PageRenderTime 50ms CodeModel.GetById 14ms RepoModel.GetById 1ms app.codeStats 0ms

/security/security.c

https://gitlab.com/LiquidSmooth-Devices/android_kernel_htc_msm8974
C | 1310 lines | 1067 code | 231 blank | 12 comment | 56 complexity | 4f3466fa9dcee4897ca4698ee3d56f1f MD5 | raw file
Possible License(s): GPL-2.0
  1. /*
  2. * Security plug functions
  3. *
  4. * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
  5. * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
  6. * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. */
  13. #include <linux/capability.h>
  14. #include <linux/module.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/security.h>
  18. #include <linux/integrity.h>
  19. #include <linux/ima.h>
  20. #include <linux/evm.h>
  21. #include <linux/fsnotify.h>
  22. #include <net/flow.h>
  23. #define MAX_LSM_EVM_XATTR 2
  24. static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  25. CONFIG_DEFAULT_SECURITY;
  26. static struct security_operations *security_ops;
  27. static struct security_operations default_security_ops = {
  28. .name = "default",
  29. };
  30. static inline int __init verify(struct security_operations *ops)
  31. {
  32. if (!ops)
  33. return -EINVAL;
  34. security_fixup_ops(ops);
  35. return 0;
  36. }
  37. static void __init do_security_initcalls(void)
  38. {
  39. initcall_t *call;
  40. call = __security_initcall_start;
  41. while (call < __security_initcall_end) {
  42. (*call) ();
  43. call++;
  44. }
  45. }
  46. int __init security_init(void)
  47. {
  48. printk(KERN_INFO "Security Framework initialized\n");
  49. security_fixup_ops(&default_security_ops);
  50. security_ops = &default_security_ops;
  51. do_security_initcalls();
  52. return 0;
  53. }
  54. void reset_security_ops(void)
  55. {
  56. security_ops = &default_security_ops;
  57. }
  58. static int __init choose_lsm(char *str)
  59. {
  60. strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  61. return 1;
  62. }
  63. __setup("security=", choose_lsm);
  64. int __init security_module_enable(struct security_operations *ops)
  65. {
  66. return !strcmp(ops->name, chosen_lsm);
  67. }
  68. int __init register_security(struct security_operations *ops)
  69. {
  70. if (verify(ops)) {
  71. printk(KERN_DEBUG "%s could not verify "
  72. "security_operations structure.\n", __func__);
  73. return -EINVAL;
  74. }
  75. if (security_ops != &default_security_ops)
  76. return -EAGAIN;
  77. security_ops = ops;
  78. return 0;
  79. }
  80. int security_binder_set_context_mgr(struct task_struct *mgr)
  81. {
  82. return security_ops->binder_set_context_mgr(mgr);
  83. }
  84. int security_binder_transaction(struct task_struct *from, struct task_struct *to)
  85. {
  86. return security_ops->binder_transaction(from, to);
  87. }
  88. int security_binder_transfer_binder(struct task_struct *from, struct task_struct *to)
  89. {
  90. return security_ops->binder_transfer_binder(from, to);
  91. }
  92. int security_binder_transfer_file(struct task_struct *from, struct task_struct *to, struct file *file)
  93. {
  94. return security_ops->binder_transfer_file(from, to, file);
  95. }
  96. int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
  97. {
  98. return security_ops->ptrace_access_check(child, mode);
  99. }
  100. int security_ptrace_traceme(struct task_struct *parent)
  101. {
  102. return security_ops->ptrace_traceme(parent);
  103. }
  104. int security_capget(struct task_struct *target,
  105. kernel_cap_t *effective,
  106. kernel_cap_t *inheritable,
  107. kernel_cap_t *permitted)
  108. {
  109. return security_ops->capget(target, effective, inheritable, permitted);
  110. }
  111. int security_capset(struct cred *new, const struct cred *old,
  112. const kernel_cap_t *effective,
  113. const kernel_cap_t *inheritable,
  114. const kernel_cap_t *permitted)
  115. {
  116. return security_ops->capset(new, old,
  117. effective, inheritable, permitted);
  118. }
  119. int security_capable(const struct cred *cred, struct user_namespace *ns,
  120. int cap)
  121. {
  122. return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
  123. }
  124. int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
  125. int cap)
  126. {
  127. return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
  128. }
  129. int security_quotactl(int cmds, int type, int id, struct super_block *sb)
  130. {
  131. return security_ops->quotactl(cmds, type, id, sb);
  132. }
  133. int security_quota_on(struct dentry *dentry)
  134. {
  135. return security_ops->quota_on(dentry);
  136. }
  137. int security_syslog(int type)
  138. {
  139. return security_ops->syslog(type);
  140. }
