#### /indra/llmath/m4math.h

https://bitbucket.org/lindenlab/viewer-beta/
C++ Header | 403 lines | 202 code | 67 blank | 134 comment | 24 complexity | 562c24543942fb453c5aaa0b507e4362 MD5 | raw file
``````
/**
* @file m4math.h
* @brief LLMatrix4 class header file.
*
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA
*/

#ifndef LL_M4MATH_H
#define LL_M4MATH_H

#include "v3math.h"

class LLVector4;
class LLMatrix3;
class LLQuaternion;

// NOTA BENE: Currently assuming a right-handed, x-forward, y-left, z-up universe

// Us versus OpenGL:

// Even though OpenGL uses column vectors and we use row vectors, we can plug our matrices
// directly into OpenGL.  This is because OpenGL numbers its matrices going columnwise:
//
// OpenGL indexing:          Our indexing:
// 0  4  8 12                [0][0] [0][1] [0][2] [0][3]
// 1  5  9 13                [1][0] [1][1] [1][2] [1][3]
// 2  6 10 14                [2][0] [2][1] [2][2] [2][3]
// 3  7 11 15                [3][0] [3][1] [3][2] [3][3]
//
// So when you're looking at OpenGL related matrices online, our matrices will be
// "transposed".  But our matrices can be plugged directly into OpenGL and work fine!
//

// We're using row vectors - [vx, vy, vz, vw]
//
// There are several different ways of thinking of matrices, if you mix them up, you'll get very confused.
//
// One way to think about it is a matrix that takes the origin frame A
// and rotates it into B': i.e. A*M = B
//
//		Vectors:
//		f - forward axis of B expressed in A
//		l - left axis of B expressed in A
//		u - up axis of B expressed in A
//
//		|  0: fx  1: fy  2: fz  3:0 |
//  M = |  4: lx  5: ly  6: lz  7:0 |
//      |  8: ux  9: uy 10: uz 11:0 |
//      | 12: 0  13: 0  14:  0 15:1 |
//
//
//
//
// Another way to think of matrices is matrix that takes a point p in frame A, and puts it into frame B:
// This is used most commonly for the modelview matrix.
//
// so p*M = p'
//
//		Vectors:
//      f - forward of frame B in frame A
//      l - left of frame B in frame A
//      u - up of frame B in frame A
//      o - origin of frame frame B in frame A
//
//		|  0: fx  1: lx  2: ux  3:0 |
//  M = |  4: fy  5: ly  6: uy  7:0 |
//      |  8: fz  9: lz 10: uz 11:0 |
//      | 12:-of 13:-ol 14:-ou 15:1 |
//
//		of, ol, and ou mean the component of the "global" origin o in the f axis, l axis, and u axis.
//

static const U32 NUM_VALUES_IN_MAT4 = 4;

class LLMatrix4
{
public:
F32	mMatrix[NUM_VALUES_IN_MAT4][NUM_VALUES_IN_MAT4];

// Initializes Matrix to identity matrix
LLMatrix4()
{
setIdentity();
}
explicit LLMatrix4(const F32 *mat);								// Initializes Matrix to values in mat
explicit LLMatrix4(const LLMatrix3 &mat);						// Initializes Matrix to values in mat and sets position to (0,0,0)
explicit LLMatrix4(const LLQuaternion &q);						// Initializes Matrix with rotation q and sets position to (0,0,0)

LLMatrix4(const LLMatrix3 &mat, const LLVector4 &pos);	// Initializes Matrix to values in mat and pos

// These are really, really, inefficient as implemented! - djs
LLMatrix4(const LLQuaternion &q, const LLVector4 &pos);	// Initializes Matrix with rotation q and position pos
LLMatrix4(F32 angle,
const LLVector4 &vec,
const LLVector4 &pos);						// Initializes Matrix with axis-angle and position
LLMatrix4(F32 angle, const LLVector4 &vec);				// Initializes Matrix with axis-angle and sets position to (0,0,0)
LLMatrix4(const F32 roll, const F32 pitch, const F32 yaw,
const LLVector4 &pos);						// Initializes Matrix with Euler angles
LLMatrix4(const F32 roll, const F32 pitch, const F32 yaw);				// Initializes Matrix with Euler angles

~LLMatrix4(void);										// Destructor

LLSD getValue() const;
void setValue(const LLSD&);

//////////////////////////////
//
// Matrix initializers - these replace any existing values in the matrix
//

void initRows(const LLVector4 &row0,
const LLVector4 &row1,
const LLVector4 &row2,
const LLVector4 &row3);

// various useful matrix functions
const LLMatrix4& setIdentity();					// Load identity matrix
bool isIdentity() const;
const LLMatrix4& setZero();						// Clears matrix to all zeros.

