PageRenderTime 74ms CodeModel.GetById 35ms RepoModel.GetById 0ms app.codeStats 0ms

/wrfv2_fire/phys/module_mp_wdm5.F

http://github.com/jbeezley/wrf-fire
FORTRAN Legacy | 2015 lines | 1436 code | 0 blank | 579 comment | 101 complexity | a595cff214ff08031fdb6a3c0c1a78e6 MD5 | raw file
Possible License(s): AGPL-1.0

Large files files are truncated, but you can click here to view the full file

  1. #if ( RWORDSIZE == 4 )
  2. # define VREC vsrec
  3. # define VSQRT vssqrt
  4. #else
  5. # define VREC vrec
  6. # define VSQRT vsqrt
  7. #endif
  8. !
  9. !Including inline expansion statistical function
  10. MODULE module_mp_wdm5
  11. !
  12. !
  13. REAL, PARAMETER, PRIVATE :: dtcldcr = 120. ! maximum time step for minor loops
  14. REAL, PARAMETER, PRIVATE :: n0r = 8.e6 ! intercept parameter rain
  15. REAL, PARAMETER, PRIVATE :: avtr = 841.9 ! a constant for terminal velocity of rain
  16. REAL, PARAMETER, PRIVATE :: bvtr = 0.8 ! a constant for terminal velocity of rain
  17. REAL, PARAMETER, PRIVATE :: r0 = .8e-5 ! 8 microm in contrast to 10 micro m
  18. REAL, PARAMETER, PRIVATE :: peaut = .55 ! collection efficiency
  19. REAL, PARAMETER, PRIVATE :: xncr = 3.e8 ! maritime cloud in contrast to 3.e8 in tc80
  20. REAL, PARAMETER, PRIVATE :: xmyu = 1.718e-5 ! the dynamic viscosity kgm-1s-1
  21. REAL, PARAMETER, PRIVATE :: avts = 11.72 ! a constant for terminal velocity of snow
  22. REAL, PARAMETER, PRIVATE :: bvts = .41 ! a constant for terminal velocity of snow
  23. REAL, PARAMETER, PRIVATE :: n0smax = 1.e11 ! maximum n0s (t=-90C unlimited)
  24. REAL, PARAMETER, PRIVATE :: lamdacmax = 1.e10 ! limited maximum value for slope parameter of cloud water
  25. REAL, PARAMETER, PRIVATE :: lamdarmax = 1.e8 ! limited maximum value for slope parameter of rain
  26. REAL, PARAMETER, PRIVATE :: lamdasmax = 1.e5 ! limited maximum value for slope parameter of snow
  27. REAL, PARAMETER, PRIVATE :: lamdagmax = 6.e4 ! limited maximum value for slope parameter of graupel
  28. REAL, PARAMETER, PRIVATE :: dicon = 11.9 ! constant for the cloud-ice diamter
  29. REAL, PARAMETER, PRIVATE :: dimax = 500.e-6 ! limited maximum value for the cloud-ice diamter
  30. REAL, PARAMETER, PRIVATE :: n0s = 2.e6 ! temperature dependent intercept parameter snow
  31. REAL, PARAMETER, PRIVATE :: alpha = .12 ! .122 exponen factor for n0s
  32. REAL, PARAMETER, PRIVATE :: pfrz1 = 100. ! constant in Biggs freezing
  33. REAL, PARAMETER, PRIVATE :: pfrz2 = 0.66 ! constant in Biggs freezing
  34. REAL, PARAMETER, PRIVATE :: qcrmin = 1.e-9 ! minimun values for qr, qs, and qg
  35. REAL, PARAMETER, PRIVATE :: ncmin = 1.e1 ! minimum value for Nc
  36. REAL, PARAMETER, PRIVATE :: nrmin = 1.e-2 ! minimum value for Nr
  37. REAL, PARAMETER, PRIVATE :: eacrc = 1.0 ! Snow/cloud-water collection efficiency
  38. !
  39. REAL, PARAMETER, PRIVATE :: satmax = 1.0048 ! maximum saturation value for CCN activation
  40. ! 1.008 for maritime air mass /1.0048 for conti
  41. REAL, PARAMETER, PRIVATE :: actk = 0.6 ! parameter for the CCN activation
  42. REAL, PARAMETER, PRIVATE :: actr = 1.5 ! radius of activated CCN drops
  43. REAL, PARAMETER, PRIVATE :: ncrk1 = 3.03e3 ! Long's collection kernel coefficient
  44. REAL, PARAMETER, PRIVATE :: ncrk2 = 2.59e15 ! Long's collection kernel coefficient
  45. REAL, PARAMETER, PRIVATE :: di100 = 1.e-4 ! parameter related with accretion and collection of cloud drops
  46. REAL, PARAMETER, PRIVATE :: di600 = 6.e-4 ! parameter related with accretion and collection of cloud drops
  47. REAL, PARAMETER, PRIVATE :: di2000 = 20.e-4 ! parameter related with accretion and collection of cloud drops
  48. REAL, PARAMETER, PRIVATE :: di82 = 82.e-6 ! dimater related with raindrops evaporation
  49. REAL, PARAMETER, PRIVATE :: di15 = 15.e-6 ! auto conversion takes place beyond this diameter
  50. REAL, SAVE :: &
  51. qc0, qck1,pidnc,bvtr1,bvtr2,bvtr3,bvtr4, &
  52. bvtr5,bvtr7,bvtr2o5,bvtr3o5,g1pbr,g2pbr, &
  53. g3pbr,g4pbr,g5pbr,g7pbr,g5pbro2,g7pbro2, &
  54. pvtr,pvtrn,eacrr,pacrr, pi, &
  55. precr1,precr2,xmmax,roqimax,bvts1, &
  56. bvts2,bvts3,bvts4,g1pbs,g3pbs,g4pbs, &
  57. g5pbso2,pvts,pacrs,precs1,precs2,pidn0r, &
  58. pidn0s,pidnr,xlv1,pacrc, &
  59. rslopecmax,rslopec2max,rslopec3max, &
  60. rslopermax,rslopesmax,rslopegmax, &
  61. rsloperbmax,rslopesbmax,rslopegbmax, &
  62. rsloper2max,rslopes2max,rslopeg2max, &
  63. rsloper3max,rslopes3max,rslopeg3max
  64. !
  65. ! Specifies code-inlining of fpvs function in WDM52D below. JM 20040507
  66. !
  67. CONTAINS
  68. !===================================================================
  69. !
  70. SUBROUTINE wdm5(th, q, qc, qr, qi, qs &
  71. ,nn, nc, nr &
  72. ,den, pii, p, delz &
  73. ,delt,g, cpd, cpv, ccn0, rd, rv, t0c &
  74. ,ep1, ep2, qmin &
  75. ,XLS, XLV0, XLF0, den0, denr &
  76. ,cliq,cice,psat &
  77. ,rain, rainncv &
  78. ,snow, snowncv &
  79. ,sr &
  80. ,itimestep &
  81. ,ids,ide, jds,jde, kds,kde &
  82. ,ims,ime, jms,jme, kms,kme &
  83. ,its,ite, jts,jte, kts,kte &
  84. )
  85. !-------------------------------------------------------------------
  86. IMPLICIT NONE
  87. !-------------------------------------------------------------------
  88. !