  141. int security_settime(const struct timespec *ts, const struct timezone *tz)
  142. {
  143. return security_ops->settime(ts, tz);
  144. }
  145. int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
  146. {
  147. return security_ops->vm_enough_memory(mm, pages);
  148. }
  149. int security_bprm_set_creds(struct linux_binprm *bprm)
  150. {
  151. return security_ops->bprm_set_creds(bprm);
  152. }
  153. int security_bprm_check(struct linux_binprm *bprm)
  154. {
  155. int ret;
  156. ret = security_ops->bprm_check_security(bprm);
  157. if (ret)
  158. return ret;
  159. return ima_bprm_check(bprm);
  160. }
  161. void security_bprm_committing_creds(struct linux_binprm *bprm)
  162. {
  163. security_ops->bprm_committing_creds(bprm);
  164. }
  165. void security_bprm_committed_creds(struct linux_binprm *bprm)
  166. {
  167. security_ops->bprm_committed_creds(bprm);
  168. }
  169. int security_bprm_secureexec(struct linux_binprm *bprm)
  170. {
  171. return security_ops->bprm_secureexec(bprm);
  172. }
  173. int security_sb_alloc(struct super_block *sb)
  174. {
  175. return security_ops->sb_alloc_security(sb);
  176. }
  177. void security_sb_free(struct super_block *sb)
  178. {
  179. security_ops->sb_free_security(sb);
  180. }
  181. int security_sb_copy_data(char *orig, char *copy)
  182. {
  183. return security_ops->sb_copy_data(orig, copy);
  184. }
  185. EXPORT_SYMBOL(security_sb_copy_data);
  186. int security_sb_remount(struct super_block *sb, void *data)
  187. {
  188. return security_ops->sb_remount(sb, data);
  189. }
  190. int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
  191. {
  192. return security_ops->sb_kern_mount(sb, flags, data);
  193. }
  194. int security_sb_show_options(struct seq_file *m, struct super_block *sb)
  195. {
  196. return security_ops->sb_show_options(m, sb);
  197. }
  198. int security_sb_statfs(struct dentry *dentry)
  199. {
  200. return security_ops->sb_statfs(dentry);
  201. }
  202. int security_sb_mount(char *dev_name, struct path *path,
  203. char *type, unsigned long flags, void *data)
  204. {
  205. return security_ops->sb_mount(dev_name, path, type, flags, data);
  206. }
  207. int security_sb_umount(struct vfsmount *mnt, int flags)
  208. {
  209. return security_ops->sb_umount(mnt, flags);
  210. }
  211. int security_sb_pivotroot(struct path *old_path, struct path *new_path)
  212. {
  213. return security_ops->sb_pivotroot(old_path, new_path);
  214. }
  215. int security_sb_set_mnt_opts(struct super_block *sb,
  216. struct security_mnt_opts *opts)
  217. {
  218. return security_ops->sb_set_mnt_opts(sb, opts);
  219. }
  220. EXPORT_SYMBOL(security_sb_set_mnt_opts);
  221. void security_sb_clone_mnt_opts(const struct super_block *oldsb,
  222. struct super_block *newsb)
  223. {
  224. security_ops->sb_clone_mnt_opts(oldsb, newsb);
  225. }
  226. EXPORT_SYMBOL(security_sb_clone_mnt_opts);
  227. int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
  228. {
  229. return security_ops->sb_parse_opts_str(options, opts);
  230. }
  231. EXPORT_SYMBOL(security_sb_parse_opts_str);
  232. int security_inode_alloc(struct inode *inode)
  233. {
  234. inode->i_security = NULL;
  235. return security_ops->inode_alloc_security(inode);
  236. }
  237. void security_inode_free(struct inode *inode)
  238. {
  239. integrity_inode_free(inode);
  240. security_ops->inode_free_security(inode);
  241. }
  242. int security_inode_init_security(struct inode *inode, struct inode *dir,
  243. const struct qstr *qstr,
  244. const initxattrs initxattrs, void *fs_data)
  245. {
  246. struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
  247. struct xattr *lsm_xattr, *evm_xattr, *xattr;
  248. int ret;
  249. if (unlikely(IS_PRIVATE(inode)))
  250. return 0;
  251. memset(new_xattrs, 0, sizeof new_xattrs);
  252. if (!initxattrs)
  253. return security_ops->inode_init_security(inode, dir, qstr,
  254. NULL, NULL, NULL);
  255. lsm_xattr = new_xattrs;
  256. ret = security_ops->inode_init_security(inode, dir, qstr,
  257. &lsm_xattr->name,
  258. &lsm_xattr->value,
  259. &lsm_xattr->value_len);
  260. if (ret)
  261. goto out;
  262. evm_xattr = lsm_xattr + 1;
  263. ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
  264. if (ret)
  265. goto out;
  266. ret = initxattrs(inode, new_xattrs, fs_data);
  267. out:
  268. for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
  269. kfree(xattr->name);
  270. kfree(xattr->value);
  271. }
  272. return (ret == -EOPNOTSUPP) ? 0 : ret;
  273. }
  274. EXPORT_SYMBOL(security_inode_init_security);
  275. int security_old_inode_init_security(struct inode *inode, struct inode *dir,
  276. const struct qstr *qstr, char **name,
