PageRenderTime 61ms CodeModel.GetById 20ms RepoModel.GetById 0ms app.codeStats 0ms

/wrfv2_fire/phys/module_mp_wdm6.F

http://github.com/jbeezley/wrf-fire
FORTRAN Legacy | 2657 lines | 1935 code | 1 blank | 721 comment | 156 complexity | 487eded20e93a0325d996a56a299f8ab MD5 | raw file
Possible License(s): AGPL-1.0

Large files files are truncated, but you can click here to view the full file

  1. #if ( RWORDSIZE == 4 )
  2. # define VREC vsrec
  3. # define VSQRT vssqrt
  4. #else
  5. # define VREC vrec
  6. # define VSQRT vsqrt
  7. #endif
  8. MODULE module_mp_wdm6
  9. !
  10. !
  11. !
  12. REAL, PARAMETER, PRIVATE :: dtcldcr = 120. ! maximum time step for minor loops
  13. REAL, PARAMETER, PRIVATE :: n0r = 8.e6 ! intercept parameter rain
  14. REAL, PARAMETER, PRIVATE :: n0g = 4.e6 ! intercept parameter graupel
  15. REAL, PARAMETER, PRIVATE :: avtr = 841.9 ! a constant for terminal velocity of rain
  16. REAL, PARAMETER, PRIVATE :: bvtr = 0.8 ! a constant for terminal velocity of rain
  17. REAL, PARAMETER, PRIVATE :: r0 = .8e-5 ! 8 microm in contrast to 10 micro m
  18. REAL, PARAMETER, PRIVATE :: peaut = .55 ! collection efficiency
  19. REAL, PARAMETER, PRIVATE :: xncr = 3.e8 ! maritime cloud in contrast to 3.e8 in tc80
  20. REAL, PARAMETER, PRIVATE :: xmyu = 1.718e-5 ! the dynamic viscosity kgm-1s-1
  21. REAL, PARAMETER, PRIVATE :: avts = 11.72 ! a constant for terminal velocity of snow
  22. REAL, PARAMETER, PRIVATE :: bvts = .41 ! a constant for terminal velocity of snow
  23. REAL, PARAMETER, PRIVATE :: avtg = 330. ! a constant for terminal velocity of graupel
  24. REAL, PARAMETER, PRIVATE :: bvtg = 0.8 ! a constant for terminal velocity of graupel
  25. REAL, PARAMETER, PRIVATE :: deng = 500. ! density of graupel
  26. REAL, PARAMETER, PRIVATE :: n0smax = 1.e11 ! maximum n0s (t=-90C unlimited)
  27. REAL, PARAMETER, PRIVATE :: lamdacmax = 1.e10 ! limited maximum value for slope parameter of cloud water
  28. REAL, PARAMETER, PRIVATE :: lamdarmax = 1.e8 ! limited maximum value for slope parameter of rain
  29. REAL, PARAMETER, PRIVATE :: lamdasmax = 1.e5 ! limited maximum value for slope parameter of snow
  30. REAL, PARAMETER, PRIVATE :: lamdagmax = 6.e4 ! limited maximum value for slope parameter of graupel
  31. REAL, PARAMETER, PRIVATE :: dicon = 11.9 ! constant for the cloud-ice diamter
  32. REAL, PARAMETER, PRIVATE :: dimax = 500.e-6 ! limited maximum value for the cloud-ice diamter
  33. REAL, PARAMETER, PRIVATE :: n0s = 2.e6 ! temperature dependent intercept parameter snow
  34. REAL, PARAMETER, PRIVATE :: alpha = .12 ! .122 exponen factor for n0s
  35. REAL, PARAMETER, PRIVATE :: pfrz1 = 100. ! constant in Biggs freezing
  36. REAL, PARAMETER, PRIVATE :: pfrz2 = 0.66 ! constant in Biggs freezing
  37. REAL, PARAMETER, PRIVATE :: qcrmin = 1.e-9 ! minimun values for qr, qs, and qg
  38. REAL, PARAMETER, PRIVATE :: ncmin = 1.e1 ! minimum value for Nc
  39. REAL, PARAMETER, PRIVATE :: nrmin = 1.e-2 ! minimum value for Nr
  40. REAL, PARAMETER, PRIVATE :: eacrc = 1.0 ! Snow/cloud-water collection efficiency
  41. REAL, PARAMETER, PRIVATE :: dens = 100.0 ! Density of snow
  42. REAL, PARAMETER, PRIVATE :: qs0 = 6.e-4 ! threshold amount for aggretion to occur
  43. !