  89. ! This code is a WRF double-moment 5-class mixed ice
  90. ! microphyiscs scheme (WDM5). The WDM microphysics scheme predicts
  91. ! number concentrations for warm rain species including clouds and
  92. ! rain. cloud condensation nuclei (CCN) is also predicted.
  93. ! The cold rain species including ice, snow, graupel follow the
  94. ! WRF single-moment 5-class microphysics (WSM5)
  95. ! in which theoretical background for WSM ice phase microphysics is
  96. ! based on Hong et al. (2004).
  97. ! The WDM scheme is described in Lim and Hong (2010).
  98. ! All units are in m.k.s. and source/sink terms in kgkg-1s-1.
  99. !
  100. ! WDM5 cloud scheme
  101. !
  102. ! Coded by Kyo-Sun Lim and Song-You Hong (Yonsei Univ.) Fall 2008
  103. !
  104. ! Implemented by Kyo-Sun Lim and Jimy Dudhia (NCAR) Winter 2008
  105. !
  106. ! Reference) Lim and Hong (LH, 2010) Mon. Wea. Rev.
  107. ! Juang and Hong (JH, 2010) Mon. Wea. Rev.
  108. ! Hong, Dudhia, Chen (HDC, 2004) Mon. Wea. Rev.
  109. ! Hong and Lim (HL, 2006) J. Korean Meteor. Soc.
  110. ! Cohard and Pinty (CP, 2000) Quart. J. Roy. Meteor. Soc.
  111. ! Khairoutdinov and Kogan (KK, 2000) Mon. Wea. Rev.
  112. ! Dudhia, Hong and Lim (DHL, 2008) J. Meteor. Soc. Japan
  113. !
  114. ! Lin, Farley, Orville (LFO, 1983) J. Appl. Meteor.
  115. ! Rutledge, Hobbs (RH83, 1983) J. Atmos. Sci.
  116. ! Rutledge, Hobbs (RH84, 1984) J. Atmos. Sci.
  117. !
  118. INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , &
  119. ims,ime, jms,jme, kms,kme , &
  120. its,ite, jts,jte, kts,kte
  121. REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), &
  122. INTENT(INOUT) :: &
  123. th, &
  124. q, &
  125. qc, &
  126. qi, &
  127. qr, &
  128. qs, &
  129. nn, &
  130. nc, &
  131. nr
  132. REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), &
  133. INTENT(IN ) :: &
  134. den, &
  135. pii, &
  136. p, &
  137. delz
  138. REAL, INTENT(IN ) :: delt, &
  139. g, &
  140. rd, &
  141. rv, &
  142. t0c, &
  143. den0, &
  144. cpd, &
  145. cpv, &
  146. ccn0, &
  147. ep1, &
  148. ep2, &
  149. qmin, &
  150. XLS, &
  151. XLV0, &
  152. XLF0, &
  153. cliq, &
  154. cice, &
  155. psat, &
  156. denr
  157. INTEGER, INTENT(IN ) :: itimestep
  158. REAL, DIMENSION( ims:ime , jms:jme ), &
  159. INTENT(INOUT) :: rain, &
  160. rainncv, &
  161. sr
  162. REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, &
  163. INTENT(INOUT) :: snow, &
  164. snowncv
  165. ! LOCAL VAR
  166. REAL, DIMENSION( its:ite , kts:kte ) :: t
  167. REAL, DIMENSION( its:ite , kts:kte, 2 ) :: qci, qrs
  168. REAL, DIMENSION( its:ite , kts:kte, 3 ) :: ncr
  169. CHARACTER*256 :: emess
  170. INTEGER :: mkx_test
  171. INTEGER :: i,j,k
  172. !-------------------------------------------------------------------
  173. #ifndef RUN_ON_GPU
  174. IF (itimestep .eq. 1) THEN
  175. DO j=jms,jme
  176. DO k=kms,kme
  177. DO i=ims,ime
  178. nn(i,k,j) = ccn0
  179. ENDDO
  180. ENDDO
  181. ENDDO
  182. ENDIF
  183. !
  184. DO j=jts,jte
  185. DO k=kts,kte
  186. DO i=its,ite
  187. t(i,k)=th(i,k,j)*pii(i,k,j)
  188. qci(i,k,1) = qc(i,k,j)
  189. qci(i,k,2) = qi(i,k,j)
  190. qrs(i,k,1) = qr(i,k,j)
  191. qrs(i,k,2) = qs(i,k,j)
  192. ncr(i,k,1) = nn(i,k,j)
  193. ncr(i,k,2) = nc(i,k,j)
  194. ncr(i,k,3) = nr(i,k,j)
  195. ENDDO
  196. ENDDO
  197. ! Sending array starting locations of optional variables may cause
  198. ! troubles, so we explicitly change the call.
  199. CALL wdm52D(t, q(ims,kms,j), qci, qrs, ncr &
  200. ,den(ims,kms,j) &
  201. ,p(ims,kms,j), delz(ims,kms,j) &
  202. ,delt,g, cpd, cpv, ccn0, rd, rv, t0c &
  203. ,ep1, ep2, qmin &
  204. ,XLS, XLV0, XLF0, den0, denr &
  205. ,cliq,cice,psat &
  206. ,j &
  207. ,rain(ims,j),rainncv(ims,j) &
  208. ,sr(ims,j) &
  209. ,ids,ide, jds,jde, kds,kde &
  210. ,ims,ime, jms,jme, kms,kme &
  211. ,its,ite, jts,jte, kts,kte &
  212. ,snow(ims,j),snowncv(ims,j) &
  213. )
  214. DO K=kts,kte
  215. DO I=its,ite
  216. th(i,k,j)=t(i,k)/pii(i,k,j)
  217. qc(i,k,j) = qci(i,k,1)
  218. qi(i,k,j) = qci(i,k,2)
  219. qr(i,k,j) = qrs(i,k,1)
  220. qs(i,k,j) = qrs(i,k,2)
  221. nn(i,k,j) = ncr(i,k,1)
  222. nc(i,k,j) = ncr(i,k,2)
  223. nr(i,k,j) = ncr(i,k,3)
  224. ENDDO
  225. ENDDO
  226. ENDDO
  227. #else
  228. CALL get_wsm5_gpu_levels ( mkx_test )
  229. IF ( mkx_test .LT. kte ) THEN
  230. WRITE(emess,*)'Number of levels compiled for GPU WSM5 too small. ', &
  231. mkx_test,' < ',kte
  232. CALL wrf_error_fatal(emess)
  233. ENDIF
  234. CALL wsm5_host ( &
  235. th(its:ite,kts:kte,jts:jte), pii(its:ite,kts:kte,jts:jte) &
  236. ,q(its:ite,kts:kte,jts:jte), qc(its:ite,kts:kte,jts:jte) &
  237. ,qi(its:ite,kts:kte,jts:jte), qr(its:ite,kts:kte,jts:jte) &
  238. ,qs(its:ite,kts:kte,jts:jte), den(its:ite,kts:kte,jts:jte) &
  239. ,p(its:ite,kts:kte,jts:jte), delz(its:ite,kts:kte,jts:jte) &
  240. ,delt &
  241. ,rain(its:ite,jts:jte),rainncv(its:ite,jts:jte) &
  242. ,snow(its:ite,jts:jte),snowncv(its:ite,jts:jte) &
  243. ,sr(its:ite,jts:jte) &
  244. ,its, ite, jts, jte, kts, kte &
  245. ,its, ite, jts, jte, kts, kte &
  246. ,its, ite, jts, jte, kts, kte &
  247. )
  248. #endif
  249. END SUBROUTINE wdm5
  250. !===================================================================
  251. !
