PageRenderTime 33ms CodeModel.GetById 25ms RepoModel.GetById 1ms app.codeStats 0ms

/src/mesch/memory.c

https://bitbucket.org/nrnhines/nrn
C | 1004 lines | 693 code | 191 blank | 120 comment | 149 complexity | 52129922cc02642af8018a95b6e66936 MD5 | raw file
Possible License(s): BSD-3-Clause, GPL-2.0
  1. #include <../../nrnconf.h>
  2. /**************************************************************************
  3. **
  4. ** Copyright (C) 1993 David E. Steward & Zbigniew Leyk, all rights reserved.
  5. **
  6. ** Meschach Library
  7. **
  8. ** This Meschach Library is provided "as is" without any express
  9. ** or implied warranty of any kind with respect to this software.
  10. ** In particular the authors shall not be liable for any direct,
  11. ** indirect, special, incidental or consequential damages arising
  12. ** in any way from use of the software.
  13. **
  14. ** Everyone is granted permission to copy, modify and redistribute this
  15. ** Meschach Library, provided:
  16. ** 1. All copies contain this copyright notice.
  17. ** 2. All modified copies shall carry a notice stating who
  18. ** made the last modification and the date of such modification.
  19. ** 3. No charge is made for this software or works derived from it.
  20. ** This clause shall not be construed as constraining other software
  21. ** distributed on the same medium as this software, nor is a
  22. ** distribution fee considered a charge.
  23. **
  24. ***************************************************************************/
  25. /* memory.c 1.3 11/25/87 */
  26. #include "matrix.h"
  27. static char rcsid[] = "memory.c,v 1.1 1997/12/04 17:55:38 hines Exp";
  28. /* m_get -- gets an mxn matrix (in MAT form) by dynamic memory allocation */
  29. MAT *m_get(m,n)
  30. int m,n;
  31. {
  32. MAT *matrix;
  33. int i;
  34. if (m < 0 || n < 0)
  35. error(E_NEG,"m_get");
  36. if ((matrix=NEW(MAT)) == (MAT *)NULL )
  37. error(E_MEM,"m_get");
  38. else if (mem_info_is_on()) {
  39. mem_bytes(TYPE_MAT,0,sizeof(MAT));
  40. mem_numvar(TYPE_MAT,1);
  41. }
  42. matrix->m = m; matrix->n = matrix->max_n = n;
  43. matrix->max_m = m; matrix->max_size = m*n;
  44. #ifndef SEGMENTED
  45. if ((matrix->base = NEW_A(m*n,Real)) == (Real *)NULL )
  46. {
  47. free(matrix);
  48. error(E_MEM,"m_get");
  49. }
  50. else if (mem_info_is_on()) {
  51. mem_bytes(TYPE_MAT,0,m*n*sizeof(Real));
  52. }
  53. #else
  54. matrix->base = (Real *)NULL;
  55. #endif
  56. if ((matrix->me = (Real **)calloc(m,sizeof(Real *))) ==
  57. (Real **)NULL )
  58. { free(matrix->base); free(matrix);
  59. error(E_MEM,"m_get");
  60. }
  61. else if (mem_info_is_on()) {
  62. mem_bytes(TYPE_MAT,0,m*sizeof(Real *));
  63. }
  64. #ifndef SEGMENTED
  65. /* set up pointers */
  66. for ( i=0; i<m; i++ )
  67. matrix->me[i] = &(matrix->base[i*n]);
  68. #else
  69. for ( i = 0; i < m; i++ )
  70. if ( (matrix->me[i]=NEW_A(n,Real)) == (Real *)NULL )
  71. error(E_MEM,"m_get");
  72. else if (mem_info_is_on()) {
  73. mem_bytes(TYPE_MAT,0,n*sizeof(Real));
  74. }
  75. #endif
  76. return (matrix);
  77. }
  78. /* px_get -- gets a PERM of given 'size' by dynamic memory allocation
