/indra/llmath/llvector4a.inl
C++ Header | 593 lines | 351 code | 72 blank | 170 comment | 4 complexity | 35ac1670d8371ecb03f92369f2ddb24e MD5 | raw file
Possible License(s): LGPL-2.1
- /**
- * @file llvector4a.inl
- * @brief LLVector4a inline function implementations
- *
- * $LicenseInfo:firstyear=2010&license=viewerlgpl$
- * Second Life Viewer Source Code
- * Copyright (C) 2010, Linden Research, Inc.
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation;
- * version 2.1 of the License only.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA
- * $/LicenseInfo$
- */
- ////////////////////////////////////
- // LOAD/STORE
- ////////////////////////////////////
- // Load from 16-byte aligned src array (preferred method of loading)
- inline void LLVector4a::load4a(const F32* src)
- {
- mQ = _mm_load_ps(src);
- }
- // Load from unaligned src array (NB: Significantly slower than load4a)
- inline void LLVector4a::loadua(const F32* src)
- {
- mQ = _mm_loadu_ps(src);
- }
- // Load only three floats beginning at address 'src'. Slowest method.
- inline void LLVector4a::load3(const F32* src)
- {
- // mQ = { 0.f, src[2], src[1], src[0] } = { W, Z, Y, X }
- // NB: This differs from the convention of { Z, Y, X, W }
- mQ = _mm_set_ps(0.f, src[2], src[1], src[0]);
- }
- // Store to a 16-byte aligned memory address
- inline void LLVector4a::store4a(F32* dst) const
- {
- _mm_store_ps(dst, mQ);
- }
- ////////////////////////////////////
- // BASIC GET/SET
- ////////////////////////////////////
- // Return a "this" as an F32 pointer. Do not use unless you have a very good reason. (Not sure? Ask Falcon)
- F32* LLVector4a::getF32ptr()
- {
- return (F32*) &mQ;
- }
- // Return a "this" as a const F32 pointer. Do not use unless you have a very good reason. (Not sure? Ask Falcon)
- const F32* const LLVector4a::getF32ptr() const
- {
- return (const F32* const) &mQ;
- }
- // Read-only access a single float in this vector. Do not use in proximity to any function call that manipulates
- // the data at the whole vector level or you will incur a substantial penalty. Consider using the splat functions instead
- inline F32 LLVector4a::operator[](const S32 idx) const
- {
- return ((F32*)&mQ)[idx];
- }
- // Prefer this method for read-only access to a single element. Prefer the templated version if the elem is known at compile time.
- inline LLSimdScalar LLVector4a::getScalarAt(const S32 idx) const
- {
- // Return appropriate LLQuad. It will be cast to LLSimdScalar automatically (should be effectively a nop)
- switch (idx)
- {
- case 0:
- return mQ;
- case 1:
- return _mm_shuffle_ps(mQ, mQ, _MM_SHUFFLE(1, 1, 1, 1));
- case 2:
- return _mm_shuffle_ps(mQ, mQ, _MM_SHUFFLE(2, 2, 2, 2));
- case 3:
- default:
- return _mm_shuffle_ps(mQ, mQ, _MM_SHUFFLE(3, 3, 3, 3));
- }
- }
- // Prefer this method for read-only access to a single element. Prefer the templated version if the elem is known at compile time.