  277. void **value, size_t *len)
  278. {
  279. if (unlikely(IS_PRIVATE(inode)))
  280. return -EOPNOTSUPP;
  281. return security_ops->inode_init_security(inode, dir, qstr, name, value,
  282. len);
  283. }
  284. EXPORT_SYMBOL(security_old_inode_init_security);
  285. #ifdef CONFIG_SECURITY_PATH
  286. int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
  287. unsigned int dev)
  288. {
  289. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  290. return 0;
  291. return security_ops->path_mknod(dir, dentry, mode, dev);
  292. }
  293. EXPORT_SYMBOL(security_path_mknod);
  294. int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
  295. {
  296. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  297. return 0;
  298. return security_ops->path_mkdir(dir, dentry, mode);
  299. }
  300. EXPORT_SYMBOL(security_path_mkdir);
  301. int security_path_rmdir(struct path *dir, struct dentry *dentry)
  302. {
  303. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  304. return 0;
  305. return security_ops->path_rmdir(dir, dentry);
  306. }
  307. int security_path_unlink(struct path *dir, struct dentry *dentry)
  308. {
  309. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  310. return 0;
  311. return security_ops->path_unlink(dir, dentry);
  312. }
  313. EXPORT_SYMBOL(security_path_unlink);
  314. int security_path_symlink(struct path *dir, struct dentry *dentry,
  315. const char *old_name)
  316. {
  317. if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
  318. return 0;
  319. return security_ops->path_symlink(dir, dentry, old_name);
  320. }
  321. int security_path_link(struct dentry *old_dentry, struct path *new_dir,
  322. struct dentry *new_dentry)
  323. {
  324. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  325. return 0;
  326. return security_ops->path_link(old_dentry, new_dir, new_dentry);
  327. }
  328. int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
  329. struct path *new_dir, struct dentry *new_dentry)
  330. {
  331. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  332. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  333. return 0;
  334. return security_ops->path_rename(old_dir, old_dentry, new_dir,
  335. new_dentry);
  336. }
  337. EXPORT_SYMBOL(security_path_rename);
  338. int security_path_truncate(struct path *path)
  339. {
  340. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  341. return 0;
  342. return security_ops->path_truncate(path);
  343. }
  344. int security_path_chmod(struct path *path, umode_t mode)
  345. {
  346. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  347. return 0;
  348. return security_ops->path_chmod(path, mode);
  349. }
  350. int security_path_chown(struct path *path, uid_t uid, gid_t gid)
  351. {
  352. if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
  353. return 0;
  354. return security_ops->path_chown(path, uid, gid);
  355. }
  356. int security_path_chroot(struct path *path)
  357. {
  358. return security_ops->path_chroot(path);
  359. }
  360. #endif
  361. int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
  362. {
  363. if (unlikely(IS_PRIVATE(dir)))
  364. return 0;
  365. return security_ops->inode_create(dir, dentry, mode);
  366. }
  367. EXPORT_SYMBOL_GPL(security_inode_create);
  368. int security_inode_link(struct dentry *old_dentry, struct inode *dir,
  369. struct dentry *new_dentry)
  370. {
  371. if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
  372. return 0;
  373. return security_ops->inode_link(old_dentry, dir, new_dentry);
  374. }
  375. int security_inode_unlink(struct inode *dir, struct dentry *dentry)
  376. {
  377. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  378. return 0;
  379. return security_ops->inode_unlink(dir, dentry);
  380. }
  381. int security_inode_symlink(struct inode *dir, struct dentry *dentry,
  382. const char *old_name)
  383. {
  384. if (unlikely(IS_PRIVATE(dir)))
  385. return 0;
  386. return security_ops->inode_symlink(dir, dentry, old_name);
  387. }
  388. int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
  389. {
  390. if (unlikely(IS_PRIVATE(dir)))
  391. return 0;
  392. return security_ops->inode_mkdir(dir, dentry, mode);
  393. }
  394. EXPORT_SYMBOL_GPL(security_inode_mkdir);
  395. int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
  396. {
  397. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  398. return 0;
  399. return security_ops->inode_rmdir(dir, dentry);
  400. }
  401. int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
  402. {
  403. if (unlikely(IS_PRIVATE(dir)))
  404. return 0;
  405. return security_ops->inode_mknod(dir, dentry, mode, dev);
  406. }
  407. int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