  79. -- Note: initialized to the identity permutation */
  80. PERM *px_get(size)
  81. int size;
  82. {
  83. PERM *permute;
  84. int i;
  85. if (size < 0)
  86. error(E_NEG,"px_get");
  87. if ((permute=NEW(PERM)) == (PERM *)NULL )
  88. error(E_MEM,"px_get");
  89. else if (mem_info_is_on()) {
  90. mem_bytes(TYPE_PERM,0,sizeof(PERM));
  91. mem_numvar(TYPE_PERM,1);
  92. }
  93. permute->size = permute->max_size = size;
  94. if ((permute->pe = NEW_A(size,u_int)) == (u_int *)NULL )
  95. error(E_MEM,"px_get");
  96. else if (mem_info_is_on()) {
  97. mem_bytes(TYPE_PERM,0,size*sizeof(u_int));
  98. }
  99. for ( i=0; i<size; i++ )
  100. permute->pe[i] = i;
  101. return (permute);
  102. }
  103. /* v_get -- gets a VEC of dimension 'dim'
  104. -- Note: initialized to zero */
  105. VEC *v_get(size)
  106. int size;
  107. {
  108. VEC *vector;
  109. if (size < 0)
  110. error(E_NEG,"v_get");
  111. if ((vector=NEW(VEC)) == (VEC *)NULL )
  112. error(E_MEM,"v_get");
  113. else if (mem_info_is_on()) {
  114. mem_bytes(TYPE_VEC,0,sizeof(VEC));
  115. mem_numvar(TYPE_VEC,1);
  116. }
  117. vector->dim = vector->max_dim = size;
  118. if ((vector->ve=NEW_A(size,Real)) == (Real *)NULL )
  119. {
  120. free(vector);
  121. error(E_MEM,"v_get");
  122. }
  123. else if (mem_info_is_on()) {
  124. mem_bytes(TYPE_VEC,0,size*sizeof(Real));
  125. }
  126. return (vector);
  127. }
  128. /* m_free -- returns MAT & asoociated memory back to memory heap */
  129. int m_free(mat)
  130. MAT *mat;
  131. {
  132. #ifdef SEGMENTED
  133. int i;
  134. #endif
  135. if ( mat==(MAT *)NULL || (int)(mat->m) < 0 ||
  136. (int)(mat->n) < 0 )
  137. /* don't trust it */
  138. return (-1);
  139. #ifndef SEGMENTED
  140. if ( mat->base != (Real *)NULL ) {
  141. if (mem_info_is_on()) {
  142. mem_bytes(TYPE_MAT,mat->max_m*mat->max_n*sizeof(Real),0);
  143. }
  144. free((char *)(mat->base));
  145. }
  146. #else
  147. for ( i = 0; i < mat->max_m; i++ )
  148. if ( mat->me[i] != (Real *)NULL ) {
  149. if (mem_info_is_on()) {
  150. mem_bytes(TYPE_MAT,mat->max_n*sizeof(Real),0);
  151. }
  152. free((char *)(mat->me[i]));
  153. }
  154. #endif
  155. if ( mat->me != (Real **)NULL ) {
  156. if (mem_info_is_on()) {
  157. mem_bytes(TYPE_MAT,mat->max_m*sizeof(Real *),0);
  158. }
  159. free((char *)(mat->me));
  160. }
  161. if (mem_info_is_on()) {
  162. mem_bytes(TYPE_MAT,sizeof(MAT),0);
  163. mem_numvar(TYPE_MAT,-1);
  164. }
  165. free((char *)mat);
  166. return (0);
  167. }
  168. /* px_free -- returns PERM & asoociated memory back to memory heap */
  169. int px_free(px)
  170. PERM *px;
  171. {
  172. if ( px==(PERM *)NULL || (int)(px->size) < 0 )
  173. /* don't trust it */
  174. return (-1);
  175. if ( px->pe == (u_int *)NULL ) {
  176. if (mem_info_is_on()) {
  177. mem_bytes(TYPE_PERM,sizeof(PERM),0);
  178. mem_numvar(TYPE_PERM,-1);
  179. }
  180. free((char *)px);
  181. }
  182. else
  183. {
  184. if (mem_info_is_on()) {
  185. mem_bytes(TYPE_PERM,sizeof(PERM)+px->max_size*sizeof(u_int),0);
  186. mem_numvar(TYPE_PERM,-1);
  187. }
  188. free((char *)px->pe);
  189. free((char *)px);
  190. }