  44. REAL, PARAMETER, PRIVATE :: satmax = 1.0048 ! maximum saturation value for CCN activation
  45. ! 1.008 for maritime /1.0048 for conti
  46. REAL, PARAMETER, PRIVATE :: actk = 0.6 ! parameter for the CCN activation
  47. REAL, PARAMETER, PRIVATE :: actr = 1.5 ! radius of activated CCN drops
  48. REAL, PARAMETER, PRIVATE :: ncrk1 = 3.03e3 ! Long's collection kernel coefficient
  49. REAL, PARAMETER, PRIVATE :: ncrk2 = 2.59e15 ! Long's collection kernel coefficient
  50. REAL, PARAMETER, PRIVATE :: di100 = 1.e-4 ! parameter related with accretion and collection of cloud drops
  51. REAL, PARAMETER, PRIVATE :: di600 = 6.e-4 ! parameter related with accretion and collection of cloud drops
  52. REAL, PARAMETER, PRIVATE :: di2000 = 2000.e-6 ! parameter related with accretion and collection of cloud drops
  53. REAL, PARAMETER, PRIVATE :: di82 = 82.e-6 ! dimater related with raindrops evaporation
  54. REAL, PARAMETER, PRIVATE :: di15 = 15.e-6 ! auto conversion takes place beyond this diameter
  55. !
  56. REAL, SAVE :: &
  57. qc0,qck1,pidnc,bvtr1,bvtr2,bvtr3,bvtr4,bvtr5, &
  58. bvtr6,bvtr7, bvtr2o5,bvtr3o5, &
  59. g1pbr,g2pbr,g3pbr,g4pbr,g5pbr,g6pbr,g7pbr, &
  60. g5pbro2,g7pbro2,pi, &
  61. pvtr,pvtrn,eacrr,pacrr,pidn0r,pidnr, &
  62. precr1,precr2,xmmax,roqimax,bvts1,bvts2, &
  63. bvts3,bvts4,g1pbs,g3pbs,g4pbs,g5pbso2, &
  64. pvts,pacrs,precs1,precs2,pidn0s,xlv1,pacrc, &
  65. bvtg1,bvtg2,bvtg3,bvtg4,g1pbg,g3pbg,g4pbg, &
  66. g5pbgo2,pvtg,pacrg,precg1,precg2,pidn0g, &
  67. rslopecmax,rslopec2max,rslopec3max, &
  68. rslopermax,rslopesmax,rslopegmax, &
  69. rsloperbmax,rslopesbmax,rslopegbmax, &
  70. rsloper2max,rslopes2max,rslopeg2max, &
  71. rsloper3max,rslopes3max,rslopeg3max
  72. CONTAINS
  73. !===================================================================
  74. !
  75. SUBROUTINE wdm6(th, q, qc, qr, qi, qs, qg, &
  76. nn, nc, nr, &
  77. den, pii, p, delz, &
  78. delt,g, cpd, cpv, ccn0, rd, rv, t0c, &
  79. ep1, ep2, qmin, &
  80. XLS, XLV0, XLF0, den0, denr, &
  81. cliq,cice,psat, &
  82. rain, rainncv, &
  83. snow, snowncv, &
  84. sr, &
  85. graupel, graupelncv, &
  86. itimestep, &
  87. ids,ide, jds,jde, kds,kde, &
  88. ims,ime, jms,jme, kms,kme, &
  89. its,ite, jts,jte, kts,kte &
  90. )
  91. !-------------------------------------------------------------------
  92. IMPLICIT NONE
  93. !-------------------------------------------------------------------
  94. !
  95. ! This code is a WRF double-moment 6-class GRAUPEL phase
  96. ! microphyiscs scheme (WDM6). The WDM microphysics scheme predicts
  97. ! number concentrations for warm rain species including clouds and
  98. ! rain. cloud condensation nuclei (CCN) is also predicted.
  99. ! The cold rain species including ice, snow, graupel follow the
  100. ! WRF single-moment 6-class microphysics (WSM6, Hong and Lim 2006)
  101. ! in which theoretical background for WSM ice phase microphysics is
  102. ! based on Hong et al. (2004). A new mixed-phase terminal velocity
  103. ! for precipitating ice is introduced in WSM6 (Dudhia et al. 2008).
  104. ! The WDM scheme is described in Lim and Hong (2010).
  105. ! All units are in m.k.s. and source/sink terms in kgkg-1s-1.