  252. SUBROUTINE wdm52D(t, q, qci, qrs, ncr, den, p, delz &
  253. ,delt,g, cpd, cpv, ccn0, rd, rv, t0c &
  254. ,ep1, ep2, qmin &
  255. ,XLS, XLV0, XLF0, den0, denr &
  256. ,cliq,cice,psat &
  257. ,lat &
  258. ,rain,rainncv &
  259. ,sr &
  260. ,ids,ide, jds,jde, kds,kde &
  261. ,ims,ime, jms,jme, kms,kme &
  262. ,its,ite, jts,jte, kts,kte &
  263. ,snow,snowncv &
  264. )
  265. !-------------------------------------------------------------------
  266. IMPLICIT NONE
  267. !-------------------------------------------------------------------
  268. INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , &
  269. ims,ime, jms,jme, kms,kme , &
  270. its,ite, jts,jte, kts,kte, &
  271. lat
  272. REAL, DIMENSION( its:ite , kts:kte ), &
  273. INTENT(INOUT) :: &
  274. t
  275. REAL, DIMENSION( its:ite , kts:kte, 2 ), &
  276. INTENT(INOUT) :: &
  277. qci, &
  278. qrs
  279. REAL, DIMENSION( its:ite , kts:kte, 3 ), &
  280. INTENT(INOUT) :: &
  281. ncr
  282. REAL, DIMENSION( ims:ime , kms:kme ), &
  283. INTENT(INOUT) :: &
  284. q
  285. REAL, DIMENSION( ims:ime , kms:kme ), &
  286. INTENT(IN ) :: &
  287. den, &
  288. p, &
  289. delz
  290. REAL, INTENT(IN ) :: delt, &
  291. g, &
  292. cpd, &
  293. cpv, &
  294. ccn0, &
  295. t0c, &
  296. den0, &
  297. rd, &
  298. rv, &
  299. ep1, &
  300. ep2, &
  301. qmin, &
  302. XLS, &
  303. XLV0, &
  304. XLF0, &
  305. cliq, &
  306. cice, &
  307. psat, &
  308. denr
  309. REAL, DIMENSION( ims:ime ), &
  310. INTENT(INOUT) :: rain, &
  311. rainncv, &
  312. sr
  313. REAL, DIMENSION( ims:ime ), OPTIONAL, &
  314. INTENT(INOUT) :: snow, &
  315. snowncv
  316. ! LOCAL VAR
  317. REAL, DIMENSION( its:ite , kts:kte , 2) :: &
  318. rh, qs, rslope, rslope2, rslope3, rslopeb, &
  319. falk, fall, work1, qrs_tmp
  320. REAL, DIMENSION( its:ite , kts:kte ) :: &
  321. rslopec, rslopec2,rslopec3
  322. REAL, DIMENSION( its:ite , kts:kte, 2) :: &
  323. avedia
  324. REAL, DIMENSION( its:ite , kts:kte ) :: &
  325. workn,falln,falkn
  326. REAL, DIMENSION( its:ite , kts:kte ) :: &
  327. works
  328. REAL, DIMENSION( its:ite , kts:kte ) :: &
  329. den_tmp, delz_tmp, ncr_tmp
  330. REAL, DIMENSION( its:ite , kts:kte ) :: &
  331. falkc, work1c, work2c, fallc
  332. REAL, DIMENSION( its:ite , kts:kte ) :: &
  333. pcact, praut, psaut, prevp, psdep, pracw, psaci, psacw, &
  334. pigen, pidep, pcond, &
  335. xl, cpm, work2, psmlt, psevp, denfac, xni, &
  336. n0sfac, denqrs2, denqci
  337. REAL, DIMENSION( its:ite ) :: &
  338. delqrs2, delqi
  339. REAL, DIMENSION( its:ite , kts:kte ) :: &
  340. nraut, nracw, ncevp, nccol, nrcol, &
  341. nsacw, nseml, ncact
  342. REAL :: ifac, sfac
  343. REAL, DIMENSION(its:ite) :: tstepsnow
  344. !
  345. #define WSM_NO_CONDITIONAL_IN_VECTOR
  346. #ifdef WSM_NO_CONDITIONAL_IN_VECTOR
  347. REAL, DIMENSION(its:ite) :: xal, xbl
  348. #endif
  349. ! variables for optimization
  350. REAL, DIMENSION( its:ite ) :: tvec1
  351. INTEGER, DIMENSION( its:ite ) :: mnstep, numndt
  352. INTEGER, DIMENSION( its:ite ) :: mstep, numdt
  353. REAL, DIMENSION(its:ite) :: rmstep
  354. REAL dtcldden, rdelz, rdtcld
  355. LOGICAL, DIMENSION( its:ite ) :: flgcld
  356. REAL :: &
  357. cpmcal, xlcal, lamdac, diffus, &
  358. viscos, xka, venfac, conden, diffac, &
  359. x, y, z, a, b, c, d, e, &
  360. ndt, qdt, holdrr, holdrs, supcol, supcolt, pvt, &
  361. coeres, supsat, dtcld, xmi, eacrs, satdt, &
  362. vt2i,vt2s,acrfac, coecol, &
  363. nfrzdtr, nfrzdtc, &
  364. taucon, lencon, lenconcr, &
  365. qimax, diameter, xni0, roqi0, &
  366. fallsum, fallsum_qsi, xlwork2, factor, source, &
  367. value, xlf, pfrzdtc, pfrzdtr, supice
  368. REAL :: temp
  369. REAL :: holdc, holdci
  370. INTEGER :: i, j, k, mstepmax, &
  371. iprt, latd, lond, loop, loops, ifsat, n, idim, kdim
  372. ! Temporaries used for inlining fpvs function
  373. REAL :: dldti, xb, xai, tr, xbi, xa, hvap, cvap, hsub, dldt, ttp
  374. REAL :: logtr
  375. !
  376. !=================================================================
  377. ! compute internal functions
  378. !
  379. cpmcal(x) = cpd*(1.-max(x,qmin))+max(x,qmin)*cpv
  380. xlcal(x) = xlv0-xlv1*(x-t0c)
  381. !----------------------------------------------------------------
  382. ! size distributions: (x=mixing ratio, y=air density):
  383. ! valid for mixing ratio > 1.e-9 kg/kg.
  384. !
  385. ! Optimizatin : A**B => exp(log(A)*(B))
  386. lamdac(x,y,z)= exp(log(((pidnc*z)/(x*y)))*((.33333333)))
  387. !