- template <int N> LL_FORCE_INLINE LLSimdScalar LLVector4a::getScalarAt() const
- {
- return _mm_shuffle_ps(mQ, mQ, _MM_SHUFFLE(N, N, N, N));
- }
- template<> LL_FORCE_INLINE LLSimdScalar LLVector4a::getScalarAt<0>() const
- {
- return mQ;
- }
- // Set to an x, y, z and optional w provided
- inline void LLVector4a::set(F32 x, F32 y, F32 z, F32 w)
- {
- mQ = _mm_set_ps(w, z, y, x);
- }
- // Set to all zeros
- inline void LLVector4a::clear()
- {
- mQ = LLVector4a::getZero().mQ;
- }
- inline void LLVector4a::splat(const F32 x)
- {
- mQ = _mm_set1_ps(x);
- }
- inline void LLVector4a::splat(const LLSimdScalar& x)
- {
- mQ = _mm_shuffle_ps( x.getQuad(), x.getQuad(), _MM_SHUFFLE(0,0,0,0) );
- }
- // Set all 4 elements to element N of src, with N known at compile time
- template <int N> void LLVector4a::splat(const LLVector4a& src)
- {
- mQ = _mm_shuffle_ps(src.mQ, src.mQ, _MM_SHUFFLE(N, N, N, N) );
- }
- // Set all 4 elements to element i of v, with i NOT known at compile time
- inline void LLVector4a::splat(const LLVector4a& v, U32 i)
- {
- switch (i)
- {
- case 0:
- mQ = _mm_shuffle_ps(v.mQ, v.mQ, _MM_SHUFFLE(0, 0, 0, 0));
- break;
- case 1:
- mQ = _mm_shuffle_ps(v.mQ, v.mQ, _MM_SHUFFLE(1, 1, 1, 1));
- break;
- case 2:
- mQ = _mm_shuffle_ps(v.mQ, v.mQ, _MM_SHUFFLE(2, 2, 2, 2));
- break;
- case 3:
- mQ = _mm_shuffle_ps(v.mQ, v.mQ, _MM_SHUFFLE(3, 3, 3, 3));
- break;
- }
- }
- // Select bits from sourceIfTrue and sourceIfFalse according to bits in mask
- inline void LLVector4a::setSelectWithMask( const LLVector4Logical& mask, const LLVector4a& sourceIfTrue, const LLVector4a& sourceIfFalse )
- {
- // ((( sourceIfTrue ^ sourceIfFalse ) & mask) ^ sourceIfFalse )
- // E.g., sourceIfFalse = 1010b, sourceIfTrue = 0101b, mask = 1100b
- // (sourceIfTrue ^ sourceIfFalse) = 1111b --> & mask = 1100b --> ^ sourceIfFalse = 0110b,
- // as expected (01 from sourceIfTrue, 10 from sourceIfFalse)
- // Courtesy of Mark++, http://markplusplus.wordpress.com/2007/03/14/fast-sse-select-operation/
- mQ = _mm_xor_ps( sourceIfFalse, _mm_and_ps( mask, _mm_xor_ps( sourceIfTrue, sourceIfFalse ) ) );
- }
- ////////////////////////////////////
- // ALGEBRAIC
- ////////////////////////////////////
- // Set this to the element-wise (a + b)
- inline void LLVector4a::setAdd(const LLVector4a& a, const LLVector4a& b)
- {
- mQ = _mm_add_ps(a.mQ, b.mQ);
- }
- // Set this to element-wise (a - b)
- inline void LLVector4a::setSub(const LLVector4a& a, const LLVector4a& b)
- {
- mQ = _mm_sub_ps(a.mQ, b.mQ);
- }
- // Set this to element-wise multiply (a * b)
- inline void LLVector4a::setMul(const LLVector4a& a, const LLVector4a& b)
- {
- mQ = _mm_mul_ps(a.mQ, b.mQ);
- }
- // Set this to element-wise quotient (a / b)
- inline void LLVector4a::setDiv(const LLVector4a& a, const LLVector4a& b)
- {
- mQ = _mm_div_ps( a.mQ, b.mQ );
- }
- // Set this to the element-wise absolute value of src
- inline void LLVector4a::setAbs(const LLVector4a& src)
- {
- static const LL_ALIGN_16(U32 F_ABS_MASK_4A[4]) = { 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF };
- mQ = _mm_and_ps(src.mQ, *reinterpret_cast<const LLQuad*>(F_ABS_MASK_4A));
- }