  106. !
  107. ! WDM6 cloud scheme
  108. !
  109. ! Coded by Kyo-Sun Lim and Song-You Hong (Yonsei Univ.) Fall 2008
  110. !
  111. ! Implemented by Kyo-Sun Lim and Jimy Dudhia (NCAR) Winter 2008
  112. !
  113. ! Reference) Lim and Hong (LH, 2010) Mon. Wea. Rev.
  114. ! Juang and Hong (JH, 2010) Mon. Wea. Rev.
  115. ! Hong, Dudhia, Chen (HDC, 2004) Mon. Wea. Rev.
  116. ! Hong and Lim (HL, 2006) J. Korean Meteor. Soc.
  117. ! Cohard and Pinty (CP, 2000) Quart. J. Roy. Meteor. Soc.
  118. ! Khairoutdinov and Kogan (KK, 2000) Mon. Wea. Rev.
  119. ! Dudhia, Hong and Lim (DHL, 2008) J. Meteor. Soc. Japan
  120. !
  121. ! Lin, Farley, Orville (LFO, 1983) J. Appl. Meteor.
  122. ! Rutledge, Hobbs (RH83, 1983) J. Atmos. Sci.
  123. ! Rutledge, Hobbs (RH84, 1984) J. Atmos. Sci.
  124. !
  125. INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , &
  126. ims,ime, jms,jme, kms,kme , &
  127. its,ite, jts,jte, kts,kte
  128. REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), &
  129. INTENT(INOUT) :: &
  130. th, &
  131. q, &
  132. qc, &
  133. qi, &
  134. qr, &
  135. qs, &
  136. qg, &
  137. nn, &
  138. nc, &
  139. nr
  140. REAL, DIMENSION( ims:ime , kms:kme , jms:jme ), &
  141. INTENT(IN ) :: &
  142. den, &
  143. pii, &
  144. p, &
  145. delz
  146. REAL, INTENT(IN ) :: delt, &
  147. g, &
  148. rd, &
  149. rv, &
  150. t0c, &
  151. den0, &
  152. cpd, &
  153. cpv, &
  154. ccn0, &
  155. ep1, &
  156. ep2, &
  157. qmin, &
  158. XLS, &
  159. XLV0, &
  160. XLF0, &
  161. cliq, &
  162. cice, &
  163. psat, &
  164. denr
  165. INTEGER, INTENT(IN ) :: itimestep
  166. REAL, DIMENSION( ims:ime , jms:jme ), &
  167. INTENT(INOUT) :: rain, &
  168. rainncv, &
  169. sr
  170. REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, &
  171. INTENT(INOUT) :: snow, &
  172. snowncv
  173. REAL, DIMENSION( ims:ime , jms:jme ), OPTIONAL, &
  174. INTENT(INOUT) :: graupel, &
  175. graupelncv
  176. ! LOCAL VAR
  177. REAL, DIMENSION( its:ite , kts:kte ) :: t
  178. REAL, DIMENSION( its:ite , kts:kte, 2 ) :: qci
  179. REAL, DIMENSION( its:ite , kts:kte, 3 ) :: qrs, ncr
  180. INTEGER :: i,j,k
  181. !-------------------------------------------------------------------
  182. IF (itimestep .eq. 1) THEN
  183. DO j=jms,jme
  184. DO k=kms,kme
  185. DO i=ims,ime
  186. nn(i,k,j) = ccn0
  187. ENDDO
  188. ENDDO
  189. ENDDO
  190. ENDIF
  191. !
  192. DO j=jts,jte
  193. DO k=kts,kte
  194. DO i=its,ite
  195. t(i,k)=th(i,k,j)*pii(i,k,j)
  196. qci(i,k,1) = qc(i,k,j)
  197. qci(i,k,2) = qi(i,k,j)
  198. qrs(i,k,1) = qr(i,k,j)
  199. qrs(i,k,2) = qs(i,k,j)
  200. qrs(i,k,3) = qg(i,k,j)
  201. ncr(i,k,1) = nn(i,k,j)
  202. ncr(i,k,2) = nc(i,k,j)
  203. ncr(i,k,3) = nr(i,k,j)
  204. ENDDO
  205. ENDDO
  206. ! Sending array starting locations of optional variables may cause
  207. ! troubles, so we explicitly change the call.