  388. !----------------------------------------------------------------
  389. ! diffus: diffusion coefficient of the water vapor
  390. ! viscos: kinematic viscosity(m2s-1)
  391. ! diffus(x,y) = 8.794e-5 * exp(log(x)*(1.81)) / y
  392. ! viscos(x,y) = 1.496e-6 * (x*sqrt(x)) /(x+120.)/y
  393. ! xka(x,y) = 1.414e3*viscos(x,y)*y
  394. ! diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b))
  395. ! venfac(a,b,c) = exp(log((viscos(b,c)/diffus(b,a)))*((.3333333))) &
  396. ! /sqrt(viscos(b,c))*sqrt(sqrt(den0/c))
  397. ! conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a))
  398. !
  399. !
  400. idim = ite-its+1
  401. kdim = kte-kts+1
  402. !
  403. !----------------------------------------------------------------
  404. ! paddint 0 for negative values generated by dynamics
  405. !
  406. do k = kts, kte
  407. do i = its, ite
  408. qci(i,k,1) = max(qci(i,k,1),0.0)
  409. qrs(i,k,1) = max(qrs(i,k,1),0.0)
  410. qci(i,k,2) = max(qci(i,k,2),0.0)
  411. qrs(i,k,2) = max(qrs(i,k,2),0.0)
  412. ncr(i,k,1) = max(ncr(i,k,1),0.)
  413. ncr(i,k,2) = max(ncr(i,k,2),0.)
  414. ncr(i,k,3) = max(ncr(i,k,3),0.)
  415. enddo
  416. enddo
  417. !
  418. ! latent heat for phase changes and heat capacity. neglect the
  419. ! changes during microphysical process calculation
  420. ! emanuel(1994)
  421. !
  422. do k = kts, kte
  423. do i = its, ite
  424. cpm(i,k) = cpmcal(q(i,k))
  425. xl(i,k) = xlcal(t(i,k))
  426. delz_tmp(i,k) = delz(i,k)
  427. den_tmp(i,k) = den(i,k)
  428. enddo
  429. enddo
  430. !
  431. !----------------------------------------------------------------
  432. ! initialize the surface rain, snow
  433. !
  434. do i = its, ite
  435. rainncv(i) = 0.
  436. if(PRESENT (snowncv) .AND. PRESENT (snow)) snowncv(i) = 0.
  437. sr(i) = 0.
  438. ! new local array to catch step snow
  439. tstepsnow(i) = 0.
  440. enddo
  441. !
  442. !----------------------------------------------------------------
  443. ! compute the minor time steps.
  444. !
  445. loops = max(nint(delt/dtcldcr),1)
  446. dtcld = delt/loops
  447. if(delt.le.dtcldcr) dtcld = delt
  448. !
  449. do loop = 1,loops
  450. !
  451. !----------------------------------------------------------------
  452. ! initialize the large scale variables
  453. !
  454. do i = its, ite
  455. mstep(i) = 1
  456. mnstep(i) = 1
  457. flgcld(i) = .true.
  458. enddo
  459. !
  460. ! do k = kts, kte
  461. ! do i = its, ite
  462. ! denfac(i,k) = sqrt(den0/den(i,k))
  463. ! enddo
  464. ! enddo
  465. do k = kts, kte
  466. CALL VREC( tvec1(its), den(its,k), ite-its+1)
  467. do i = its, ite
  468. tvec1(i) = tvec1(i)*den0
  469. enddo
  470. CALL VSQRT( denfac(its,k), tvec1(its), ite-its+1)
  471. enddo
  472. !
  473. ! Inline expansion for fpvs
  474. ! qs(i,k,1) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c)
  475. ! qs(i,k,2) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c)
  476. hsub = xls
  477. hvap = xlv0
  478. cvap = cpv
  479. ttp=t0c+0.01
  480. dldt=cvap-cliq
  481. xa=-dldt/rv
  482. xb=xa+hvap/(rv*ttp)
  483. dldti=cvap-cice
  484. xai=-dldti/rv
  485. xbi=xai+hsub/(rv*ttp)
  486. ! this is for compilers where the conditional inhibits vectorization
  487. #ifdef WSM_NO_CONDITIONAL_IN_VECTOR
  488. do k = kts, kte
  489. do i = its, ite
  490. if(t(i,k).lt.ttp) then
  491. xal(i) = xai
  492. xbl(i) = xbi
  493. else
  494. xal(i) = xa
  495. xbl(i) = xb
  496. endif
  497. enddo
  498. do i = its, ite
  499. tr=ttp/t(i,k)
  500. logtr=log(tr)
  501. qs(i,k,1)=psat*exp(logtr*(xa)+xb*(1.-tr))
  502. qs(i,k,1) = min(qs(i,k,1),0.99*p(i,k))
  503. qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1))
  504. qs(i,k,1) = max(qs(i,k,1),qmin)
  505. rh(i,k,1) = max(q(i,k) / qs(i,k,1),qmin)
  506. qs(i,k,2)=psat*exp(logtr*(xal(i))+xbl(i)*(1.-tr))
  507. qs(i,k,2) = min(qs(i,k,2),0.99*p(i,k))
  508. qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2))
  509. qs(i,k,2) = max(qs(i,k,2),qmin)
  510. rh(i,k,2) = max(q(i,k) / qs(i,k,2),qmin)
  511. enddo
  512. enddo
  513. #else
  514. do k = kts, kte
  515. do i = its, ite
  516. tr=ttp/t(i,k)
  517. logtr=log(tr)
  518. qs(i,k,1)=psat*exp(logtr*(xa)+xb*(1.-tr))
  519. qs(i,k,1) = min(qs(i,k,1),0.99*p(i,k))
  520. qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1))
  521. qs(i,k,1) = max(qs(i,k,1),qmin)
  522. rh(i,k,1) = max(q(i,k) / qs(i,k,1),qmin)
  523. if(t(i,k).lt.ttp) then
  524. qs(i,k,2)=psat*exp(logtr*(xai)+xbi*(1.-tr))
  525. else
  526. qs(i,k,2)=psat*exp(logtr*(xa)+xb*(1.-tr))
  527. endif
  528. qs(i,k,2) = min(qs(i,k,2),0.99*p(i,k))
  529. qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2))
  530. qs(i,k,2) = max(qs(i,k,2),qmin)
  531. rh(i,k,2) = max(q(i,k) / qs(i,k,2),qmin)
  532. enddo
  533. enddo
  534. #endif
  535. !
  536. !----------------------------------------------------------------
  537. ! initialize the variables for microphysical physics
  538. !
  539. !
  540. do k = kts, kte
  541. do i = its, ite
  542. prevp(i,k) = 0.
  543. psdep(i,k) = 0.
  544. praut(i,k) = 0.
  545. psaut(i,k) = 0.
  546. pracw(i,k) = 0.
  547. psaci(i,k) = 0.
  548. psacw(i,k) = 0.
  549. pigen(i,k) = 0.
  550. pidep(i,k) = 0.
  551. pcond(i,k) = 0.
  552. psmlt(i,k) = 0.
  553. psevp(i,k) = 0.
  554. pcact(i,k) = 0.
  555. falk(i,k,1) = 0.
  556. falk(i,k,2) = 0.
  557. fall(i,k,1) = 0.
  558. fall(i,k,2) = 0.
  559. fallc(i,k) = 0.
  560. falkc(i,k) = 0.
  561. falln(i,k) = 0.
  562. falkn(i,k) = 0.