  191. return (0);
  192. }
  193. /* v_free -- returns VEC & asoociated memory back to memory heap */
  194. int v_free(vec)
  195. VEC *vec;
  196. {
  197. if ( vec==(VEC *)NULL || (int)(vec->dim) < 0 )
  198. /* don't trust it */
  199. return (-1);
  200. if ( vec->ve == (Real *)NULL ) {
  201. if (mem_info_is_on()) {
  202. mem_bytes(TYPE_VEC,sizeof(VEC),0);
  203. mem_numvar(TYPE_VEC,-1);
  204. }
  205. free((char *)vec);
  206. }
  207. else
  208. {
  209. if (mem_info_is_on()) {
  210. mem_bytes(TYPE_VEC,sizeof(VEC)+vec->max_dim*sizeof(Real),0);
  211. mem_numvar(TYPE_VEC,-1);
  212. }
  213. free((char *)vec->ve);
  214. free((char *)vec);
  215. }
  216. return (0);
  217. }
  218. /* m_resize -- returns the matrix A of size new_m x new_n; A is zeroed
  219. -- if A == NULL on entry then the effect is equivalent to m_get() */
  220. MAT *m_resize(A,new_m,new_n)
  221. MAT *A;
  222. int new_m, new_n;
  223. {
  224. int i;
  225. int new_max_m, new_max_n, new_size, old_m, old_n;
  226. if (new_m < 0 || new_n < 0)
  227. error(E_NEG,"m_resize");
  228. if ( ! A )
  229. return m_get(new_m,new_n);
  230. /* nothing was changed */
  231. if (new_m == A->m && new_n == A->n)
  232. return A;
  233. old_m = A->m; old_n = A->n;
  234. if ( new_m > A->max_m )
  235. { /* re-allocate A->me */
  236. if (mem_info_is_on()) {
  237. mem_bytes(TYPE_MAT,A->max_m*sizeof(Real *),
  238. new_m*sizeof(Real *));
  239. }
  240. A->me = RENEW(A->me,new_m,Real *);
  241. if ( ! A->me )
  242. error(E_MEM,"m_resize");
  243. }
  244. new_max_m = max(new_m,A->max_m);
  245. new_max_n = max(new_n,A->max_n);
  246. #ifndef SEGMENTED
  247. new_size = new_max_m*new_max_n;
  248. if ( new_size > A->max_size )
  249. { /* re-allocate A->base */
  250. if (mem_info_is_on()) {
  251. mem_bytes(TYPE_MAT,A->max_m*A->max_n*sizeof(Real),
  252. new_size*sizeof(Real));
  253. }
  254. A->base = RENEW(A->base,new_size,Real);
  255. if ( ! A->base )
  256. error(E_MEM,"m_resize");
  257. A->max_size = new_size;
  258. }
  259. /* now set up A->me[i] */
  260. for ( i = 0; i < new_m; i++ )
  261. A->me[i] = &(A->base[i*new_n]);
  262. /* now shift data in matrix */
  263. if ( old_n > new_n )
  264. {
  265. for ( i = 1; i < min(old_m,new_m); i++ )
  266. MEM_COPY((char *)&(A->base[i*old_n]),
  267. (char *)&(A->base[i*new_n]),
  268. sizeof(Real)*new_n);
  269. }
  270. else if ( old_n < new_n )
  271. {
  272. for ( i = (int)(min(old_m,new_m))-1; i > 0; i-- )
  273. { /* copy & then zero extra space */
  274. MEM_COPY((char *)&(A->base[i*old_n]),
  275. (char *)&(A->base[i*new_n]),
  276. sizeof(Real)*old_n);
  277. __zero__(&(A->base[i*new_n+old_n]),(new_n-old_n));
  278. }
  279. __zero__(&(A->base[old_n]),(new_n-old_n));
  280. A->max_n = new_n;
  281. }
  282. /* zero out the new rows.. */
  283. for ( i = old_m; i < new_m; i++ )
  284. __zero__(&(A->base[i*new_n]),new_n);
  285. #else
  286. if ( A->max_n < new_n )
  287. {
  288. Real *tmp;
  289. for ( i = 0; i < A->max_m; i++ )
  290. {
  291. if (mem_info_is_on()) {
  292. mem_bytes(TYPE_MAT,A->max_n*sizeof(Real),
  293. new_max_n*sizeof(Real));
  294. }