  408. struct inode *new_dir, struct dentry *new_dentry)
  409. {
  410. if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
  411. (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
  412. return 0;
  413. return security_ops->inode_rename(old_dir, old_dentry,
  414. new_dir, new_dentry);
  415. }
  416. int security_inode_readlink(struct dentry *dentry)
  417. {
  418. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  419. return 0;
  420. return security_ops->inode_readlink(dentry);
  421. }
  422. int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
  423. {
  424. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  425. return 0;
  426. return security_ops->inode_follow_link(dentry, nd);
  427. }
  428. int security_inode_permission(struct inode *inode, int mask)
  429. {
  430. if (unlikely(IS_PRIVATE(inode)))
  431. return 0;
  432. return security_ops->inode_permission(inode, mask);
  433. }
  434. int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
  435. {
  436. int ret;
  437. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  438. return 0;
  439. ret = security_ops->inode_setattr(dentry, attr);
  440. if (ret)
  441. return ret;
  442. return evm_inode_setattr(dentry, attr);
  443. }
  444. EXPORT_SYMBOL_GPL(security_inode_setattr);
  445. int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
  446. {
  447. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  448. return 0;
  449. return security_ops->inode_getattr(mnt, dentry);
  450. }
  451. int security_inode_setxattr(struct dentry *dentry, const char *name,
  452. const void *value, size_t size, int flags)
  453. {
  454. int ret;
  455. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  456. return 0;
  457. ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
  458. if (ret)
  459. return ret;
  460. return evm_inode_setxattr(dentry, name, value, size);
  461. }
  462. void security_inode_post_setxattr(struct dentry *dentry, const char *name,
  463. const void *value, size_t size, int flags)
  464. {
  465. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  466. return;
  467. security_ops->inode_post_setxattr(dentry, name, value, size, flags);
  468. evm_inode_post_setxattr(dentry, name, value, size);
  469. }
  470. int security_inode_getxattr(struct dentry *dentry, const char *name)
  471. {
  472. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  473. return 0;
  474. return security_ops->inode_getxattr(dentry, name);
  475. }
  476. int security_inode_listxattr(struct dentry *dentry)
  477. {
  478. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  479. return 0;
  480. return security_ops->inode_listxattr(dentry);
  481. }
  482. int security_inode_removexattr(struct dentry *dentry, const char *name)
  483. {
  484. int ret;
  485. if (unlikely(IS_PRIVATE(dentry->d_inode)))
  486. return 0;
  487. ret = security_ops->inode_removexattr(dentry, name);
  488. if (ret)
  489. return ret;
  490. return evm_inode_removexattr(dentry, name);
  491. }
  492. int security_inode_need_killpriv(struct dentry *dentry)
  493. {
  494. return security_ops->inode_need_killpriv(dentry);
  495. }
  496. int security_inode_killpriv(struct dentry *dentry)
  497. {
  498. return security_ops->inode_killpriv(dentry);
  499. }
  500. int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
  501. {
  502. if (unlikely(IS_PRIVATE(inode)))
  503. return -EOPNOTSUPP;
  504. return security_ops->inode_getsecurity(inode, name, buffer, alloc);
  505. }
  506. int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
  507. {
  508. if (unlikely(IS_PRIVATE(inode)))
  509. return -EOPNOTSUPP;
  510. return security_ops->inode_setsecurity(inode, name, value, size, flags);
  511. }
  512. int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
  513. {
  514. if (unlikely(IS_PRIVATE(inode)))
  515. return 0;
  516. return security_ops->inode_listsecurity(inode, buffer, buffer_size);
  517. }
  518. void security_inode_getsecid(const struct inode *inode, u32 *secid)
  519. {
  520. security_ops->inode_getsecid(inode, secid);
  521. }
  522. int security_file_permission(struct file *file, int mask)
  523. {
  524. int ret;
  525. ret = security_ops->file_permission(file, mask);
  526. if (ret)
  527. return ret;
  528. return fsnotify_perm(file, mask);
  529. }
  530. int security_file_alloc(struct file *file)
  531. {
  532. return security_ops->file_alloc_security(file);
  533. }
  534. void security_file_free(struct file *file)
  535. {
  536. security_ops->file_free_security(file);
  537. }
  538. int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  539. {
  540. return security_ops->file_ioctl(file, cmd, arg);
  541. }
