#### /indra/llmath/v2math.cpp

https://bitbucket.org/lindenlab/viewer-beta/
C++ | 126 lines | 76 code | 20 blank | 30 comment | 3 complexity | 89109fcf64fea7eee0b46a5511af5f8f MD5 | raw file
``````
/**
* @file v2math.cpp
* @brief LLVector2 class implementation.
*
* Second Life Viewer Source Code
* Copyright (C) 2010, Linden Research, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* version 2.1 of the License only.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
*
* Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA
*/

#include "linden_common.h"

//#include "vmath.h"
#include "v2math.h"
#include "v3math.h"
#include "v4math.h"
#include "m4math.h"
#include "m3math.h"
#include "llquaternion.h"

// LLVector2

LLVector2 LLVector2::zero(0,0);

// Non-member functions

// Sets all values to absolute value of their original values
// Returns TRUE if data changed
BOOL LLVector2::abs()
{
BOOL ret = FALSE;

if (mV[0] < 0.f) { mV[0] = -mV[0]; ret = TRUE; }
if (mV[1] < 0.f) { mV[1] = -mV[1]; ret = TRUE; }

return ret;
}

F32 angle_between(const LLVector2& a, const LLVector2& b)
{
LLVector2 an = a;
LLVector2 bn = b;
an.normVec();
bn.normVec();
F32 cosine = an * bn;
F32 angle = (cosine >= 1.0f) ? 0.0f :
(cosine <= -1.0f) ? F_PI :
acos(cosine);
return angle;
}

BOOL are_parallel(const LLVector2 &a, const LLVector2 &b, float epsilon)
{
LLVector2 an = a;
LLVector2 bn = b;
an.normVec();
bn.normVec();
F32 dot = an * bn;
if ( (1.0f - fabs(dot)) < epsilon)
{
return TRUE;
}
return FALSE;
}

F32	dist_vec(const LLVector2 &a, const LLVector2 &b)
{
F32 x = a.mV[0] - b.mV[0];
F32 y = a.mV[1] - b.mV[1];
return (F32) sqrt( x*x + y*y );
}

F32	dist_vec_squared(const LLVector2 &a, const LLVector2 &b)
{
F32 x = a.mV[0] - b.mV[0];
F32 y = a.mV[1] - b.mV[1];
return x*x + y*y;
}

F32	dist_vec_squared2D(const LLVector2 &a, const LLVector2 &b)
{
F32 x = a.mV[0] - b.mV[0];
F32 y = a.mV[1] - b.mV[1];
return x*x + y*y;
}

LLVector2 lerp(const LLVector2 &a, const LLVector2 &b, F32 u)
{
return LLVector2(
a.mV[VX] + (b.mV[VX] - a.mV[VX]) * u,
a.mV[VY] + (b.mV[VY] - a.mV[VY]) * u );
}

LLSD LLVector2::getValue() const
{
LLSD ret;
ret[0] = mV[0];
ret[1] = mV[1];
return ret;
}

void LLVector2::setValue(LLSD& sd)
{
mV[0] = (F32) sd[0].asReal();
mV[1] = (F32) sd[1].asReal();
}

``````