  295. if ( (tmp = RENEW(A->me[i],new_max_n,Real)) == NULL )
  296. error(E_MEM,"m_resize");
  297. else {
  298. A->me[i] = tmp;
  299. }
  300. }
  301. for ( i = A->max_m; i < new_max_m; i++ )
  302. {
  303. if ( (tmp = NEW_A(new_max_n,Real)) == NULL )
  304. error(E_MEM,"m_resize");
  305. else {
  306. A->me[i] = tmp;
  307. if (mem_info_is_on()) {
  308. mem_bytes(TYPE_MAT,0,new_max_n*sizeof(Real));
  309. }
  310. }
  311. }
  312. }
  313. else if ( A->max_m < new_m )
  314. {
  315. for ( i = A->max_m; i < new_m; i++ )
  316. if ( (A->me[i] = NEW_A(new_max_n,Real)) == NULL )
  317. error(E_MEM,"m_resize");
  318. else if (mem_info_is_on()) {
  319. mem_bytes(TYPE_MAT,0,new_max_n*sizeof(Real));
  320. }
  321. }
  322. if ( old_n < new_n )
  323. {
  324. for ( i = 0; i < old_m; i++ )
  325. __zero__(&(A->me[i][old_n]),new_n-old_n);
  326. }
  327. /* zero out the new rows.. */
  328. for ( i = old_m; i < new_m; i++ )
  329. __zero__(A->me[i],new_n);
  330. #endif
  331. A->max_m = new_max_m;
  332. A->max_n = new_max_n;
  333. A->max_size = A->max_m*A->max_n;
  334. A->m = new_m; A->n = new_n;
  335. return A;
  336. }
  337. /* px_resize -- returns the permutation px with size new_size
  338. -- px is set to the identity permutation */
  339. PERM *px_resize(px,new_size)
  340. PERM *px;
  341. int new_size;
  342. {
  343. int i;
  344. if (new_size < 0)
  345. error(E_NEG,"px_resize");
  346. if ( ! px )
  347. return px_get(new_size);
  348. /* nothing is changed */
  349. if (new_size == px->size)
  350. return px;
  351. if ( new_size > px->max_size )
  352. {
  353. if (mem_info_is_on()) {
  354. mem_bytes(TYPE_PERM,px->max_size*sizeof(u_int),
  355. new_size*sizeof(u_int));
  356. }
  357. px->pe = RENEW(px->pe,new_size,u_int);
  358. if ( ! px->pe )
  359. error(E_MEM,"px_resize");
  360. px->max_size = new_size;
  361. }
  362. if ( px->size <= new_size )
  363. /* extend permutation */
  364. for ( i = px->size; i < new_size; i++ )
  365. px->pe[i] = i;
  366. else
  367. for ( i = 0; i < new_size; i++ )
  368. px->pe[i] = i;
  369. px->size = new_size;
  370. return px;
  371. }
  372. /* v_resize -- returns the vector x with dim new_dim
  373. -- x is set to the zero vector */
  374. VEC *v_resize(x,new_dim)
  375. VEC *x;
  376. int new_dim;
  377. {
  378. if (new_dim < 0)
  379. error(E_NEG,"v_resize");
  380. if ( ! x )
  381. return v_get(new_dim);
  382. /* nothing is changed */
  383. if (new_dim == x->dim)
  384. return x;
  385. if ( x->max_dim == 0 ) /* assume that it's from sub_vec */
  386. return v_get(new_dim);
  387. if ( new_dim > x->max_dim )
  388. {
  389. if (mem_info_is_on()) {
  390. mem_bytes(TYPE_VEC,x->max_dim*sizeof(Real),
  391. new_dim*sizeof(Real));
  392. }
  393. x->ve = RENEW(x->ve,new_dim,Real);
  394. if ( ! x->ve )
  395. error(E_MEM,"v_resize");
  396. x->max_dim = new_dim;
  397. }
  398. if ( new_dim > x->dim )
  399. __zero__(&(x->ve[x->dim]),new_dim - x->dim);
  400. x->dim = new_dim;
  401. return x;
  402. }
  403. /* Varying number of arguments */
  404. /* other functions of this type are in sparse.c and zmemory.c */
  405. #ifdef ANSI_C
  406. /* To allocate memory to many arguments.