  563. xni(i,k) = 1.e3
  564. nsacw(i,k) = 0.
  565. nseml(i,k) = 0.
  566. nracw(i,k) = 0.
  567. nccol(i,k) = 0.
  568. nrcol(i,k) = 0.
  569. ncact(i,k) = 0.
  570. nraut(i,k) = 0.
  571. ncevp(i,k) = 0.
  572. enddo
  573. enddo
  574. !
  575. !----------------------------------------------------------------
  576. ! compute the fallout term:
  577. ! first, vertical terminal velosity for minor loops
  578. !
  579. do k = kts, kte
  580. do i = its, ite
  581. if(qci(i,k,1).le.qmin .or. ncr(i,k,2).le.ncmin)then
  582. rslopec(i,k) = rslopecmax
  583. rslopec2(i,k) = rslopec2max
  584. rslopec3(i,k) = rslopec3max
  585. else
  586. rslopec(i,k) = 1./lamdac(qci(i,k,1),den(i,k),ncr(i,k,2))
  587. rslopec2(i,k) = rslopec(i,k)*rslopec(i,k)
  588. rslopec3(i,k) = rslopec2(i,k)*rslopec(i,k)
  589. endif
  590. !-------------------------------------------------------------
  591. ! Ni: ice crystal number concentraiton [HDC 5c]
  592. !-------------------------------------------------------------
  593. ! xni(i,k) = min(max(5.38e7*(den(i,k) &
  594. ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6)
  595. temp = (den(i,k)*max(qci(i,k,2),qmin))
  596. temp = sqrt(sqrt(temp*temp*temp))
  597. xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6)
  598. enddo
  599. enddo
  600. do k = kts, kte
  601. do i = its, ite
  602. qrs_tmp(i,k,1) = qrs(i,k,1)
  603. qrs_tmp(i,k,2) = qrs(i,k,2)
  604. ncr_tmp(i,k) = ncr(i,k,3)
  605. enddo
  606. enddo
  607. call slope_wdm5(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, &
  608. rslope3,work1,workn,its,ite,kts,kte)
  609. !----------------------------------------------------------------
  610. ! compute the fallout term:
  611. ! first, vertical terminal velosity for minor loops
  612. !----------------------------------------------------------------
  613. !
  614. ! vt update for qr and nr
  615. mstepmax = 1
  616. numdt = 1
  617. do k = kte, kts, -1
  618. do i = its, ite
  619. work1(i,k,1) = work1(i,k,1)/delz(i,k)
  620. workn(i,k) = workn(i,k)/delz(i,k)
  621. numdt(i) = max(nint(max(work1(i,k,1),workn(i,k))*dtcld+.5),1)
  622. if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i)
  623. enddo
  624. enddo
  625. do i = its, ite
  626. if(mstepmax.le.mstep(i)) mstepmax = mstep(i)
  627. enddo
  628. !
  629. do n = 1, mstepmax
  630. k = kte
  631. do i = its, ite
  632. if(n.le.mstep(i)) then
  633. falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)/mstep(i)
  634. falkn(i,k) = ncr(i,k,3)*workn(i,k)/mstep(i)
  635. fall(i,k,1) = fall(i,k,1)+falk(i,k,1)
  636. falln(i,k) = falln(i,k)+falkn(i,k)
  637. qrs(i,k,1) = max(qrs(i,k,1)-falk(i,k,1)*dtcld/den(i,k),0.)
  638. ncr(i,k,3) = max(ncr(i,k,3)-falkn(i,k)*dtcld,0.)
  639. endif
  640. enddo
  641. do k = kte-1, kts, -1
  642. do i = its, ite
  643. if(n.le.mstep(i)) then
  644. falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)/mstep(i)
  645. falkn(i,k) = ncr(i,k,3)*workn(i,k)/mstep(i)
  646. fall(i,k,1) = fall(i,k,1)+falk(i,k,1)
  647. falln(i,k) = falln(i,k)+falkn(i,k)
  648. qrs(i,k,1) = max(qrs(i,k,1)-(falk(i,k,1)-falk(i,k+1,1) &
  649. *delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.)
  650. ncr(i,k,3) = max(ncr(i,k,3)-(falkn(i,k)-falkn(i,k+1)*delz(i,k+1) &
  651. /delz(i,k))*dtcld,0.)
  652. endif
  653. enddo
  654. enddo
  655. do k = kts, kte
  656. do i = its, ite
  657. qrs_tmp(i,k,1) = qrs(i,k,1)
  658. ncr_tmp(i,k) = ncr(i,k,3)
  659. enddo
  660. enddo
  661. call slope_rain(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, &
  662. rslope3,work1,workn,its,ite,kts,kte)
  663. do k = kte, kts, -1
  664. do i = its, ite
  665. work1(i,k,1) = work1(i,k,1)/delz(i,k)
  666. workn(i,k) = workn(i,k)/delz(i,k)
  667. enddo
  668. enddo
  669. enddo
  670. ! for semi
  671. do k = kte, kts, -1
  672. do i = its, ite
  673. works(i,k) = work1(i,k,2)
  674. denqrs2(i,k) = den(i,k)*qrs(i,k,2)
  675. if(qrs(i,k,2).le.0.0) works(i,k) = 0.0
  676. enddo
  677. enddo
  678. call nislfv_rain_plm(idim,kdim,den_tmp,denfac,t,delz_tmp,works,denqrs2, &
  679. delqrs2,dtcld,2,1)
  680. do k = kts, kte
  681. do i = its, ite
  682. qrs(i,k,2) = max(denqrs2(i,k)/den(i,k),0.)
  683. fall(i,k,2) = denqrs2(i,k)*works(i,k)/delz(i,k)
  684. enddo
  685. enddo
  686. do i = its, ite
  687. fall(i,1,2) = delqrs2(i)/delz(i,1)/dtcld
  688. enddo
  689. do k = kts, kte
  690. do i = its, ite
  691. qrs_tmp(i,k,1) = qrs(i,k,1)
  692. qrs_tmp(i,k,2) = qrs(i,k,2)
  693. ncr_tmp(i,k) = ncr(i,k,3)
  694. enddo
  695. enddo
  696. call slope_wdm5(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, &
  697. rslope3,work1,workn,its,ite,kts,kte)
  698. !
  699. do k = kte, kts, -1
  700. do i = its, ite
  701. supcol = t0c-t(i,k)
  702. n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.)