- // Add to each component in this vector the corresponding component in rhs
- inline void LLVector4a::add(const LLVector4a& rhs)
- {
- mQ = _mm_add_ps(mQ, rhs.mQ);
- }
- // Subtract from each component in this vector the corresponding component in rhs
- inline void LLVector4a::sub(const LLVector4a& rhs)
- {
- mQ = _mm_sub_ps(mQ, rhs.mQ);
- }
- // Multiply each component in this vector by the corresponding component in rhs
- inline void LLVector4a::mul(const LLVector4a& rhs)
- {
- mQ = _mm_mul_ps(mQ, rhs.mQ);
- }
- // Divide each component in this vector by the corresponding component in rhs
- inline void LLVector4a::div(const LLVector4a& rhs)
- {
- // TODO: Check accuracy, maybe add divFast
- mQ = _mm_div_ps(mQ, rhs.mQ);
- }
- // Multiply this vector by x in a scalar fashion
- inline void LLVector4a::mul(const F32 x)
- {
- LLVector4a t;
- t.splat(x);
-
- mQ = _mm_mul_ps(mQ, t.mQ);
- }
- // Set this to (a x b) (geometric cross-product)
- inline void LLVector4a::setCross3(const LLVector4a& a, const LLVector4a& b)
- {
- // Vectors are stored in memory in w, z, y, x order from high to low
- // Set vector1 = { a[W], a[X], a[Z], a[Y] }
- const LLQuad vector1 = _mm_shuffle_ps( a.mQ, a.mQ, _MM_SHUFFLE( 3, 0, 2, 1 ));
- // Set vector2 = { b[W], b[Y], b[X], b[Z] }
- const LLQuad vector2 = _mm_shuffle_ps( b.mQ, b.mQ, _MM_SHUFFLE( 3, 1, 0, 2 ));
- // mQ = { a[W]*b[W], a[X]*b[Y], a[Z]*b[X], a[Y]*b[Z] }
- mQ = _mm_mul_ps( vector1, vector2 );
- // vector3 = { a[W], a[Y], a[X], a[Z] }
- const LLQuad vector3 = _mm_shuffle_ps( a.mQ, a.mQ, _MM_SHUFFLE( 3, 1, 0, 2 ));
- // vector4 = { b[W], b[X], b[Z], b[Y] }
- const LLQuad vector4 = _mm_shuffle_ps( b.mQ, b.mQ, _MM_SHUFFLE( 3, 0, 2, 1 ));
- // mQ = { 0, a[X]*b[Y] - a[Y]*b[X], a[Z]*b[X] - a[X]*b[Z], a[Y]*b[Z] - a[Z]*b[Y] }
- mQ = _mm_sub_ps( mQ, _mm_mul_ps( vector3, vector4 ));
- }
- /* This function works, but may be slightly slower than the one below on older machines
- inline void LLVector4a::setAllDot3(const LLVector4a& a, const LLVector4a& b)
- {
- // ab = { a[W]*b[W], a[Z]*b[Z], a[Y]*b[Y], a[X]*b[X] }
- const LLQuad ab = _mm_mul_ps( a.mQ, b.mQ );
- // yzxw = { a[W]*b[W], a[Z]*b[Z], a[X]*b[X], a[Y]*b[Y] }
- const LLQuad wzxy = _mm_shuffle_ps( ab, ab, _MM_SHUFFLE(3, 2, 0, 1 ));
- // xPlusY = { 2*a[W]*b[W], 2 * a[Z] * b[Z], a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y] }
- const LLQuad xPlusY = _mm_add_ps(ab, wzxy);
- // xPlusYSplat = { a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y], a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y] }
- const LLQuad xPlusYSplat = _mm_movelh_ps(xPlusY, xPlusY);
- // zSplat = { a[Z]*b[Z], a[Z]*b[Z], a[Z]*b[Z], a[Z]*b[Z] }
- const LLQuad zSplat = _mm_shuffle_ps( ab, ab, _MM_SHUFFLE( 2, 2, 2, 2 ));
- // mQ = { a[Z] * b[Z] + a[Y] * b[Y] + a[X] * b[X], same, same, same }
- mQ = _mm_add_ps(zSplat, xPlusYSplat);
- }*/
- // Set all elements to the dot product of the x, y, and z elements in a and b
- inline void LLVector4a::setAllDot3(const LLVector4a& a, const LLVector4a& b)
- {
- // ab = { a[W]*b[W], a[Z]*b[Z], a[Y]*b[Y], a[X]*b[X] }
- const LLQuad ab = _mm_mul_ps( a.mQ, b.mQ );