  542. int security_file_mmap(struct file *file, unsigned long reqprot,
  543. unsigned long prot, unsigned long flags,
  544. unsigned long addr, unsigned long addr_only)
  545. {
  546. int ret;
  547. ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
  548. if (ret)
  549. return ret;
  550. return ima_file_mmap(file, prot);
  551. }
  552. int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
  553. unsigned long prot)
  554. {
  555. return security_ops->file_mprotect(vma, reqprot, prot);
  556. }
  557. int security_file_lock(struct file *file, unsigned int cmd)
  558. {
  559. return security_ops->file_lock(file, cmd);
  560. }
  561. int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
  562. {
  563. return security_ops->file_fcntl(file, cmd, arg);
  564. }
  565. int security_file_set_fowner(struct file *file)
  566. {
  567. return security_ops->file_set_fowner(file);
  568. }
  569. int security_file_send_sigiotask(struct task_struct *tsk,
  570. struct fown_struct *fown, int sig)
  571. {
  572. return security_ops->file_send_sigiotask(tsk, fown, sig);
  573. }
  574. int security_file_receive(struct file *file)
  575. {
  576. return security_ops->file_receive(file);
  577. }
  578. int security_dentry_open(struct file *file, const struct cred *cred)
  579. {
  580. int ret;
  581. ret = security_ops->dentry_open(file, cred);
  582. if (ret)
  583. return ret;
  584. return fsnotify_perm(file, MAY_OPEN);
  585. }
  586. int security_task_create(unsigned long clone_flags)
  587. {
  588. return security_ops->task_create(clone_flags);
  589. }
  590. void security_task_free(struct task_struct *task)
  591. {
  592. security_ops->task_free(task);
  593. }
  594. int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
  595. {
  596. return security_ops->cred_alloc_blank(cred, gfp);
  597. }
  598. void security_cred_free(struct cred *cred)
  599. {
  600. security_ops->cred_free(cred);
  601. }
  602. int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
  603. {
  604. return security_ops->cred_prepare(new, old, gfp);
  605. }
  606. void security_transfer_creds(struct cred *new, const struct cred *old)
  607. {
  608. security_ops->cred_transfer(new, old);
  609. }
  610. int security_kernel_act_as(struct cred *new, u32 secid)
  611. {
  612. return security_ops->kernel_act_as(new, secid);
  613. }
  614. int security_kernel_create_files_as(struct cred *new, struct inode *inode)
  615. {
  616. return security_ops->kernel_create_files_as(new, inode);
  617. }
  618. int security_kernel_module_request(char *kmod_name)
  619. {
  620. return security_ops->kernel_module_request(kmod_name);
  621. }
  622. int security_task_fix_setuid(struct cred *new, const struct cred *old,
  623. int flags)
  624. {
  625. return security_ops->task_fix_setuid(new, old, flags);
  626. }
  627. int security_task_setpgid(struct task_struct *p, pid_t pgid)
  628. {
  629. return security_ops->task_setpgid(p, pgid);
  630. }
  631. int security_task_getpgid(struct task_struct *p)
  632. {
  633. return security_ops->task_getpgid(p);
  634. }
  635. int security_task_getsid(struct task_struct *p)
  636. {
  637. return security_ops->task_getsid(p);
  638. }
  639. void security_task_getsecid(struct task_struct *p, u32 *secid)
  640. {
  641. security_ops->task_getsecid(p, secid);
  642. }
  643. EXPORT_SYMBOL(security_task_getsecid);
  644. int security_task_setnice(struct task_struct *p, int nice)
  645. {
  646. return security_ops->task_setnice(p, nice);
  647. }
  648. int security_task_setioprio(struct task_struct *p, int ioprio)
  649. {
  650. return security_ops->task_setioprio(p, ioprio);
  651. }
  652. int security_task_getioprio(struct task_struct *p)
  653. {
  654. return security_ops->task_getioprio(p);
  655. }
  656. int security_task_setrlimit(struct task_struct *p, unsigned int resource,
  657. struct rlimit *new_rlim)
  658. {
  659. return security_ops->task_setrlimit(p, resource, new_rlim);
  660. }
  661. int security_task_setscheduler(struct task_struct *p)
  662. {
  663. return security_ops->task_setscheduler(p);
  664. }
  665. int security_task_getscheduler(struct task_struct *p)
  666. {
  667. return security_ops->task_getscheduler(p);
  668. }
  669. int security_task_movememory(struct task_struct *p)
  670. {
  671. return security_ops->task_movememory(p);
  672. }
  673. int security_task_kill(struct task_struct *p, struct siginfo *info,
  674. int sig, u32 secid)
  675. {
  676. return security_ops->task_kill(p, info, sig, secid);
  677. }
  678. int security_task_wait(struct task_struct *p)
  679. {
  680. return security_ops->task_wait(p);
  681. }
  682. int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