  703. if(t(i,k).gt.t0c.and.qrs(i,k,2).gt.0.) then
  704. !----------------------------------------------------------------
  705. ! psmlt: melting of snow [HL A33] [RH83 A25]
  706. ! (T>T0: QS->QR)
  707. !----------------------------------------------------------------
  708. xlf = xlf0
  709. ! work2(i,k)= venfac(p(i,k),t(i,k),den(i,k))
  710. work2(i,k)= (exp(log(((1.496e-6*((t(i,k))*sqrt(t(i,k))) &
  711. /((t(i,k))+120.)/(den(i,k)))/(8.794e-5 &
  712. *exp(log(t(i,k))*(1.81))/p(i,k)))) &
  713. *((.3333333)))/sqrt((1.496e-6*((t(i,k)) &
  714. *sqrt(t(i,k)))/((t(i,k))+120.)/(den(i,k)))) &
  715. *sqrt(sqrt(den0/(den(i,k)))))
  716. coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2))
  717. ! psmlt(i,k) = xka(t(i,k),den(i,k))/xlf*(t0c-t(i,k))*pi/2. &
  718. ! *n0sfac(i,k)*(precs1*rslope2(i,k,2)+precs2 &
  719. ! *work2(i,k)*coeres)
  720. psmlt(i,k) = (1.414e3*(1.496e-6 * ((t(i,k))*sqrt(t(i,k))) &
  721. /((t(i,k))+120.)/(den(i,k)))*(den(i,k)))/xlf &
  722. *(t0c-t(i,k))*pi/2.*n0sfac(i,k) &
  723. *(precs1*rslope2(i,k,2)+precs2*work2(i,k)*coeres)
  724. psmlt(i,k) = min(max(psmlt(i,k)*dtcld/mstep(i),-qrs(i,k,2) &
  725. /mstep(i)),0.)
  726. !-------------------------------------------------------------------
  727. ! nsmlt: melgin of snow [LH A27]
  728. ! (T>T0: ->NR)
  729. !-------------------------------------------------------------------
  730. if(qrs(i,k,2).gt.qcrmin) then
  731. sfac = rslope(i,k,2)*n0s*n0sfac(i,k)*mstep(i)/qrs(i,k,2)
  732. ncr(i,k,3) = ncr(i,k,3) - sfac*psmlt(i,k)
  733. endif
  734. qrs(i,k,2) = qrs(i,k,2) + psmlt(i,k)
  735. qrs(i,k,1) = qrs(i,k,1) - psmlt(i,k)
  736. t(i,k) = t(i,k) + xlf/cpm(i,k)*psmlt(i,k)
  737. endif
  738. enddo
  739. enddo
  740. !---------------------------------------------------------------
  741. ! Vice [ms-1] : fallout of ice crystal [HDC 5a]
  742. !---------------------------------------------------------------
  743. do k = kte, kts, -1
  744. do i = its, ite
  745. if(qci(i,k,2).le.0.) then
  746. work1c(i,k) = 0.
  747. else
  748. xmi = den(i,k)*qci(i,k,2)/xni(i,k)
  749. diameter = max(min(dicon * sqrt(xmi),dimax), 1.e-25)
  750. work1c(i,k) = 1.49e4*exp(log(diameter)*(1.31))
  751. endif
  752. enddo
  753. enddo
  754. !
  755. ! forward semi-laglangian scheme (JH), PCM (piecewise constant), (linear)
  756. !
  757. do k = kte, kts, -1
  758. do i = its, ite
  759. denqci(i,k) = den(i,k)*qci(i,k,2)
  760. enddo
  761. enddo
  762. call nislfv_rain_plm(idim,kdim,den_tmp,denfac,t,delz_tmp,work1c,denqci, &
  763. delqi,dtcld,1,0)
  764. do k = kts, kte
  765. do i = its, ite
  766. qci(i,k,2) = max(denqci(i,k)/den(i,k),0.)
  767. enddo
  768. enddo
  769. do i = its, ite
  770. fallc(i,1) = delqi(i)/delz(i,1)/dtcld
  771. enddo
  772. !
  773. !----------------------------------------------------------------
  774. ! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf
  775. !
  776. do i = its, ite
  777. fallsum = fall(i,1,1)+fall(i,1,2)+fallc(i,1)
  778. fallsum_qsi = fall(i,1,2)+fallc(i,1)
  779. if(fallsum.gt.0.) then
  780. rainncv(i) = fallsum*delz(i,1)/denr*dtcld*1000. + rainncv(i)
  781. rain(i) = fallsum*delz(i,1)/denr*dtcld*1000.+rain(i)
  782. endif
  783. if(fallsum_qsi.gt.0.) then
  784. tstepsnow(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + tstepsnow(i)
  785. if (PRESENT (snowncv) .and. PRESENT (snow)) then
  786. snowncv(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + snowncv(i)
  787. snow(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000.+snow(i)
  788. endif
  789. endif
  790. if(fallsum.gt.0.)sr(i)= tstepsnow(i)/(rainncv(i)+1.e-12)
  791. enddo
  792. !
  793. !---------------------------------------------------------------
  794. ! pimlt: instantaneous melting of cloud ice [HL A47] [RH83 A28]
  795. ! (T>T0: QI->QC)
  796. !---------------------------------------------------------------
  797. do k = kts, kte
  798. do i = its, ite
  799. supcol = t0c-t(i,k)
  800. xlf = xls-xl(i,k)
  801. if(supcol.lt.0.) xlf = xlf0
  802. if(supcol.lt.0 .and. qci(i,k,2).gt.0.) then
  803. qci(i,k,1) = qci(i,k,1)+qci(i,k,2)
  804. !---------------------------------------------------------------
  805. ! nimlt: instantaneous melting of cloud ice [LH A18]
  806. ! (T>T0: ->NC)
  807. !--------------------------------------------------------------
  808. ncr(i,k,2) = ncr(i,k,2) + xni(i,k)
  809. t(i,k) = t(i,k) - xlf/cpm(i,k)*qci(i,k,2)
  810. qci(i,k,2) = 0.
  811. endif
  812. !---------------------------------------------------------------
  813. ! pihmf: homogeneous freezing of cloud water below -40c [HL A45]
  814. ! (T<-40C: QC->QI)
  815. !---------------------------------------------------------------
  816. if(supcol.gt.40. .and. qci(i,k,1).gt.0.) then
  817. qci(i,k,2) = qci(i,k,2) + qci(i,k,1)
  818. !---------------------------------------------------------------
  819. ! nihmf: homogeneous of cloud water below -40c [LH A17]
  820. ! (T<-40C: NC->)
  821. !---------------------------------------------------------------
  822. if(ncr(i,k,2).gt.0.) ncr(i,k,2) = 0.
  823. t(i,k) = t(i,k) + xlf/cpm(i,k)*qci(i,k,1)
  824. qci(i,k,1) = 0.
  825. endif
  826. !---------------------------------------------------------------
  827. ! pihtf: heterogeneous freezing of cloud water [HL A44]
  828. ! (T0>T>-40C: QC->QI)
  829. !---------------------------------------------------------------
  830. if(supcol.gt.0. .and. qci(i,k,1).gt.0.) then
  831. supcolt=min(supcol,70.)
  832. pfrzdtc = min(pi*pi*pfrz1*(exp(pfrz2*supcolt)-1.)*denr/den(i,k) &
  833. *ncr(i,k,2)*rslopec3(i,k)*rslopec3(i,k)/18.*dtcld,qci(i,k,1))
  834. !---------------------------------------------------------------
  835. ! nihtf: heterogeneous of cloud water [LH A16]
  836. ! (T0>T>-40C: NC->)
  837. !---------------------------------------------------------------
  838. if(ncr(i,k,2).gt.ncmin) then
  839. nfrzdtc = min(pi*pfrz1*(exp(pfrz2*supcolt)-1.)*ncr(i,k,2) &
  840. *rslopec3(i,k)/6.*dtcld,ncr(i,k,2))
  841. ncr(i,k,2) = ncr(i,k,2) - nfrzdtc
  842. endif
  843. qci(i,k,2) = qci(i,k,2) + pfrzdtc
  844. t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtc
  845. qci(i,k,1) = qci(i,k,1)-pfrzdtc
  846. endif
  847. !---------------------------------------------------------------
  848. ! psfrz: freezing of rain water [HL A20] [LFO 45]
  849. ! (T<T0, QR->QS)
  850. !---------------------------------------------------------------
  851. if(supcol.gt.0. .and. qrs(i,k,1).gt.0.) then
  852. supcolt=min(supcol,70.)