- // yzxw = { a[W]*b[W], a[Z]*b[Z], a[X]*b[X], a[Y]*b[Y] }
- const __m128i wzxy = _mm_shuffle_epi32(_mm_castps_si128(ab), _MM_SHUFFLE(3, 2, 0, 1 ));
- // xPlusY = { 2*a[W]*b[W], 2 * a[Z] * b[Z], a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y] }
- const LLQuad xPlusY = _mm_add_ps(ab, _mm_castsi128_ps(wzxy));
- // xPlusYSplat = { a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y], a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y] }
- const LLQuad xPlusYSplat = _mm_movelh_ps(xPlusY, xPlusY);
- // zSplat = { a[Z]*b[Z], a[Z]*b[Z], a[Z]*b[Z], a[Z]*b[Z] }
- const __m128i zSplat = _mm_shuffle_epi32(_mm_castps_si128(ab), _MM_SHUFFLE( 2, 2, 2, 2 ));
- // mQ = { a[Z] * b[Z] + a[Y] * b[Y] + a[X] * b[X], same, same, same }
- mQ = _mm_add_ps(_mm_castsi128_ps(zSplat), xPlusYSplat);
- }
- // Set all elements to the dot product of the x, y, z, and w elements in a and b
- inline void LLVector4a::setAllDot4(const LLVector4a& a, const LLVector4a& b)
- {
- // ab = { a[W]*b[W], a[Z]*b[Z], a[Y]*b[Y], a[X]*b[X] }
- const LLQuad ab = _mm_mul_ps( a.mQ, b.mQ );
- // yzxw = { a[W]*b[W], a[Z]*b[Z], a[X]*b[X], a[Y]*b[Y] }
- const __m128i zwxy = _mm_shuffle_epi32(_mm_castps_si128(ab), _MM_SHUFFLE(2, 3, 0, 1 ));
- // zPlusWandXplusY = { a[W]*b[W] + a[Z]*b[Z], a[Z] * b[Z] + a[W]*b[W], a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y] }
- const LLQuad zPlusWandXplusY = _mm_add_ps(ab, _mm_castsi128_ps(zwxy));
- // xPlusYSplat = { a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y], a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y] }
- const LLQuad xPlusYSplat = _mm_movelh_ps(zPlusWandXplusY, zPlusWandXplusY);
- const LLQuad zPlusWSplat = _mm_movehl_ps(zPlusWandXplusY, zPlusWandXplusY);
- // mQ = { a[W]*b[W] + a[Z] * b[Z] + a[Y] * b[Y] + a[X] * b[X], same, same, same }
- mQ = _mm_add_ps(xPlusYSplat, zPlusWSplat);
- }
- // Return the 3D dot product of this vector and b
- inline LLSimdScalar LLVector4a::dot3(const LLVector4a& b) const
- {
- const LLQuad ab = _mm_mul_ps( mQ, b.mQ );
- const LLQuad splatY = _mm_castsi128_ps( _mm_shuffle_epi32( _mm_castps_si128(ab), _MM_SHUFFLE(1, 1, 1, 1) ) );
- const LLQuad splatZ = _mm_castsi128_ps( _mm_shuffle_epi32( _mm_castps_si128(ab), _MM_SHUFFLE(2, 2, 2, 2) ) );
- const LLQuad xPlusY = _mm_add_ps( ab, splatY );
- return _mm_add_ps( xPlusY, splatZ );
- }
- // Return the 4D dot product of this vector and b
- inline LLSimdScalar LLVector4a::dot4(const LLVector4a& b) const
- {
- // ab = { w, z, y, x }
- const LLQuad ab = _mm_mul_ps( mQ, b.mQ );
- // upperProdsInLowerElems = { y, x, y, x }
- const LLQuad upperProdsInLowerElems = _mm_movehl_ps( ab, ab );
- // sumOfPairs = { w+y, z+x, 2y, 2x }
- const LLQuad sumOfPairs = _mm_add_ps( upperProdsInLowerElems, ab );
- // shuffled = { z+x, z+x, z+x, z+x }
- const LLQuad shuffled = _mm_castsi128_ps( _mm_shuffle_epi32( _mm_castps_si128( sumOfPairs ), _MM_SHUFFLE(1, 1, 1, 1) ) );
- return _mm_add_ss( sumOfPairs, shuffled );
- }
- // Normalize this vector with respect to the x, y, and z components only. Accurate to 22 bites of precision. W component is destroyed
- // Note that this does not consider zero length vectors!