  683. unsigned long arg4, unsigned long arg5)
  684. {
  685. return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
  686. }
  687. void security_task_to_inode(struct task_struct *p, struct inode *inode)
  688. {
  689. security_ops->task_to_inode(p, inode);
  690. }
  691. int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
  692. {
  693. return security_ops->ipc_permission(ipcp, flag);
  694. }
  695. void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
  696. {
  697. security_ops->ipc_getsecid(ipcp, secid);
  698. }
  699. int security_msg_msg_alloc(struct msg_msg *msg)
  700. {
  701. return security_ops->msg_msg_alloc_security(msg);
  702. }
  703. void security_msg_msg_free(struct msg_msg *msg)
  704. {
  705. security_ops->msg_msg_free_security(msg);
  706. }
  707. int security_msg_queue_alloc(struct msg_queue *msq)
  708. {
  709. return security_ops->msg_queue_alloc_security(msq);
  710. }
  711. void security_msg_queue_free(struct msg_queue *msq)
  712. {
  713. security_ops->msg_queue_free_security(msq);
  714. }
  715. int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
  716. {
  717. return security_ops->msg_queue_associate(msq, msqflg);
  718. }
  719. int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
  720. {
  721. return security_ops->msg_queue_msgctl(msq, cmd);
  722. }
  723. int security_msg_queue_msgsnd(struct msg_queue *msq,
  724. struct msg_msg *msg, int msqflg)
  725. {
  726. return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
  727. }
  728. int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
  729. struct task_struct *target, long type, int mode)
  730. {
  731. return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
  732. }
  733. int security_shm_alloc(struct shmid_kernel *shp)
  734. {
  735. return security_ops->shm_alloc_security(shp);
  736. }
  737. void security_shm_free(struct shmid_kernel *shp)
  738. {
  739. security_ops->shm_free_security(shp);
  740. }
  741. int security_shm_associate(struct shmid_kernel *shp, int shmflg)
  742. {
  743. return security_ops->shm_associate(shp, shmflg);
  744. }
  745. int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
  746. {
  747. return security_ops->shm_shmctl(shp, cmd);
  748. }
  749. int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
  750. {
  751. return security_ops->shm_shmat(shp, shmaddr, shmflg);
  752. }
  753. int security_sem_alloc(struct sem_array *sma)
  754. {
  755. return security_ops->sem_alloc_security(sma);
  756. }
  757. void security_sem_free(struct sem_array *sma)
  758. {
  759. security_ops->sem_free_security(sma);
  760. }
  761. int security_sem_associate(struct sem_array *sma, int semflg)
  762. {
  763. return security_ops->sem_associate(sma, semflg);
  764. }
  765. int security_sem_semctl(struct sem_array *sma, int cmd)
  766. {
  767. return security_ops->sem_semctl(sma, cmd);
  768. }
  769. int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
  770. unsigned nsops, int alter)
  771. {
  772. return security_ops->sem_semop(sma, sops, nsops, alter);
  773. }
  774. void security_d_instantiate(struct dentry *dentry, struct inode *inode)
  775. {
  776. if (unlikely(inode && IS_PRIVATE(inode)))
  777. return;
  778. security_ops->d_instantiate(dentry, inode);
  779. }
  780. EXPORT_SYMBOL(security_d_instantiate);
  781. int security_getprocattr(struct task_struct *p, char *name, char **value)
  782. {
  783. return security_ops->getprocattr(p, name, value);
  784. }
  785. int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
  786. {
  787. return security_ops->setprocattr(p, name, value, size);
  788. }
  789. int security_netlink_send(struct sock *sk, struct sk_buff *skb)
  790. {
  791. return security_ops->netlink_send(sk, skb);
  792. }
  793. int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
  794. {
  795. return security_ops->secid_to_secctx(secid, secdata, seclen);
  796. }
  797. EXPORT_SYMBOL(security_secid_to_secctx);
  798. int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
  799. {
  800. return security_ops->secctx_to_secid(secdata, seclen, secid);
  801. }
  802. EXPORT_SYMBOL(security_secctx_to_secid);
  803. void security_release_secctx(char *secdata, u32 seclen)
  804. {
  805. security_ops->release_secctx(secdata, seclen);
  806. }
  807. EXPORT_SYMBOL(security_release_secctx);
  808. int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
  809. {
  810. return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
  811. }
  812. EXPORT_SYMBOL(security_inode_notifysecctx);
  813. int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
  814. {
  815. return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
  816. }
  817. EXPORT_SYMBOL(security_inode_setsecctx);