const LLMatrix4& initRotation(const F32 angle, const F32 x, const F32 y, const F32 z);	// Calculate rotation matrix by rotating angle radians about (x, y, z)
const LLMatrix4& initRotation(const F32 angle, const LLVector4 &axis);	// Calculate rotation matrix for rotating angle radians about vec
const LLMatrix4& initRotation(const F32 roll, const F32 pitch, const F32 yaw);		// Calculate rotation matrix from Euler angles
const LLMatrix4& initRotation(const LLQuaternion &q);			// Set with Quaternion and position

// Position Only
const LLMatrix4& initMatrix(const LLMatrix3 &mat); //
const LLMatrix4& initMatrix(const LLMatrix3 &mat, const LLVector4 &translation);

// These operation create a matrix that will rotate and translate by the
// specified amounts.
const LLMatrix4& initRotTrans(const F32 angle,
const F32 rx, const F32 ry, const F32 rz,
const F32 px, const F32 py, const F32 pz);

const LLMatrix4& initRotTrans(const F32 angle, const LLVector3 &axis, const LLVector3 &translation);	 // Rotation from axis angle + translation
const LLMatrix4& initRotTrans(const F32 roll, const F32 pitch, const F32 yaw, const LLVector4 &pos); // Rotation from Euler + translation
const LLMatrix4& initRotTrans(const LLQuaternion &q, const LLVector4 &pos);	// Set with Quaternion and position

const LLMatrix4& initScale(const LLVector3 &scale);

// Set all
const LLMatrix4& initAll(const LLVector3 &scale, const LLQuaternion &q, const LLVector3 &pos);

///////////////////////////
//
// Matrix setters - set some properties without modifying others
//

const LLMatrix4& setTranslation(const F32 x, const F32 y, const F32 z);	// Sets matrix to translate by (x,y,z)

void setFwdRow(const LLVector3 &row);
void setLeftRow(const LLVector3 &row);
void setUpRow(const LLVector3 &row);

void setFwdCol(const LLVector3 &col);
void setLeftCol(const LLVector3 &col);
void setUpCol(const LLVector3 &col);

const LLMatrix4& setTranslation(const LLVector4 &translation);
const LLMatrix4& setTranslation(const LLVector3 &translation);

///////////////////////////
//
// Get properties of a matrix
//

F32			 determinant(void) const;						// Return determinant
LLQuaternion quaternion(void) const;			// Returns quaternion

LLVector4 getFwdRow4() const;
LLVector4 getLeftRow4() const;
LLVector4 getUpRow4() const;

LLMatrix3 getMat3() const;

const LLVector3& getTranslation() const { return *(LLVector3*)&mMatrix[3][0]; }

///////////////////////////
//
// Operations on an existing matrix
//

const LLMatrix4& transpose();						// Transpose LLMatrix4
const LLMatrix4& invert();						// Invert LLMatrix4

// Rotate existing matrix
// These are really, really, inefficient as implemented! - djs
const LLMatrix4& rotate(const F32 angle, const F32 x, const F32 y, const F32 z); 		// Rotate matrix by rotating angle radians about (x, y, z)
const LLMatrix4& rotate(const F32 angle, const LLVector4 &vec);		// Rotate matrix by rotating angle radians about vec
const LLMatrix4& rotate(const F32 roll, const F32 pitch, const F32 yaw);		// Rotate matrix by Euler angles
const LLMatrix4& rotate(const LLQuaternion &q);				// Rotate matrix by Quaternion

// Translate existing matrix
const LLMatrix4& translate(const LLVector3 &vec);				// Translate matrix by (vec[VX], vec[VY], vec[VZ])

///////////////////////
//
// Operators
//

//	friend inline LLMatrix4 operator*(const LLMatrix4 &a, const LLMatrix4 &b);		// Return a * b
friend LLVector4 operator*(const LLVector4 &a, const LLMatrix4 &b);		// Return transform of vector a by matrix b
friend const LLVector3 operator*(const LLVector3 &a, const LLMatrix4 &b);		// Return full transform of a by matrix b
friend LLVector4 rotate_vector(const LLVector4 &a, const LLMatrix4 &b);	// Rotates a but does not translate
friend LLVector3 rotate_vector(const LLVector3 &a, const LLMatrix4 &b);	// Rotates a but does not translate

friend bool operator==(const LLMatrix4 &a, const LLMatrix4 &b);			// Return a == b