- inline void LLVector4a::normalize3()
- {
- // lenSqrd = a dot a
- LLVector4a lenSqrd; lenSqrd.setAllDot3( *this, *this );
- // rsqrt = approximate reciprocal square (i.e., { ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2 }
- const LLQuad rsqrt = _mm_rsqrt_ps(lenSqrd.mQ);
- static const LLQuad half = { 0.5f, 0.5f, 0.5f, 0.5f };
- static const LLQuad three = {3.f, 3.f, 3.f, 3.f };
- // Now we do one round of Newton-Raphson approximation to get full accuracy
- // According to the Newton-Raphson method, given a first 'w' for the root of f(x) = 1/x^2 - a (i.e., x = 1/sqrt(a))
- // the next better approximation w[i+1] = w - f(w)/f'(w) = w - (1/w^2 - a)/(-2*w^(-3))
- // w[i+1] = w + 0.5 * (1/w^2 - a) * w^3 = w + 0.5 * (w - a*w^3) = 1.5 * w - 0.5 * a * w^3
- // = 0.5 * w * (3 - a*w^2)
- // Our first approx is w = rsqrt. We need out = a * w[i+1] (this is the input vector 'a', not the 'a' from the above formula
- // which is actually lenSqrd). So out = a * [0.5*rsqrt * (3 - lenSqrd*rsqrt*rsqrt)]
- const LLQuad AtimesRsqrt = _mm_mul_ps( lenSqrd.mQ, rsqrt );
- const LLQuad AtimesRsqrtTimesRsqrt = _mm_mul_ps( AtimesRsqrt, rsqrt );
- const LLQuad threeMinusAtimesRsqrtTimesRsqrt = _mm_sub_ps(three, AtimesRsqrtTimesRsqrt );
- const LLQuad nrApprox = _mm_mul_ps(half, _mm_mul_ps(rsqrt, threeMinusAtimesRsqrtTimesRsqrt));
- mQ = _mm_mul_ps( mQ, nrApprox );
- }
- // Normalize this vector with respect to all components. Accurate to 22 bites of precision.
- // Note that this does not consider zero length vectors!
