- strUni = strUni.replace(
- /[\u00c0-\u00df][\u0080-\u00bf]/g, // 2-byte chars
- function(c) { // (note parentheses for precence)
- var cc = (c.charCodeAt(0)&0x1f)<<6 | c.charCodeAt(1)&0x3f;
- return String.fromCharCode(cc); }
- );
- return strUni;
- }
- /* A JavaScript implementation of the SHA family of hashes, as defined in FIPS
- * PUB 180-2 as well as the corresponding HMAC implementation as defined in
- * FIPS PUB 198a
- *
- * Version 1.3 Copyright Brian Turek 2008-2010
- * Distributed under the BSD License
- * See http://jssha.sourceforge.net/ for more information
- *
- * Several functions taken from Paul Johnson
- */
- /*
- * Configurable variables. Defaults typically work
- */
- /* Number of Bits Per character (8 for ASCII, 16 for Unicode) */
- var charSize = 8,
- /* base-64 pad character. "=" for strict RFC compliance */
- b64pad = "",
- /* hex output format. 0 - lowercase; 1 - uppercase */
- hexCase = 0,
- /*
- * Int_64 is a object for 2 32-bit numbers emulating a 64-bit number
- *
- * @constructor
- * @param {Number} msint_32 The most significant 32-bits of a 64-bit number
- * @param {Number} lsint_32 The least significant 32-bits of a 64-bit number
- */
- Int_64 = function (msint_32, lsint_32)
- {
- this.highOrder = msint_32;
- this.lowOrder = lsint_32;
- },
- /*
- * Convert a string to an array of big-endian words
- * If charSize is ASCII, characters >255 have their hi-byte silently
- * ignored.
- *
- * @param {String} str String to be converted to binary representation
- * @return Integer array representation of the parameter
- */
- str2binb = function (str)
- {
- var bin = [], mask = (1 << charSize) - 1,
- length = str.length * charSize, i;
- for (i = 0; i < length; i += charSize)
- {
- bin[i >> 5] |= (str.charCodeAt(i / charSize) & mask) <<
- (32 - charSize - (i % 32));
- }
- return bin;
- },
- /*
- * Convert a hex string to an array of big-endian words
- *
- * @param {String} str String to be converted to binary representation
- * @return Integer array representation of the parameter
- */
- hex2binb = function (str)
- {
- var bin = [], length = str.length, i, num;
- for (i = 0; i < length; i += 2)
- {
- num = parseInt(str.substr(i, 2), 16);
- if (!isNaN(num))
- {
- bin[i >> 3] |= num << (24 - (4 * (i % 8)));
- }
- else
- {
- return "INVALID HEX STRING";
- }
- }
- return bin;
- },
- /*
- * Convert an array of big-endian words to a hex string.
- *
- * @private
- * @param {Array} binarray Array of integers to be converted to hexidecimal
- * representation
- * @return Hexidecimal representation of the parameter in String form
- */
- binb2hex = function (binarray)
- {
- var hex_tab = (hexCase) ? "0123456789ABCDEF" : "0123456789abcdef",
- str = "", length = binarray.length * 4, i, srcByte;
- for (i = 0; i < length; i += 1)
- {
- srcByte = binarray[i >> 2] >> ((3 - (i % 4)) * 8);
- str += hex_tab.charAt((srcByte >> 4) & 0xF) +
- hex_tab.charAt(srcByte & 0xF);
- }
- return str;
- },
- /*
- * Convert an array of big-endian words to a base-64 string
- *
- * @private
- * @param {Array} binarray Array of integers to be converted to base-64
- * representation
- * @return Base-64 encoded representation of the parameter in String form
- */
- binb2b64 = function (binarray)
- {
- var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" +
- "0123456789+/", str = "", length = binarray.length * 4, i, j,
- triplet;
- for (i = 0; i < length; i += 3)
- {
- triplet = (((binarray[i >> 2] >> 8 * (3 - i % 4)) & 0xFF) << 16) |
- (((binarray[i + 1 >> 2] >> 8 * (3 - (i + 1) % 4)) & 0xFF) << 8) |
- ((binarray[i + 2 >> 2] >> 8 * (3 - (i + 2) % 4)) & 0xFF);
- for (j = 0; j < 4; j += 1)
- {
- if (i * 8 + j * 6 <= binarray.length * 32)
- {
- str += tab.charAt((triplet >> 6 * (3 - j)) & 0x3F);
- }
- else
- {
- str += b64pad;
- }
- }
- }
- return str;
- },
- /*
- * The 32-bit implementation of circular rotate left
- *
- * @private
- * @param {Number} x The 32-bit integer argument
- * @param {Number} n The number of bits to shift
- * @return The x shifted circularly by n bits
- */
- rotl_32 = function (x, n)
- {
- return (x << n) | (x >>> (32 - n));
- },
- /*
- * The 32-bit implementation of circular rotate right
- *
- * @private
- * @param {Number} x The 32-bit integer argument
- * @param {Number} n The number of bits to shift
- * @return The x shifted circularly by n bits
- */
- rotr_32 = function (x, n)
- {
- return (x >>> n) | (x << (32 - n));
- },
- /*
- * The 64-bit implementation of circular rotate right
- *
- * @private
- * @param {Int_64} x The 64-bit integer argument
- * @param {Number} n The number of bits to shift
