/trunk/octave-forge/main/image/inst/imremap.m
# · Objective C · 229 lines · 204 code · 25 blank · 0 comment · 29 complexity · bdb696b70049fb683170f7133a3d5250 MD5 · raw file
- ## Copyright (C) 2006 S?ren Hauberg
- ##
- ## This program is free software; you can redistribute it and/or modify
- ## it under the terms of the GNU General Public License as published by
- ## the Free Software Foundation; either version 2, or (at your option)
- ## any later version.
- ##
- ## This program is distributed in the hope that it will be useful, but
- ## WITHOUT ANY WARRANTY; without even the implied warranty of
- ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- ## General Public License for more details.
- ##
- ## You should have received a copy of the GNU General Public License
- ## along with this file. If not, see <http://www.gnu.org/licenses/>.
- ## -*- texinfo -*-
- ## @deftypefn {Function File} @var{warped} = imremap(@var{im}, @var{XI}, @var{YI})
- ## @deftypefnx{Function File} @var{warped} = imremap(@var{im}, @var{XI}, @var{YI}, @var{interp}, @var{extrapval})
- ## @deftypefnx{Function File} [@var{warped}, @var{valid} ] = imremap(...)
- ## Applies any geometric transformation to the image @var{im}.
- ##
- ## The arguments @var{XI} and @var{YI} are lookup tables that define the resulting
- ## image
- ## @example
- ## @var{warped}(y,x) = @var{im}(@var{YI}(y,x), @var{XI}(y,x))
- ## @end example
- ## where @var{im} is assumed to be a continuous function, which is achieved
- ## by interpolation. Note that the image @var{im} is expressed in a (X, Y)-coordinate
- ## system and not a (row, column) system.
- ##
- ## The argument @var{interp} selects the used interpolation method, and most be one
- ## of the following strings
- ## @table @code
- ## @item "nearest"
- ## Nearest neighbor interpolation.
- ## @item "linear"
- ## @itemx "bilinear"
- ## Bilinear interpolation. This is the default behavior.
- ## @item "cubic"
- ## @itemx "bicubic"
- ## Bicubic interpolation.
- ## @end table
- ##
- ## All values of the result that fall outside the original image will
- ## be set to @var{extrapval}. For images of class @code{double} @var{extrapval}
- ## defaults to @code{NA} and for other classes it defaults to 0.
- ##
- ## The optional output @var{valid} is a matrix of the same size as @var{warped}
- ## that contains the value 1 in pixels where @var{warped} contains an interpolated
- ## value, and 0 in pixels where @var{warped} contains an extrapolated value.
- ## @seealso{imperspectivewarp, imrotate, imresize, imshear, interp2}
- ## @end deftypefn
- function [warped, valid] = imremap(im, XI, YI, interp = "bilinear", extrapval = NA)
- ## Check input
- if (nargin < 3)
- print_usage();
- endif
-
- [imrows, imcols, imchannels, tmp] = size(im);
- if (tmp != 1 || (imchannels != 1 && imchannels != 3))
- error("imremap: first input argument must be an image");
- endif
-
- if (!size_equal(XI, YI) || !ismatrix(XI) || ndims(XI) != 2)
- error("imremap: XI and YI must be matrices of the same size");
- endif
-
- if (!any(strcmpi(interp, {"nearest", "linear", "bilinear", "cubic", "bicubic", "spline"})))
- error("imremap: unsupported interpolation method");
- endif
- if (any(strcmpi(interp, {"bilinear", "bicubic"})))
- interp = interp(3:end); # Remove "bi"
- endif
- interp = lower(interp);
-
- if (!isscalar(extrapval))
- error("imremap: extrapolation value must be a scalar");
- endif
-
- ## Interpolate
- if (imchannels == 1) # Gray
- warped = grayinterp(im, XI, YI, interp, NA);
- else # rgb image
- for i = 3:-1:1
- warped(:,:,i) = grayinterp(im(:,:,i), XI, YI, interp, NA);
- endfor
- endif
- valid = !isna(warped);
- warped(!valid) = extrapval;
- ## Change the class of the results according to the class of the image
- c = class(im);
- if (strcmpi(c, "uint8"))
- warped = uint8(warped);
- elseif (strcmpi(c, "uint16"))
- warped = uint16(warped);
- endif
- endfunction
- function [warped, valid] = grayinterp(im, XI, YI, interp, extrapval)
- if (strcmp(interp, "cubic"))
- warped = graybicubic(double(im), XI, YI, NA);
- else
- warped = interp2(double(im), XI, YI, interp, NA);
- endif
- valid = !isna(warped);
- warped(!valid) = extrapval;
- endfunction
- ## -*- texinfo -*-
- ## @deftypefn {Function File} {@var{zi}=} bicubic (@var{x}, @var{y}, @var{z}, @var{xi}, @var{yi})
- ## Reference:
- ## Image Processing, Analysis, and Machine Vision, 2nd Ed.
- ## Sonka et.al.