- inline void LLVector4a::normalize4()
- {
- // lenSqrd = a dot a
- LLVector4a lenSqrd; lenSqrd.setAllDot4( *this, *this );
- // rsqrt = approximate reciprocal square (i.e., { ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2 }
- const LLQuad rsqrt = _mm_rsqrt_ps(lenSqrd.mQ);
- static const LLQuad half = { 0.5f, 0.5f, 0.5f, 0.5f };
- static const LLQuad three = {3.f, 3.f, 3.f, 3.f };
- // Now we do one round of Newton-Raphson approximation to get full accuracy
- // According to the Newton-Raphson method, given a first 'w' for the root of f(x) = 1/x^2 - a (i.e., x = 1/sqrt(a))
- // the next better approximation w[i+1] = w - f(w)/f'(w) = w - (1/w^2 - a)/(-2*w^(-3))
- // w[i+1] = w + 0.5 * (1/w^2 - a) * w^3 = w + 0.5 * (w - a*w^3) = 1.5 * w - 0.5 * a * w^3
- // = 0.5 * w * (3 - a*w^2)
- // Our first approx is w = rsqrt. We need out = a * w[i+1] (this is the input vector 'a', not the 'a' from the above formula
- // which is actually lenSqrd). So out = a * [0.5*rsqrt * (3 - lenSqrd*rsqrt*rsqrt)]
- const LLQuad AtimesRsqrt = _mm_mul_ps( lenSqrd.mQ, rsqrt );
- const LLQuad AtimesRsqrtTimesRsqrt = _mm_mul_ps( AtimesRsqrt, rsqrt );
- const LLQuad threeMinusAtimesRsqrtTimesRsqrt = _mm_sub_ps(three, AtimesRsqrtTimesRsqrt );
- const LLQuad nrApprox = _mm_mul_ps(half, _mm_mul_ps(rsqrt, threeMinusAtimesRsqrtTimesRsqrt));
- mQ = _mm_mul_ps( mQ, nrApprox );
- }
- // Normalize this vector with respect to the x, y, and z components only. Accurate to 22 bites of precision. W component is destroyed
- // Note that this does not consider zero length vectors!
- inline LLSimdScalar LLVector4a::normalize3withLength()
- {
- // lenSqrd = a dot a
- LLVector4a lenSqrd; lenSqrd.setAllDot3( *this, *this );
- // rsqrt = approximate reciprocal square (i.e., { ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2 }
- const LLQuad rsqrt = _mm_rsqrt_ps(lenSqrd.mQ);
- static const LLQuad half = { 0.5f, 0.5f, 0.5f, 0.5f };
- static const LLQuad three = {3.f, 3.f, 3.f, 3.f };
- // Now we do one round of Newton-Raphson approximation to get full accuracy
- // According to the Newton-Raphson method, given a first 'w' for the root of f(x) = 1/x^2 - a (i.e., x = 1/sqrt(a))
- // the next better approximation w[i+1] = w - f(w)/f'(w) = w - (1/w^2 - a)/(-2*w^(-3))
- // w[i+1] = w + 0.5 * (1/w^2 - a) * w^3 = w + 0.5 * (w - a*w^3) = 1.5 * w - 0.5 * a * w^3
- // = 0.5 * w * (3 - a*w^2)
- // Our first approx is w = rsqrt. We need out = a * w[i+1] (this is the input vector 'a', not the 'a' from the above formula
- // which is actually lenSqrd). So out = a * [0.5*rsqrt * (3 - lenSqrd*rsqrt*rsqrt)]
- const LLQuad AtimesRsqrt = _mm_mul_ps( lenSqrd.mQ, rsqrt );
- const LLQuad AtimesRsqrtTimesRsqrt = _mm_mul_ps( AtimesRsqrt, rsqrt );
- const LLQuad threeMinusAtimesRsqrtTimesRsqrt = _mm_sub_ps(three, AtimesRsqrtTimesRsqrt );
- const LLQuad nrApprox = _mm_mul_ps(half, _mm_mul_ps(rsqrt, threeMinusAtimesRsqrtTimesRsqrt));
- mQ = _mm_mul_ps( mQ, nrApprox );
- return _mm_sqrt_ss(lenSqrd);
- }
- // Normalize this vector with respect to the x, y, and z components only. Accurate only to 10-12 bits of precision. W component is destroyed
- // Note that this does not consider zero length vectors!