  853. pfrzdtr = min(140.*(pi*pi)*pfrz1*ncr(i,k,3)*denr/den(i,k) &
  854. *(exp(pfrz2*supcolt)-1.)*rslope3(i,k,1)*rslope3(i,k,1) &
  855. *dtcld,qrs(i,k,1))
  856. !---------------------------------------------------------------
  857. ! nsfrz: freezing of rain water [LH A26]
  858. ! (T<T0, NR-> )
  859. !---------------------------------------------------------------
  860. if(ncr(i,k,3).gt.nrmin) then
  861. nfrzdtr = min(4.*pi*pfrz1*ncr(i,k,3)*(exp(pfrz2*supcolt)-1.) &
  862. *rslope3(i,k,1)*dtcld,ncr(i,k,3))
  863. ncr(i,k,3) = ncr(i,k,3)-nfrzdtr
  864. endif
  865. qrs(i,k,2) = qrs(i,k,2) + pfrzdtr
  866. t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtr
  867. qrs(i,k,1) = qrs(i,k,1)-pfrzdtr
  868. endif
  869. enddo
  870. enddo
  871. !
  872. do k = kts, kte
  873. do i = its, ite
  874. ncr(i,k,2) = max(ncr(i,k,2),0.0)
  875. ncr(i,k,3) = max(ncr(i,k,3),0.0)
  876. enddo
  877. enddo
  878. !----------------------------------------------------------------
  879. ! update the slope parameters for microphysics computation
  880. !
  881. do k = kts, kte
  882. do i = its, ite
  883. qrs_tmp(i,k,1) = qrs(i,k,1)
  884. qrs_tmp(i,k,2) = qrs(i,k,2)
  885. ncr_tmp(i,k) = ncr(i,k,3)
  886. enddo
  887. enddo
  888. call slope_wdm5(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, &
  889. rslope3,work1,workn,its,ite,kts,kte)
  890. do k = kts, kte
  891. do i = its, ite
  892. !-----------------------------------------------------------------
  893. ! compute the mean-volume drop diameter [LH A10]
  894. ! for raindrop distribution
  895. !-----------------------------------------------------------------
  896. avedia(i,k,2) = rslope(i,k,1)*((24.)**(.3333333))
  897. if(qci(i,k,1).le.qmin .or. ncr(i,k,2).le.ncmin) then
  898. rslopec(i,k) = rslopecmax
  899. rslopec2(i,k) = rslopec2max
  900. rslopec3(i,k) = rslopec3max
  901. else
  902. rslopec(i,k) = 1./lamdac(qci(i,k,1),den(i,k),ncr(i,k,2))
  903. rslopec2(i,k) = rslopec(i,k)*rslopec(i,k)
  904. rslopec3(i,k) = rslopec2(i,k)*rslopec(i,k)
  905. endif
  906. !--------------------------------------------------------------------
  907. ! compute the mean-volume drop diameter [LH A7]
  908. ! for cloud-droplet distribution
  909. !--------------------------------------------------------------------
  910. avedia(i,k,1) = rslopec(i,k)
  911. enddo
  912. enddo
  913. !----------------------------------------------------------------
  914. ! work1: the thermodynamic term in the denominator associated with
  915. ! heat conduction and vapor diffusion
  916. ! (ry88, y93, h85)
  917. ! work2: parameter associated with the ventilation effects(y93)
  918. !
  919. do k = kts, kte
  920. do i = its, ite
  921. ! work1(i,k,1) = diffac(xl(i,k),p(i,k),t(i,k),den(i,k),qs(i,k,1))
  922. work1(i,k,1) = ((((den(i,k))*(xl(i,k))*(xl(i,k)))*((t(i,k))+120.) &
  923. *(den(i,k)))/(1.414e3*(1.496e-6*((t(i,k))*sqrt(t(i,k))))&
  924. *(den(i,k))*(rv*(t(i,k))*(t(i,k))))) &
  925. + p(i,k)/((qs(i,k,1))*(8.794e-5*exp(log(t(i,k))*(1.81))))
  926. ! work1(i,k,2) = diffac(xls,p(i,k),t(i,k),den(i,k),qs(i,k,2))
  927. work1(i,k,2) = ((((den(i,k))*(xls)*(xls))*((t(i,k))+120.)*(den(i,k)))&
  928. /(1.414e3*(1.496e-6*((t(i,k))*sqrt(t(i,k))))*(den(i,k)) &
  929. *(rv*(t(i,k))*(t(i,k)))) &
  930. + p(i,k)/(qs(i,k,2)*(8.794e-5*exp(log(t(i,k))*(1.81)))))
  931. ! work2(i,k) = venfac(p(i,k),t(i,k),den(i,k))
  932. work2(i,k) = (exp(.3333333*log(((1.496e-6 * ((t(i,k))*sqrt(t(i,k)))) &
  933. *p(i,k))/(((t(i,k))+120.)*den(i,k)*(8.794e-5 &
  934. *exp(log(t(i,k))*(1.81))))))*sqrt(sqrt(den0/(den(i,k))))) &
  935. /sqrt((1.496e-6*((t(i,k))*sqrt(t(i,k)))) &
  936. /(((t(i,k))+120.)*den(i,k)))
  937. enddo
  938. enddo
  939. !
  940. !===============================================================
  941. !
  942. ! warm rain processes
  943. !
  944. ! - follows the processes in RH83 and LFO except for autoconcersion
  945. !
  946. !===============================================================
  947. !