- * @return The x shifted circularly by n bits
- */
- rotr_64 = function (x, n)
- {
- if (n <= 32)
- {
- return new Int_64(
- (x.highOrder >>> n) | (x.lowOrder << (32 - n)),
- (x.lowOrder >>> n) | (x.highOrder << (32 - n))
- );
- }
- else
- {
- return new Int_64(
- (x.lowOrder >>> n) | (x.highOrder << (32 - n)),
- (x.highOrder >>> n) | (x.lowOrder << (32 - n))
- );
- }
- },
- /*
- * The 32-bit implementation of shift right
- *
- * @private
- * @param {Number} x The 32-bit integer argument
- * @param {Number} n The number of bits to shift
- * @return The x shifted by n bits
- */
- shr_32 = function (x, n)
- {
- return x >>> n;
- },
- /*
- * The 64-bit implementation of shift right
- *
- * @private
- * @param {Int_64} x The 64-bit integer argument
- * @param {Number} n The number of bits to shift
- * @return The x shifted by n bits
- */
- shr_64 = function (x, n)
- {
- if (n <= 32)
- {
- return new Int_64(
- x.highOrder >>> n,
- x.lowOrder >>> n | (x.highOrder << (32 - n))
- );
- }
- else
- {
- return new Int_64(
- 0,
- x.highOrder << (32 - n)
- );
- }
- },
- /*
- * The 32-bit implementation of the NIST specified Parity function
- *
- * @private
- * @param {Number} x The first 32-bit integer argument
- * @param {Number} y The second 32-bit integer argument
- * @param {Number} z The third 32-bit integer argument
- * @return The NIST specified output of the function
- */
- parity_32 = function (x, y, z)
- {
- return x ^ y ^ z;
- },
- /*
- * The 32-bit implementation of the NIST specified Ch function
- *
- * @private
- * @param {Number} x The first 32-bit integer argument
- * @param {Number} y The second 32-bit integer argument
- * @param {Number} z The third 32-bit integer argument
- * @return The NIST specified output of the function
- */
- ch_32 = function (x, y, z)
- {
- return (x & y) ^ (~x & z);
- },
- /*
- * The 64-bit implementation of the NIST specified Ch function
- *
- * @private
- * @param {Int_64} x The first 64-bit integer argument
- * @param {Int_64} y The second 64-bit integer argument
- * @param {Int_64} z The third 64-bit integer argument
- * @return The NIST specified output of the function
- */
- ch_64 = function (x, y, z)
- {
- return new Int_64(
- (x.highOrder & y.highOrder) ^ (~x.highOrder & z.highOrder),
- (x.lowOrder & y.lowOrder) ^ (~x.lowOrder & z.lowOrder)
- );
- },
- /*
- * The 32-bit implementation of the NIST specified Maj function
- *
- * @private
- * @param {Number} x The first 32-bit integer argument
- * @param {Number} y The second 32-bit integer argument
- * @param {Number} z The third 32-bit integer argument
- * @return The NIST specified output of the function
- */
- maj_32 = function (x, y, z)
- {
- return (x & y) ^ (x & z) ^ (y & z);
- },
- /*
- * The 64-bit implementation of the NIST specified Maj function
- *
- * @private
- * @param {Int_64} x The first 64-bit integer argument
- * @param {Int_64} y The second 64-bit integer argument
- * @param {Int_64} z The third 64-bit integer argument
- * @return The NIST specified output of the function
- */
- maj_64 = function (x, y, z)
- {
- return new Int_64(
- (x.highOrder & y.highOrder) ^
- (x.highOrder & z.highOrder) ^
- (y.highOrder & z.highOrder),
- (x.lowOrder & y.lowOrder) ^
- (x.lowOrder & z.lowOrder) ^
- (y.lowOrder & z.lowOrder)
- );
- },
- /*
- * The 32-bit implementation of the NIST specified Sigma0 function
- *
- * @private
- * @param {Number} x The 32-bit integer argument
- * @return The NIST specified output of the function
- */
- sigma0_32 = function (x)
- {
- return rotr_32(x, 2) ^ rotr_32(x, 13) ^ rotr_32(x, 22);
- },
- /*
- * The 64-bit implementation of the NIST specified Sigma0 function
- *
- * @private
- * @param {Int_64} x The 64-bit integer argument
- * @return The NIST specified output of the function
- */
- sigma0_64 = function (x)
- {
- var rotr28 = rotr_64(x, 28), rotr34 = rotr_64(x, 34),
- rotr39 = rotr_64(x, 39);
- return new Int_64(
- rotr28.highOrder ^ rotr34.highOrder ^ rotr39.highOrder,
- rotr28.lowOrder ^ rotr34.lowOrder ^ rotr39.lowOrder);
- },
- /*
- * The 32-bit implementation of the NIST specified Sigma1 function
- *
- * @private
- * @param {Number} x The 32-bit integer argument
- * @return The NIST specified output of the function
- */
- sigma1_32 = function (x)
- {
- return rotr_32(x, 6) ^ rotr_32(x, 11) ^ rotr_32(x, 25);
- },
- /*
- * The 64-bit implementation of the NIST specified Sigma1 function
- *
- * @private
- * @param {Int_64} x The 64-bit integer argument
- * @return The NIST specified output of the function
- */
- sigma1_64 = function (x)
- {
- var rotr14 = rotr_6…