- inline void LLVector4a::normalize3fast()
- {
- LLVector4a lenSqrd; lenSqrd.setAllDot3( *this, *this );
- const LLQuad approxRsqrt = _mm_rsqrt_ps(lenSqrd.mQ);
- mQ = _mm_mul_ps( mQ, approxRsqrt );
- }
- // Return true if this vector is normalized with respect to x,y,z up to tolerance
- inline LLBool32 LLVector4a::isNormalized3( F32 tolerance ) const
- {
- static LL_ALIGN_16(const U32 ones[4]) = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 };
- LLSimdScalar tol = _mm_load_ss( &tolerance );
- tol = _mm_mul_ss( tol, tol );
- LLVector4a lenSquared; lenSquared.setAllDot3( *this, *this );
- lenSquared.sub( *reinterpret_cast<const LLVector4a*>(ones) );
- lenSquared.setAbs(lenSquared);
- return _mm_comile_ss( lenSquared, tol );
- }
- // Return true if this vector is normalized with respect to all components up to tolerance
- inline LLBool32 LLVector4a::isNormalized4( F32 tolerance ) const
- {
- static LL_ALIGN_16(const U32 ones[4]) = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 };
- LLSimdScalar tol = _mm_load_ss( &tolerance );
- tol = _mm_mul_ss( tol, tol );
- LLVector4a lenSquared; lenSquared.setAllDot4( *this, *this );
- lenSquared.sub( *reinterpret_cast<const LLVector4a*>(ones) );
- lenSquared.setAbs(lenSquared);
- return _mm_comile_ss( lenSquared, tol );
- }
- // Set all elements to the length of vector 'v'
- inline void LLVector4a::setAllLength3( const LLVector4a& v )
- {
- LLVector4a lenSqrd;
- lenSqrd.setAllDot3(v, v);
-
- mQ = _mm_sqrt_ps(lenSqrd.mQ);
- }
- // Get this vector's length
- inline LLSimdScalar LLVector4a::getLength3() const
- {
- return _mm_sqrt_ss( dot3( (const LLVector4a)mQ ) );
- }
- // Set the components of this vector to the minimum of the corresponding components of lhs and rhs
- inline void LLVector4a::setMin(const LLVector4a& lhs, const LLVector4a& rhs)
- {
- mQ = _mm_min_ps(lhs.mQ, rhs.mQ);
- }
- // Set the components of this vector to the maximum of the corresponding components of lhs and rhs
- inline void LLVector4a::setMax(const LLVector4a& lhs, const LLVector4a& rhs)
- {
- mQ = _mm_max_ps(lhs.mQ, rhs.mQ);
- }
- // Set this to (c * lhs) + rhs * ( 1 - c)
- inline void LLVector4a::setLerp(const LLVector4a& lhs, const LLVector4a& rhs, F32 c)
- {
- LLVector4a a = lhs;
- a.mul(c);
-
- LLVector4a b = rhs;
- b.mul(1.f-c);
-
- setAdd(a, b);
- }
- inline LLBool32 LLVector4a::isFinite3() const
- {
- static LL_ALIGN_16(const U32 nanOrInfMask[4]) = { 0x7f800000, 0x7f800000, 0x7f800000, 0x7f800000 };
- const __m128i nanOrInfMaskV = *reinterpret_cast<const __m128i*> (nanOrInfMask);
- const __m128i maskResult = _mm_and_si128( _mm_castps_si128(mQ), nanOrInfMaskV );
- const LLVector4Logical equalityCheck = _mm_castsi128_ps(_mm_cmpeq_epi32( maskResult, nanOrInfMaskV ));
- return !equalityCheck.areAnySet( LLVector4Logical::MASK_XYZ );
- }
-
- inline LLBool32 LLVector4a::isFinite4() const
- {
- static LL_ALIGN_16(const U32 nanOrInfMask[4]) = { 0x7f800000, 0x7f800000, 0x7f800000, 0x7f800000 };
- const __m128i nanOrInfMaskV = *reinterpret_cast<const __m128i*> (nanOrInfMask);
- const __m128i maskResult = _mm_and_si128( _mm_castps_si128(mQ), nanOrInfMaskV );
- const LLVector4Logical equalityCheck = _mm_castsi128_ps(_mm_cmpeq_epi32( maskResult, nanOrInfMaskV ));