- ## Brooks/Cole Publishing Company
- ## ISBN: 0-534-95393-X
- ## @seealso{interp2}
- ## @end deftypefn
- function ZI = graybicubic (Z, XI, YI, extrapval = NA)
-
- ## Allocate output
- [X, Y] = meshgrid(1:columns(Z), 1:rows(Z));
- [Zr, Zc] = size(XI);
- ZI = zeros(Zr, Zc);
-
- ## Find inliers
- inside = !( XI < X(1) | XI > X(end) | YI < Y(1) | YI > Y(end) );
-
- ## Scale XI and YI to match indices of Z (not needed when interpolating images)
- #XI = (columns(Z)-1) * ( XI - X(1) ) / (X(end)-X(1)) + 1;
- #YI = (rows(Z)-1) * ( YI - Y(1) ) / (Y(end)-Y(1)) + 1;
-
- ## Start the real work
- K = floor(XI);
- L = floor(YI);
- ## Coefficients
- AY1 = bc((YI-L+1)); AX1 = bc((XI-K+1));
- AY0 = bc((YI-L+0)); AX0 = bc((XI-K+0));
- AY_1 = bc((YI-L-1)); AX_1 = bc((XI-K-1));
- AY_2 = bc((YI-L-2)); AX_2 = bc((XI-K-2));
- ## Perform interpolation
- sz = size(Z);
- %ZI(inside) = AY_2 .* AX_2 .* Z(sym_sub2ind(sz, L+2, K+2)) ...
- ZI = AY_2 .* AX_2 .* Z(sym_sub2ind(sz, L+2, K+2)) ...
- + AY_2 .* AX_1 .* Z(sym_sub2ind(sz, L+2, K+1)) ...
- + AY_2 .* AX0 .* Z(sym_sub2ind(sz, L+2, K)) ...
- + AY_2 .* AX1 .* Z(sym_sub2ind(sz, L+2, K-1)) ...
- + AY_1 .* AX_2 .* Z(sym_sub2ind(sz, L+1, K+2)) ...
- + AY_1 .* AX_1 .* Z(sym_sub2ind(sz, L+1, K+1)) ...
- + AY_1 .* AX0 .* Z(sym_sub2ind(sz, L+1, K)) ...
- + AY_1 .* AX1 .* Z(sym_sub2ind(sz, L+1, K-1)) ...
- + AY0 .* AX_2 .* Z(sym_sub2ind(sz, L, K+2)) ...
- + AY0 .* AX_1 .* Z(sym_sub2ind(sz, L, K+1)) ...
- + AY0 .* AX0 .* Z(sym_sub2ind(sz, L, K)) ...
- + AY0 .* AX1 .* Z(sym_sub2ind(sz, L, K-1)) ...
- + AY1 .* AX_2 .* Z(sym_sub2ind(sz, L-1, K+2)) ...
- + AY1 .* AX_1 .* Z(sym_sub2ind(sz, L-1, K+1)) ...
- + AY1 .* AX0 .* Z(sym_sub2ind(sz, L-1, K)) ...
- + AY1 .* AX1 .* Z(sym_sub2ind(sz, L-1, K-1));
- ZI(!inside) = extrapval;
- endfunction
- ## Checks if data is meshgrided
- function b = isgriddata(X)
- D = X - repmat(X(1,:), rows(X), 1);
- b = all(D(:) == 0);
- endfunction
- ## Checks if data is equally spaced (assumes data is meshgrided)
- function b = isequallyspaced(X)
- Dx = gradient(X(1,:));
- b = all(Dx == Dx(1));
- endfunction
- ## Computes the interpolation coefficients
- function o = bc(x)
- x = abs(x);
- o = zeros(size(x));
- idx1 = (x < 1);
- idx2 = !idx1 & (x < 2);
- o(idx1) = 1 - 2.*x(idx1).^2 + x(idx1).^3;
- o(idx2) = 4 - 8.*x(idx2) + 5.*x(idx2).^2 - x(idx2).^3;
- endfunction
- ## This version of sub2ind behaves as if the data was symmetrically padded
- function ind = sym_sub2ind(sz, Y, X)
- Y(Y<1) = 1 - Y(Y<1);
- while (any(Y(:)>2*sz(1)))
- Y(Y>2*sz(1)) = round( Y(Y>2*sz(1))/2 );
- endwhile
- Y(Y>sz(1)) = 1 + 2*sz(1) - Y(Y>sz(1));
- X(X<1) = 1 - X(X<1);
- while (any(X(:)>2*sz(2)))
- X(X>2*sz(2)) = round( X(X>2*sz(2))/2 );
- endwhile
- X(X>sz(2)) = 1 + 2*sz(2) - X(X>sz(2));
- ind = sub2ind(sz, Y, X);
- endfunction
- %!demo
- %! ## Generate a synthetic image and show it
- %! I = tril(ones(100)) + abs(rand(100)); I(I>1) = 1;
- %! I(20:30, 20:30) = !I(20:30, 20:30);
- %! I(70:80, 70:80) = !I(70:80, 70:80);
- %! figure, imshow(I);
- %! ## Resize the image to the double size and show it
- %! [XI, YI] = meshgrid(linspace(1, 100, 200));
- %! warped = imremap(I, XI, YI);
- %! figure, imshow(warped);
- %!demo
- %! ## Generate a synthetic image and show it
- %! I = tril(ones(100)) + abs(rand(100)); I(I>1) = 1;
- %! I(20:30, 20:30) = !I(20:30, 20:30);
- %! I(70:80, 70:80) = !I(70:80, 70:80);
- %! figure, imshow(I);
- %! ## Rotate the image around (0, 0) by -0.4 radians and show it
- %! [XI, YI] = meshgrid(1:100);
- %! R = [cos(-0.4) sin(-0.4); -sin(-0.4) cos(-0.4)];
- %! RXY = [XI(:), YI(:)] * R;
- %! XI = reshape(RXY(:,1), [100, 100]); YI = reshape(RXY(:,2), [100, 100]);
- %! warped = imremap(I, XI, YI);
- %! figure, imshow(warped);