  407. The function should be called:
  408. v_get_vars(dim,&x,&y,&z,...,NULL);
  409. where
  410. int dim;
  411. VEC *x, *y, *z,...;
  412. The last argument should be NULL !
  413. dim is the length of vectors x,y,z,...
  414. returned value is equal to the number of allocated variables
  415. Other gec_... functions are similar.
  416. */
  417. int v_get_vars(int dim,...)
  418. {
  419. va_list ap;
  420. int i=0;
  421. VEC **par;
  422. va_start(ap, dim);
  423. while ((par = va_arg(ap,VEC **))) { /* NULL ends the list*/
  424. *par = v_get(dim);
  425. i++;
  426. }
  427. va_end(ap);
  428. return i;
  429. }
  430. int iv_get_vars(int dim,...)
  431. {
  432. va_list ap;
  433. int i=0;
  434. IVEC **par;
  435. va_start(ap, dim);
  436. while ((par = va_arg(ap,IVEC **))) { /* NULL ends the list*/
  437. *par = iv_get(dim);
  438. i++;
  439. }
  440. va_end(ap);
  441. return i;
  442. }
  443. int m_get_vars(int m,int n,...)
  444. {
  445. va_list ap;
  446. int i=0;
  447. MAT **par;
  448. va_start(ap, n);
  449. while ((par = va_arg(ap,MAT **))) { /* NULL ends the list*/
  450. *par = m_get(m,n);
  451. i++;
  452. }
  453. va_end(ap);
  454. return i;
  455. }
  456. int px_get_vars(int dim,...)
  457. {
  458. va_list ap;
  459. int i=0;
  460. PERM **par;
  461. va_start(ap, dim);
  462. while ((par = va_arg(ap,PERM **))) { /* NULL ends the list*/
  463. *par = px_get(dim);
  464. i++;
  465. }
  466. va_end(ap);
  467. return i;
  468. }
  469. /* To resize memory for many arguments.
  470. The function should be called:
  471. v_resize_vars(new_dim,&x,&y,&z,...,NULL);
  472. where
  473. int new_dim;
  474. VEC *x, *y, *z,...;
  475. The last argument should be NULL !
  476. rdim is the resized length of vectors x,y,z,...
  477. returned value is equal to the number of allocated variables.
  478. If one of x,y,z,.. arguments is NULL then memory is allocated to this
  479. argument.
  480. Other *_resize_list() functions are similar.
  481. */
  482. int v_resize_vars(int new_dim,...)
  483. {
  484. va_list ap;
  485. int i=0;
  486. VEC **par;
  487. va_start(ap, new_dim);
  488. while ((par = va_arg(ap,VEC **))) { /* NULL ends the list*/
  489. *par = v_resize(*par,new_dim);
  490. i++;
  491. }
  492. va_end(ap);
  493. return i;
  494. }
  495. int iv_resize_vars(int new_dim,...)
  496. {
  497. va_list ap;
  498. int i=0;
  499. IVEC **par;
  500. va_start(ap, new_dim);
  501. while ((par = va_arg(ap,IVEC **))) { /* NULL ends the list*/
  502. *par = iv_resize(*par,new_dim);
  503. i++;
  504. }
  505. va_end(ap);
  506. return i;
  507. }
  508. int m_resize_vars(int m,int n,...)
  509. {
  510. va_list ap;
  511. int i=0;
  512. MAT **par;
  513. va_start(ap, n);
  514. while ((par = va_arg(ap,MAT **))) { /* NULL ends the list*/
  515. *par = m_resize(*par,m,n);
  516. i++;
  517. }
  518. va_end(ap);
  519. return i;
  520. }
  521. int px_resize_vars(int new_dim,...)
  522. {
  523. va_list ap;
  524. int i=0;
  525. PERM **par;
  526. va_start(ap, new_dim);
  527. while ((par = va_arg(ap,PERM **))) { /* NULL ends the list*/
  528. *par = px_resize(*par,new_dim);
  529. i++;
  530. }
  531. va_end(ap);
  532. return i;
  533. }
  534. /* To deallocate memory for many arguments.
  535. The function should be called:
  536. v_free_vars(&x,&y,&z,...,NULL);
  537. where
  538. VEC *x, *y, *z,...;
  539. The last argument should be NULL !
  540. There must be at least one not NULL argument.
  541. returned value is equal to the number of allocated variables.