friend bool operator!=(const LLMatrix4 &a, const LLMatrix4 &b);			// Return a != b
friend bool operator<(const LLMatrix4 &a, const LLMatrix4& b);			// Return a < b

friend const LLMatrix4& operator+=(LLMatrix4 &a, const LLMatrix4 &b);	// Return a + b
friend const LLMatrix4& operator-=(LLMatrix4 &a, const LLMatrix4 &b);	// Return a - b
friend const LLMatrix4& operator*=(LLMatrix4 &a, const LLMatrix4 &b);	// Return a * b
friend const LLMatrix4& operator*=(LLMatrix4 &a, const F32 &b);			// Return a * b

friend std::ostream&	 operator<<(std::ostream& s, const LLMatrix4 &a);	// Stream a
};

inline const LLMatrix4&	LLMatrix4::setIdentity()
{
mMatrix[0][0] = 1.f;
mMatrix[0][1] = 0.f;
mMatrix[0][2] = 0.f;
mMatrix[0][3] = 0.f;

mMatrix[1][0] = 0.f;
mMatrix[1][1] = 1.f;
mMatrix[1][2] = 0.f;
mMatrix[1][3] = 0.f;

mMatrix[2][0] = 0.f;
mMatrix[2][1] = 0.f;
mMatrix[2][2] = 1.f;
mMatrix[2][3] = 0.f;

mMatrix[3][0] = 0.f;
mMatrix[3][1] = 0.f;
mMatrix[3][2] = 0.f;
mMatrix[3][3] = 1.f;
return (*this);
}

inline bool LLMatrix4::isIdentity() const
{
return
mMatrix[0][0] == 1.f &&
mMatrix[0][1] == 0.f &&
mMatrix[0][2] == 0.f &&
mMatrix[0][3] == 0.f &&

mMatrix[1][0] == 0.f &&
mMatrix[1][1] == 1.f &&
mMatrix[1][2] == 0.f &&
mMatrix[1][3] == 0.f &&

mMatrix[2][0] == 0.f &&
mMatrix[2][1] == 0.f &&
mMatrix[2][2] == 1.f &&
mMatrix[2][3] == 0.f &&

mMatrix[3][0] == 0.f &&
mMatrix[3][1] == 0.f &&
mMatrix[3][2] == 0.f &&
mMatrix[3][3] == 1.f;
}

/*
inline LLMatrix4 operator*(const LLMatrix4 &a, const LLMatrix4 &b)
{
U32		i, j;
LLMatrix4	mat;
for (i = 0; i < NUM_VALUES_IN_MAT4; i++)
{
for (j = 0; j < NUM_VALUES_IN_MAT4; j++)
{
mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] +
a.mMatrix[j][1] * b.mMatrix[1][i] +
a.mMatrix[j][2] * b.mMatrix[2][i] +
a.mMatrix[j][3] * b.mMatrix[3][i];
}
}
return mat;
}
*/

inline const LLMatrix4& operator*=(LLMatrix4 &a, const LLMatrix4 &b)
{
U32		i, j;
LLMatrix4	mat;
for (i = 0; i < NUM_VALUES_IN_MAT4; i++)
{
for (j = 0; j < NUM_VALUES_IN_MAT4; j++)
{
mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] +
a.mMatrix[j][1] * b.mMatrix[1][i] +
a.mMatrix[j][2] * b.mMatrix[2][i] +
a.mMatrix[j][3] * b.mMatrix[3][i];
}
}
a = mat;
return a;
}

inline const LLMatrix4& operator*=(LLMatrix4 &a, const F32 &b)
{
U32		i, j;
LLMatrix4	mat;
for (i = 0; i < NUM_VALUES_IN_MAT4; i++)
{
for (j = 0; j < NUM_VALUES_IN_MAT4; j++)
{
mat.mMatrix[j][i] = a.mMatrix[j][i] * b;
}
}
a = mat;
return a;
}

inline const LLMatrix4& operator+=(LLMatrix4 &a, const LLMatrix4 &b)
{
LLMatrix4 mat;
U32		i, j;
for (i = 0; i < NUM_VALUES_IN_MAT4; i++)
{
for (j = 0; j < NUM_VALUES_IN_MAT4; j++)
{
mat.mMatrix[j][i] = a.mMatrix[j][i] + b.mMatrix[j][i];
}
}
a = mat;
return a;
}

inline const LLMatrix4& operator-=(LLMatrix4 &a, const LLMatrix4 &b)
{
LLMatrix4 mat;
U32		i, j;
for (i = 0; i < NUM_VALUES_IN_MAT4; i++)
{
for (j = 0; j < NUM_VALUES_IN_MAT4; j++)
{
mat.mMatrix[j][i] = a.mMatrix[j][i] - b.mMatrix[j][i];
}
}
a = mat;
return a;
}

// Operates "to the left" on row-vector a
//
// When avatar vertex programs are off, this function is a hot spot in profiles
// due to software skinning in LLViewerJointMesh::updateGeometry().  JC
inline const LLVector3 operator*(const LLVector3 &a, const LLMatrix4 &b)
{
// This is better than making a temporary LLVector3.  This eliminates an
// unnecessary LLVector3() constructor and also helps the compiler to
// realize that the output floats do not alias the input floats, hence
// eliminating redundant loads of a.mV[0], etc.  JC
return LLVector3(a.mV[VX] * b.mMatrix[VX][VX] +
a.mV[VY] * b.mMatrix[VY][VX] +
a.mV[VZ] * b.mMatrix[VZ][VX] +
b.mMatrix[VW][VX],

a.mV[VX] * b.mMatrix[VX][VY] +
a.mV[VY] * b.mMatrix[VY][VY] +
a.mV[VZ] * b.mMatrix[VZ][VY] +
b.mMatrix[VW][VY],

a.mV[VX] * b.mMatrix[VX][VZ] +
a.mV[VY] * b.mMatrix[VY][VZ] +
a.mV[VZ] * b.mMatrix[VZ][VZ] +
b.mMatrix[VW][VZ]);
}

#endif

``````