- return !equalityCheck.areAnySet( LLVector4Logical::MASK_XYZW );
- }
- inline void LLVector4a::setRotatedInv( const LLRotation& rot, const LLVector4a& vec )
- {
- LLRotation inv; inv.setTranspose( rot );
- setRotated( inv, vec );
- }
- inline void LLVector4a::setRotatedInv( const LLQuaternion2& quat, const LLVector4a& vec )
- {
- LLQuaternion2 invRot; invRot.setConjugate( quat );
- setRotated(invRot, vec);
- }
- inline void LLVector4a::clamp( const LLVector4a& low, const LLVector4a& high )
- {
- const LLVector4Logical highMask = greaterThan( high );
- const LLVector4Logical lowMask = lessThan( low );
- setSelectWithMask( highMask, high, *this );
- setSelectWithMask( lowMask, low, *this );
- }
- ////////////////////////////////////
- // LOGICAL
- ////////////////////////////////////
- // The functions in this section will compare the elements in this vector
- // to those in rhs and return an LLVector4Logical with all bits set in elements
- // where the comparison was true and all bits unset in elements where the comparison
- // was false. See llvector4logica.h
- ////////////////////////////////////
- // WARNING: Other than equals3 and equals4, these functions do NOT account
- // for floating point tolerance. You should include the appropriate tolerance
- // in the inputs.
- ////////////////////////////////////
- inline LLVector4Logical LLVector4a::greaterThan(const LLVector4a& rhs) const
- {
- return _mm_cmpgt_ps(mQ, rhs.mQ);
- }
- inline LLVector4Logical LLVector4a::lessThan(const LLVector4a& rhs) const
- {
- return _mm_cmplt_ps(mQ, rhs.mQ);
- }
- inline LLVector4Logical LLVector4a::greaterEqual(const LLVector4a& rhs) const
- {
- return _mm_cmpge_ps(mQ, rhs.mQ);
- }
- inline LLVector4Logical LLVector4a::lessEqual(const LLVector4a& rhs) const
- {
- return _mm_cmple_ps(mQ, rhs.mQ);
- }
- inline LLVector4Logical LLVector4a::equal(const LLVector4a& rhs) const
- {
- return _mm_cmpeq_ps(mQ, rhs.mQ);
- }
- // Returns true if this and rhs are componentwise equal up to the specified absolute tolerance
- inline bool LLVector4a::equals4(const LLVector4a& rhs, F32 tolerance ) const
- {
- LLVector4a diff; diff.setSub( *this, rhs );
- diff.setAbs( diff );
- const LLQuad tol = _mm_set1_ps( tolerance );
- const LLQuad cmp = _mm_cmplt_ps( diff, tol );
- return (_mm_movemask_ps( cmp ) & LLVector4Logical::MASK_XYZW) == LLVector4Logical::MASK_XYZW;
- }
- inline bool LLVector4a::equals3(const LLVector4a& rhs, F32 tolerance ) const
- {
- LLVector4a diff; diff.setSub( *this, rhs );
- diff.setAbs( diff );
- const LLQuad tol = _mm_set1_ps( tolerance );
- const LLQuad t = _mm_cmplt_ps( diff, tol );
- return (_mm_movemask_ps( t ) & LLVector4Logical::MASK_XYZ) == LLVector4Logical::MASK_XYZ;
-
- }
- ////////////////////////////////////
- // OPERATORS
- ////////////////////////////////////
- // Do NOT add aditional operators without consulting someone with SSE experience
- inline const LLVector4a& LLVector4a::operator= ( const LLVector4a& rhs )
- {
- mQ = rhs.mQ;
- return *this;
- }
- inline const LLVector4a& LLVector4a::operator= ( const LLQuad& rhs )
- {
- mQ = rhs;
- return *this;
- }
- inline LLVector4a::operator LLQuad() const
- {
- return mQ;
- }