  542. Returned value of x,y,z,.. is VNULL.
  543. Other *_free_list() functions are similar.
  544. */
  545. int v_free_vars(VEC **pv,...)
  546. {
  547. va_list ap;
  548. int i=1;
  549. VEC **par;
  550. v_free(*pv);
  551. *pv = VNULL;
  552. va_start(ap, pv);
  553. while ((par = va_arg(ap,VEC **))) { /* NULL ends the list*/
  554. v_free(*par);
  555. *par = VNULL;
  556. i++;
  557. }
  558. va_end(ap);
  559. return i;
  560. }
  561. int iv_free_vars(IVEC **ipv,...)
  562. {
  563. va_list ap;
  564. int i=1;
  565. IVEC **par;
  566. iv_free(*ipv);
  567. *ipv = IVNULL;
  568. va_start(ap, ipv);
  569. while ((par = va_arg(ap,IVEC **))) { /* NULL ends the list*/
  570. iv_free(*par);
  571. *par = IVNULL;
  572. i++;
  573. }
  574. va_end(ap);
  575. return i;
  576. }
  577. int px_free_vars(PERM **vpx,...)
  578. {
  579. va_list ap;
  580. int i=1;
  581. PERM **par;
  582. px_free(*vpx);
  583. *vpx = PNULL;
  584. va_start(ap, vpx);
  585. while ((par = va_arg(ap,PERM **))) { /* NULL ends the list*/
  586. px_free(*par);
  587. *par = PNULL;
  588. i++;
  589. }
  590. va_end(ap);
  591. return i;
  592. }
  593. int m_free_vars(MAT **va,...)
  594. {
  595. va_list ap;
  596. int i=1;
  597. MAT **par;
  598. m_free(*va);
  599. *va = MNULL;
  600. va_start(ap, va);
  601. while ((par = va_arg(ap,MAT **))) { /* NULL ends the list*/
  602. m_free(*par);
  603. *par = MNULL;
  604. i++;
  605. }
  606. va_end(ap);
  607. return i;
  608. }
  609. #elif VARARGS
  610. /* old varargs is used */
  611. /* To allocate memory to many arguments.
  612. The function should be called:
  613. v_get_vars(dim,&x,&y,&z,...,VNULL);
  614. where
  615. int dim;
  616. VEC *x, *y, *z,...;
  617. The last argument should be VNULL !
  618. dim is the length of vectors x,y,z,...
  619. */
  620. int v_get_vars(va_alist) va_dcl
  621. {
  622. va_list ap;
  623. int dim,i=0;
  624. VEC **par;
  625. va_start(ap);
  626. dim = va_arg(ap,int);
  627. while (par = va_arg(ap,VEC **)) { /* NULL ends the list*/
  628. *par = v_get(dim);
  629. i++;
  630. }
  631. va_end(ap);
  632. return i;
  633. }
  634. int iv_get_vars(va_alist) va_dcl
  635. {
  636. va_list ap;
  637. int i=0, dim;
  638. IVEC **par;
  639. va_start(ap);
  640. dim = va_arg(ap,int);
  641. while (par = va_arg(ap,IVEC **)) { /* NULL ends the list*/
  642. *par = iv_get(dim);
  643. i++;
  644. }
  645. va_end(ap);
  646. return i;
  647. }
  648. int m_get_vars(va_alist) va_dcl
  649. {
  650. va_list ap;
  651. int i=0, n, m;
  652. MAT **par;
  653. va_start(ap);
  654. m = va_arg(ap,int);
  655. n = va_arg(ap,int);
  656. while (par = va_arg(ap,MAT **)) { /* NULL ends the list*/
  657. *par = m_get(m,n);
  658. i++;
  659. }
  660. va_end(ap);
  661. return i;
  662. }
  663. int px_get_vars(va_alist) va_dcl
  664. {
  665. va_list ap;
  666. int i=0, dim;
  667. PERM **par;
  668. va_start(ap);
  669. dim = va_arg(ap,int);
  670. while (par = va_arg(ap,PERM **)) { /* NULL ends the list*/
  671. *par = px_get(dim);
  672. i++;
  673. }
  674. va_end(ap);
  675. return i;
  676. }
  677. /* To resize memory for many arguments.