  818. int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
  819. {
  820. return security_ops->inode_getsecctx(inode, ctx, ctxlen);
  821. }
  822. EXPORT_SYMBOL(security_inode_getsecctx);
  823. #ifdef CONFIG_SECURITY_NETWORK
  824. int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
  825. {
  826. return security_ops->unix_stream_connect(sock, other, newsk);
  827. }
  828. EXPORT_SYMBOL(security_unix_stream_connect);
  829. int security_unix_may_send(struct socket *sock, struct socket *other)
  830. {
  831. return security_ops->unix_may_send(sock, other);
  832. }
  833. EXPORT_SYMBOL(security_unix_may_send);
  834. int security_socket_create(int family, int type, int protocol, int kern)
  835. {
  836. return security_ops->socket_create(family, type, protocol, kern);
  837. }
  838. int security_socket_post_create(struct socket *sock, int family,
  839. int type, int protocol, int kern)
  840. {
  841. return security_ops->socket_post_create(sock, family, type,
  842. protocol, kern);
  843. }
  844. int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
  845. {
  846. return security_ops->socket_bind(sock, address, addrlen);
  847. }
  848. int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
  849. {
  850. return security_ops->socket_connect(sock, address, addrlen);
  851. }
  852. int security_socket_listen(struct socket *sock, int backlog)
  853. {
  854. return security_ops->socket_listen(sock, backlog);
  855. }
  856. int security_socket_accept(struct socket *sock, struct socket *newsock)
  857. {
  858. return security_ops->socket_accept(sock, newsock);
  859. }
  860. int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
  861. {
  862. return security_ops->socket_sendmsg(sock, msg, size);
  863. }
  864. int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
  865. int size, int flags)
  866. {
  867. return security_ops->socket_recvmsg(sock, msg, size, flags);
  868. }
  869. int security_socket_getsockname(struct socket *sock)
  870. {
  871. return security_ops->socket_getsockname(sock);
  872. }
  873. int security_socket_getpeername(struct socket *sock)
  874. {
  875. return security_ops->socket_getpeername(sock);
  876. }
  877. int security_socket_getsockopt(struct socket *sock, int level, int optname)
  878. {
  879. return security_ops->socket_getsockopt(sock, level, optname);
  880. }
  881. int security_socket_setsockopt(struct socket *sock, int level, int optname)
  882. {
  883. return security_ops->socket_setsockopt(sock, level, optname);
  884. }
  885. int security_socket_shutdown(struct socket *sock, int how)
  886. {
  887. return security_ops->socket_shutdown(sock, how);
  888. }
  889. int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
  890. {
  891. return security_ops->socket_sock_rcv_skb(sk, skb);
  892. }
  893. EXPORT_SYMBOL(security_sock_rcv_skb);
  894. int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
  895. int __user *optlen, unsigned len)
  896. {
  897. return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
  898. }
  899. int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
  900. {
  901. return security_ops->socket_getpeersec_dgram(sock, skb, secid);
  902. }
  903. EXPORT_SYMBOL(security_socket_getpeersec_dgram);
  904. int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
  905. {
  906. return security_ops->sk_alloc_security(sk, family, priority);
  907. }
  908. void security_sk_free(struct sock *sk)
  909. {
  910. security_ops->sk_free_security(sk);
  911. }
  912. void security_sk_clone(const struct sock *sk, struct sock *newsk)
  913. {
  914. security_ops->sk_clone_security(sk, newsk);
  915. }
  916. EXPORT_SYMBOL(security_sk_clone);
  917. void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
  918. {
  919. security_ops->sk_getsecid(sk, &fl->flowi_secid);
  920. }
  921. EXPORT_SYMBOL(security_sk_classify_flow);
  922. void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
  923. {
  924. security_ops->req_classify_flow(req, fl);
  925. }
  926. EXPORT_SYMBOL(security_req_classify_flow);
  927. void security_sock_graft(struct sock *sk, struct socket *parent)
  928. {
  929. security_ops->sock_graft(sk, parent);
  930. }
  931. EXPORT_SYMBOL(security_sock_graft);
  932. int security_inet_conn_request(struct sock *sk,
  933. struct sk_buff *skb, struct request_sock *req)
  934. {
  935. return security_ops->inet_conn_request(sk, skb, req);
  936. }
  937. EXPORT_SYMBOL(security_inet_conn_request);
  938. void security_inet_csk_clone(struct sock *newsk,
  939. const struct request_sock *req)
  940. {
  941. security_ops->inet_csk_clone(newsk, req);
  942. }
  943. void security_inet_conn_established(struct sock *sk,