  948. do k = kts, kte
  949. do i = its, ite
  950. supsat = max(q(i,k),qmin)-qs(i,k,1)
  951. satdt = supsat/dtcld
  952. !---------------------------------------------------------------
  953. ! praut: auto conversion rate from cloud to rain [LH 9] [CP 17]
  954. ! (QC->QR)
  955. !---------------------------------------------------------------
  956. lencon = 2.7e-2*den(i,k)*qci(i,k,1)*(1.e20/16.*rslopec2(i,k) &
  957. *rslopec2(i,k)-0.4)
  958. lenconcr = max(1.2*lencon,qcrmin)
  959. if(avedia(i,k,1).gt.di15) then
  960. taucon = 3.7/den(i,k)/qci(i,k,1)/(0.5e6*rslopec(i,k)-7.5)
  961. taucon = max(taucon, 1.e-12)
  962. praut(i,k) = lencon/(taucon*den(i,k))
  963. praut(i,k) = min(max(praut(i,k),0.),qci(i,k,1)/dtcld)
  964. !---------------------------------------------------------------
  965. ! nraut: auto conversion rate from cloud to rain [LH A6][CP 18 & 19]
  966. ! (NC->NR)
  967. !---------------------------------------------------------------
  968. nraut(i,k) = 3.5e9*den(i,k)*praut(i,k)
  969. if(qrs(i,k,1).gt.lenconcr) &
  970. nraut(i,k) = ncr(i,k,3)/qrs(i,k,1)*praut(i,k)
  971. nraut(i,k) = min(nraut(i,k),ncr(i,k,2)/dtcld)
  972. endif
  973. !---------------------------------------------------------------
  974. ! pracw: accretion of cloud water by rain [LH 10][CP 22 & 23]
  975. ! (QC->QR)
  976. ! nracw: accretion of cloud water by rain [LH A9]
  977. ! (NC->)
  978. !---------------------------------------------------------------
  979. if(qrs(i,k,1).ge.lenconcr) then
  980. if(avedia(i,k,2).ge.di100) then
  981. nracw(i,k) = min(ncrk1*ncr(i,k,2)*ncr(i,k,3)*(rslopec3(i,k) &
  982. + 24.*rslope3(i,k,1)),ncr(i,k,2)/dtcld)
  983. pracw(i,k) = min(pi/6.*(denr/den(i,k))*ncrk1*ncr(i,k,2) &
  984. *ncr(i,k,3)*rslopec3(i,k)*(2.*rslopec3(i,k) &
  985. + 24.*rslope3(i,k,1)),qci(i,k,1)/dtcld)
  986. else
  987. nracw(i,k) = min(ncrk2*ncr(i,k,2)*ncr(i,k,3)*(2.*rslopec3(i,k) &
  988. *rslopec3(i,k)+5040.*rslope3(i,k,1) &
  989. *rslope3(i,k,1)),ncr(i,k,2)/dtcld)
  990. pracw(i,k) = min(pi/6.*(denr/den(i,k))*ncrk2*ncr(i,k,2) &
  991. *ncr(i,k,3)*rslopec3(i,k)*(6.*rslopec3(i,k) &
  992. *rslopec3(i,k)+5040.*rslope3(i,k,1) &
  993. *rslope3(i,k,1)),qci(i,k,1)/dtcld)
  994. endif
  995. endif
  996. !----------------------------------------------------------------
  997. ! nccol: self collection of cloud water [LH A8][CP 24 & 25]
  998. ! (NC->)
  999. !----------------------------------------------------------------
  1000. if(avedia(i,k,1).ge.di100) then
  1001. nccol(i,k) = ncrk1*ncr(i,k,2)*ncr(i,k,2)*rslopec3(i,k)
  1002. else
  1003. nccol(i,k) = 2.*ncrk2*ncr(i,k,2)*ncr(i,k,2)*rslopec3(i,k) &
  1004. *rslopec3(i,k)
  1005. endif
  1006. !----------------------------------------------------------------
  1007. ! nrcol: self collection of rain-drops and break-up [LH A21][CP 24 & 25]
  1008. ! (NR->)
  1009. !----------------------------------------------------------------
  1010. if(qrs(i,k,1).ge.lenconcr) then
  1011. if(avedia(i,k,2).lt.di100) then
  1012. nrcol(i,k) = 5040.*ncrk2*ncr(i,k,3)*ncr(i,k,3)*rslope3(i,k,1) &
  1013. *rslope3(i,k,1)
  1014. elseif(avedia(i,k,2).ge.di100 .and. avedia(i,k,2).lt.di600) then
  1015. nrcol(i,k) = 24.*ncrk1*ncr(i,k,3)*ncr(i,k,3)*rslope3(i,k,1)
  1016. elseif(avedia(i,k,2).ge.di600 .and. avedia(i,k,2).lt.di2000) then
  1017. coecol = -2.5e3*(avedia(i,k,2)-di600)
  1018. nrcol(i,k) = 24.*exp(coecol)*ncrk1*ncr(i,k,3)*ncr(i,k,3) &
  1019. *rslope3(i,k,1)
  1020. else
  1021. nrcol(i,k) = 0.
  1022. endif
  1023. endif
  1024. !---------------------------------------------------------------
  1025. ! prevp: evaporation/condensation rate of rain [HL A41]
  1026. ! (QV->QR or QR->QV)
  1027. !---------------------------------------------------------------
  1028. if(qrs(i,k,1).gt.0.) then
  1029. coeres = rslope(i,k,1)*sqrt(rslope(i,k,1)*rslopeb(i,k,1))
  1030. prevp(i,k) = (rh(i,k,1)-1.)*ncr(i,k,3)*(precr1*rslope(i,k,1) &
  1031. +precr2*work2(i,k)*coeres)/work1(i,k,1)
  1032. if(prevp(i,k).lt.0.) then
  1033. prevp(i,k) = max(prevp(i,k),-qrs(i,k,1)/dtcld)
  1034. prevp(i,k) = max(prevp(i,k),satdt/2)
  1035. !----------------------------------------------------------------
  1036. ! Nrevp: evaporation/condensation rate of rain [LH A14]
  1037. ! (NR->NCCN)
  1038. !----------------------------------------------------------------
  1039. if(prevp(i,k).eq.-qrs(i,k,1)/dtcld) then
  1040. ncr(i,k,1) = ncr(i,k,1) + ncr(i,k,3)
  1041. ncr(i,k,3) = 0.
  1042. endif
  1043. else
  1044. !
  1045. prevp(i,k) = min(prevp(i,k),satdt/2)
  1046. endif
  1047. endif
  1048. enddo
  1049. enddo
  1050. !
  1051. !===============================================================
  1052. !
  1053. ! cold rain processes
  1054. !
  1055. ! - follows the revised ice microphysics processes in HDC
  1056. ! - the processes same as in RH83 and RH84 and LFO behave
  1057. ! following ice crystal hapits defined in HDC, inclduing
  1058. ! intercept parameter for snow (n0s), ice crystal number
  1059. ! concentration (ni), ice nuclei number concentration
  1060. ! (n0i), ice diameter (d)
  1061. !
  1062. !===============================================================
  1063. !
  1064. rdtcld = 1./dtcld
  1065. do k = kts, kte
  1066. do i = its, ite
  1067. supcol = t0c-t(i,k)
  1068. n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.)
  1069. supsat = max(q(i,k),qmin)-qs(i,k,2)
  1070. satdt = supsat/dtcld
  1071. ifsat = 0
  1072. !-------------------------------------------------------------
  1073. ! Ni: ice crystal number concentraiton [HDC 5c]
  1074. !-------------------------------------------------------------
  1075. ! xni(i,k) = min(max(5.38e7*(den(i,k) &
  1076. ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6)
  1077. temp = (den(i,k)*max(qci(i,k,2),qmin))
  1078. temp = sqrt(sqrt(temp*temp*temp))
  1079. xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6)
  1080. eacrs = exp(0.07*(-supcol))
  1081. !
  1082. if(supcol.gt.0) then
  1083. if(qrs(i,k,2).gt.qcrmin .and. qci(i,k,2).gt.qmin) then
  1084. xmi = den(i,k)*qci(i,k,2)/xni(i,k)
  1085. diameter = min(dicon * sqrt(xmi),dimax)
  1086. vt2i = 1.49e4*diameter**1.31
  1087. vt2s = pvts*rslopeb(i,k,2)*denfac(i,k)
  1088. !---

Large files files are truncated, but you can click here to view the full file