  678. The function should be called:
  679. v_resize_vars(new_dim,&x,&y,&z,...,NULL);
  680. where
  681. int new_dim;
  682. VEC *x, *y, *z,...;
  683. The last argument should be NULL !
  684. rdim is the resized length of vectors x,y,z,...
  685. returned value is equal to the number of allocated variables.
  686. If one of x,y,z,.. arguments is NULL then memory is allocated to this
  687. argument.
  688. Other *_resize_list() functions are similar.
  689. */
  690. int v_resize_vars(va_alist) va_dcl
  691. {
  692. va_list ap;
  693. int i=0, new_dim;
  694. VEC **par;
  695. va_start(ap);
  696. new_dim = va_arg(ap,int);
  697. while (par = va_arg(ap,VEC **)) { /* NULL ends the list*/
  698. *par = v_resize(*par,new_dim);
  699. i++;
  700. }
  701. va_end(ap);
  702. return i;
  703. }
  704. int iv_resize_vars(va_alist) va_dcl
  705. {
  706. va_list ap;
  707. int i=0, new_dim;
  708. IVEC **par;
  709. va_start(ap);
  710. new_dim = va_arg(ap,int);
  711. while (par = va_arg(ap,IVEC **)) { /* NULL ends the list*/
  712. *par = iv_resize(*par,new_dim);
  713. i++;
  714. }
  715. va_end(ap);
  716. return i;
  717. }
  718. int m_resize_vars(va_alist) va_dcl
  719. {
  720. va_list ap;
  721. int i=0, m, n;
  722. MAT **par;
  723. va_start(ap);
  724. m = va_arg(ap,int);
  725. n = va_arg(ap,int);
  726. while (par = va_arg(ap,MAT **)) { /* NULL ends the list*/
  727. *par = m_resize(*par,m,n);
  728. i++;
  729. }
  730. va_end(ap);
  731. return i;
  732. }
  733. int px_resize_vars(va_alist) va_dcl
  734. {
  735. va_list ap;
  736. int i=0, new_dim;
  737. PERM **par;
  738. va_start(ap);
  739. new_dim = va_arg(ap,int);
  740. while (par = va_arg(ap,PERM **)) { /* NULL ends the list*/
  741. *par = px_resize(*par,new_dim);
  742. i++;
  743. }
  744. va_end(ap);
  745. return i;
  746. }
  747. /* To deallocate memory for many arguments.
  748. The function should be called:
  749. v_free_vars(&x,&y,&z,...,NULL);
  750. where
  751. VEC *x, *y, *z,...;
  752. The last argument should be NULL !
  753. returned value is equal to the number of allocated variables.
  754. Returned value of x,y,z,.. is VNULL.
  755. Other *_free_list() functions are similar.
  756. */
  757. int v_free_vars(va_alist) va_dcl
  758. {
  759. va_list ap;
  760. int i=0;
  761. VEC **par;
  762. va_start(ap);
  763. while (par = va_arg(ap,VEC **)) { /* NULL ends the list*/
  764. v_free(*par);
  765. *par = VNULL;
  766. i++;
  767. }
  768. va_end(ap);
  769. return i;
  770. }
  771. int iv_free_vars(va_alist) va_dcl
  772. {
  773. va_list ap;
  774. int i=0;
  775. IVEC **par;
  776. va_start(ap);
  777. while (par = va_arg(ap,IVEC **)) { /* NULL ends the list*/
  778. iv_free(*par);
  779. *par = IVNULL;
  780. i++;
  781. }
  782. va_end(ap);
  783. return i;
  784. }
  785. int px_free_vars(va_alist) va_dcl
  786. {
  787. va_list ap;
  788. int i=0;
  789. PERM **par;
  790. va_start(ap);
  791. while (par = va_arg(ap,PERM **)) { /* NULL ends the list*/
  792. px_free(*par);
  793. *par = PNULL;
  794. i++;
  795. }
  796. va_end(ap);
  797. return i;
  798. }
  799. int m_free_vars(va_alist) va_dcl
  800. {
  801. va_list ap;
  802. int i=0;
  803. MAT **par;
  804. va_start(ap);
  805. while (par = va_arg(ap,MAT **)) { /* NULL ends the list*/
  806. m_free(*par);
  807. *par = MNULL;
  808. i++;
  809. }
  810. va_end(ap);
  811. return i;
  812. }
  813. #endif /* VARARGS */