  944. struct sk_buff *skb)
  945. {
  946. security_ops->inet_conn_established(sk, skb);
  947. }
  948. int security_secmark_relabel_packet(u32 secid)
  949. {
  950. return security_ops->secmark_relabel_packet(secid);
  951. }
  952. EXPORT_SYMBOL(security_secmark_relabel_packet);
  953. void security_secmark_refcount_inc(void)
  954. {
  955. security_ops->secmark_refcount_inc();
  956. }
  957. EXPORT_SYMBOL(security_secmark_refcount_inc);
  958. void security_secmark_refcount_dec(void)
  959. {
  960. security_ops->secmark_refcount_dec();
  961. }
  962. EXPORT_SYMBOL(security_secmark_refcount_dec);
  963. int security_tun_dev_create(void)
  964. {
  965. return security_ops->tun_dev_create();
  966. }
  967. EXPORT_SYMBOL(security_tun_dev_create);
  968. void security_tun_dev_post_create(struct sock *sk)
  969. {
  970. return security_ops->tun_dev_post_create(sk);
  971. }
  972. EXPORT_SYMBOL(security_tun_dev_post_create);
  973. int security_tun_dev_attach(struct sock *sk)
  974. {
  975. return security_ops->tun_dev_attach(sk);
  976. }
  977. EXPORT_SYMBOL(security_tun_dev_attach);
  978. #endif
  979. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  980. int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
  981. {
  982. return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
  983. }
  984. EXPORT_SYMBOL(security_xfrm_policy_alloc);
  985. int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
  986. struct xfrm_sec_ctx **new_ctxp)
  987. {
  988. return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
  989. }
  990. void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
  991. {
  992. security_ops->xfrm_policy_free_security(ctx);
  993. }
  994. EXPORT_SYMBOL(security_xfrm_policy_free);
  995. int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
  996. {
  997. return security_ops->xfrm_policy_delete_security(ctx);
  998. }
  999. int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
  1000. {
  1001. return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
  1002. }
  1003. EXPORT_SYMBOL(security_xfrm_state_alloc);
  1004. int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
  1005. struct xfrm_sec_ctx *polsec, u32 secid)
  1006. {
  1007. if (!polsec)
  1008. return 0;
  1009. return security_ops->xfrm_state_alloc_security(x, NULL, secid);
  1010. }
  1011. int security_xfrm_state_delete(struct xfrm_state *x)
  1012. {
  1013. return security_ops->xfrm_state_delete_security(x);
  1014. }
  1015. EXPORT_SYMBOL(security_xfrm_state_delete);
  1016. void security_xfrm_state_free(struct xfrm_state *x)
  1017. {
  1018. security_ops->xfrm_state_free_security(x);
  1019. }
  1020. int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
  1021. {
  1022. return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
  1023. }
  1024. int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
  1025. struct xfrm_policy *xp,
  1026. const struct flowi *fl)
  1027. {
  1028. return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
  1029. }
  1030. int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
  1031. {
  1032. return security_ops->xfrm_decode_session(skb, secid, 1);
  1033. }
  1034. void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
  1035. {
  1036. int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
  1037. BUG_ON(rc);
  1038. }
  1039. EXPORT_SYMBOL(security_skb_classify_flow);
  1040. #endif
  1041. #ifdef CONFIG_KEYS
  1042. int security_key_alloc(struct key *key, const struct cred *cred,
  1043. unsigned long flags)
  1044. {
  1045. return security_ops->key_alloc(key, cred, flags);
  1046. }
  1047. void security_key_free(struct key *key)
  1048. {
  1049. security_ops->key_free(key);
  1050. }
  1051. int security_key_permission(key_ref_t key_ref,
  1052. const struct cred *cred, key_perm_t perm)
  1053. {
  1054. return security_ops->key_permission(key_ref, cred, perm);
  1055. }
  1056. int security_key_getsecurity(struct key *key, char **_buffer)
  1057. {
  1058. return security_ops->key_getsecurity(key, _buffer);
  1059. }
  1060. #endif
  1061. #ifdef CONFIG_AUDIT
  1062. int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
  1063. {
  1064. return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
  1065. }
  1066. int security_audit_rule_known(struct audit_krule *krule)
  1067. {
  1068. return security_ops->audit_rule_known(krule);
  1069. }
  1070. void security_audit_rule_free(void *lsmrule)
  1071. {
  1072. security_ops->audit_rule_free(lsmrule);
  1073. }
  1074. int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
  1075. struct audit_context *actx)
  1076. {
  1077. return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
  1078. }
  1079. #endif