/examples/keypoints/example_sift_normal_keypoint_estimation.cpp
https://github.com/JunjieXie/pcl · C++ · 131 lines · 46 code · 13 blank · 72 comment · 3 complexity · 6e01b37cb859cf4857a99489a4bd6536 MD5 · raw file
- /*
- * Software License Agreement (BSD License)
- *
- * Point Cloud Library (PCL) - www.pointclouds.org
- * Copyright (c) 2009-2011, Willow Garage, Inc.
- *
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above
- * copyright notice, this list of conditions and the following
- * disclaimer in the documentation and/or other materials provided
- * with the distribution.
- * * Neither the name of Willow Garage, Inc. nor the names of its
- * contributors may be used to endorse or promote products derived
- * from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
- * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
- * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
- * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
- * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- * POSSIBILITY OF SUCH DAMAGE.
- *
- * $Id$
- *
- *
- */
- // STL
- #include <iostream>
- // PCL
- #include <pcl/io/pcd_io.h>
- #include <pcl/point_types.h>
- #include <pcl/common/io.h>
- #include <pcl/keypoints/sift_keypoint.h>
- #include <pcl/features/normal_3d.h>
- // #include <pcl/visualization/pcl_visualizer.h>
- /* This example shows how to estimate the SIFT points based on the
- * Normal gradients i.e. curvature than using the Intensity gradient
- * as usually used for SIFT keypoint estimation.
- */
- int
- main(int, char** argv)
- {
- std::string filename = argv[1];
- std::cout << "Reading " << filename << std::endl;
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_xyz (new pcl::PointCloud<pcl::PointXYZ>);
- if(pcl::io::loadPCDFile<pcl::PointXYZ> (filename, *cloud_xyz) == -1) // load the file
- {
- PCL_ERROR ("Couldn't read file");
- return -1;
- }
- std::cout << "points: " << cloud_xyz->points.size () <<std::endl;
-
- // Parameters for sift computation
- const float min_scale = 0.01f;
- const int n_octaves = 3;
- const int n_scales_per_octave = 4;
- const float min_contrast = 0.001f;
-
- // Estimate the normals of the cloud_xyz
- pcl::NormalEstimation<pcl::PointXYZ, pcl::PointNormal> ne;
- pcl::PointCloud<pcl::PointNormal>::Ptr cloud_normals (new pcl::PointCloud<pcl::PointNormal>);
- pcl::search::KdTree<pcl::PointXYZ>::Ptr tree_n(new pcl::search::KdTree<pcl::PointXYZ>());
- ne.setInputCloud(cloud_xyz);
- ne.setSearchMethod(tree_n);
- ne.setRadiusSearch(0.2);
- ne.compute(*cloud_normals);
- // Copy the xyz info from cloud_xyz and add it to cloud_normals as the xyz field in PointNormals estimation is zero
- for(size_t i = 0; i<cloud_normals->points.size(); ++i)
- {
- cloud_normals->points[i].x = cloud_xyz->points[i].x;
- cloud_normals->points[i].y = cloud_xyz->points[i].y;
- cloud_normals->points[i].z = cloud_xyz->points[i].z;
- }
- // Estimate the sift interest points using normals values from xyz as the Intensity variants
- pcl::SIFTKeypoint<pcl::PointNormal, pcl::PointWithScale> sift;
- pcl::PointCloud<pcl::PointWithScale> result;
- pcl::search::KdTree<pcl::PointNormal>::Ptr tree(new pcl::search::KdTree<pcl::PointNormal> ());
- sift.setSearchMethod(tree);
- sift.setScales(min_scale, n_octaves, n_scales_per_octave);
- sift.setMinimumContrast(min_contrast);
- sift.setInputCloud(cloud_normals);
- sift.compute(result);
- std::cout << "No of SIFT points in the result are " << result.points.size () << std::endl;
- /*
- // Copying the pointwithscale to pointxyz so as visualize the cloud
- pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_temp (new pcl::PointCloud<pcl::PointXYZ>);
- copyPointCloud(result, *cloud_temp);
- std::cout << "SIFT points in the cloud_temp are " << cloud_temp->points.size () << std::endl;
-
-
- // Visualization of keypoints along with the original cloud
- pcl::visualization::PCLVisualizer viewer("PCL Viewer");
- pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> keypoints_color_handler (cloud_temp, 0, 255, 0);
- pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> cloud_color_handler (cloud_xyz, 255, 0, 0);
- viewer.setBackgroundColor( 0.0, 0.0, 0.0 );
- viewer.addPointCloud(cloud_xyz, cloud_color_handler, "cloud");
- viewer.addPointCloud(cloud_temp, keypoints_color_handler, "keypoints");
- viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 7, "keypoints");
-
- while(!viewer.wasStopped ())
- {
- viewer.spinOnce ();
- }
-
- */
- return 0;
-
- }