  208. CALL wdm62D(t, q(ims,kms,j), qci, qrs, ncr &
  209. ,den(ims,kms,j) &
  210. ,p(ims,kms,j), delz(ims,kms,j) &
  211. ,delt,g, cpd, cpv, ccn0, rd, rv, t0c &
  212. ,ep1, ep2, qmin &
  213. ,XLS, XLV0, XLF0, den0, denr &
  214. ,cliq,cice,psat &
  215. ,j &
  216. ,rain(ims,j),rainncv(ims,j) &
  217. ,sr(ims,j) &
  218. ,ids,ide, jds,jde, kds,kde &
  219. ,ims,ime, jms,jme, kms,kme &
  220. ,its,ite, jts,jte, kts,kte &
  221. ,snow(ims,j),snowncv(ims,j) &
  222. ,graupel(ims,j),graupelncv(ims,j) &
  223. )
  224. DO K=kts,kte
  225. DO I=its,ite
  226. th(i,k,j)=t(i,k)/pii(i,k,j)
  227. qc(i,k,j) = qci(i,k,1)
  228. qi(i,k,j) = qci(i,k,2)
  229. qr(i,k,j) = qrs(i,k,1)
  230. qs(i,k,j) = qrs(i,k,2)
  231. qg(i,k,j) = qrs(i,k,3)
  232. nn(i,k,j) = ncr(i,k,1)
  233. nc(i,k,j) = ncr(i,k,2)
  234. nr(i,k,j) = ncr(i,k,3)
  235. ENDDO
  236. ENDDO
  237. ENDDO
  238. END SUBROUTINE wdm6
  239. !===================================================================
  240. !
  241. SUBROUTINE wdm62D(t, q, qci, qrs, ncr, den, p, delz &
  242. ,delt,g, cpd, cpv, ccn0, rd, rv, t0c &
  243. ,ep1, ep2, qmin &
  244. ,XLS, XLV0, XLF0, den0, denr &
  245. ,cliq,cice,psat &
  246. ,lat &
  247. ,rain,rainncv &
  248. ,sr &
  249. ,ids,ide, jds,jde, kds,kde &
  250. ,ims,ime, jms,jme, kms,kme &
  251. ,its,ite, jts,jte, kts,kte &
  252. ,snow,snowncv &
  253. ,graupel,graupelncv &
  254. )
  255. !-------------------------------------------------------------------
  256. IMPLICIT NONE
  257. !-------------------------------------------------------------------
  258. INTEGER, INTENT(IN ) :: ids,ide, jds,jde, kds,kde , &
  259. ims,ime, jms,jme, kms,kme , &
  260. its,ite, jts,jte, kts,kte , &
  261. lat
  262. REAL, DIMENSION( its:ite , kts:kte ), &
  263. INTENT(INOUT) :: &
  264. t
  265. REAL, DIMENSION( its:ite , kts:kte, 2 ), &
  266. INTENT(INOUT) :: &
  267. qci
  268. REAL, DIMENSION( its:ite , kts:kte, 3 ), &
  269. INTENT(INOUT) :: &
  270. qrs, &
  271. ncr
  272. REAL, DIMENSION( ims:ime , kms:kme ), &
  273. INTENT(INOUT) :: &
  274. q
  275. REAL, DIMENSION( ims:ime , kms:kme ), &
  276. INTENT(IN ) :: &
  277. den, &
  278. p, &
  279. delz
  280. REAL, INTENT(IN ) :: delt, &
  281. g, &
  282. cpd, &
  283. cpv, &
  284. ccn0, &
  285. t0c, &
  286. den0, &
  287. rd, &
  288. rv, &
  289. ep1, &
  290. ep2, &
  291. qmin, &
  292. XLS, &
  293. XLV0, &
  294. XLF0, &
  295. cliq, &
  296. cice, &
  297. psat, &
  298. denr
  299. REAL, DIMENSION( ims:ime ), &
  300. INTENT(INOUT) :: rain, &
  301. rainncv, &
  302. sr
  303. REAL, DIMENSION( ims:ime ), OPTIONAL, &
  304. INTENT(INOUT) :: snow, &
  305. snowncv
  306. REAL, DIMENSION( ims:ime ), OPTIONAL, &
  307. INTENT(INOUT) :: graupel, &
  308. graupelncv
  309. ! LOCAL VAR
  310. REAL, DIMENSION( its:ite , kts:kte , 3) :: &
  311. rh, qs, rslope, rslope2, rslope3, rslopeb, &
  312. falk, fall, work1, qrs_tmp
  313. REAL, DIMENSION( its:ite , kts:kte ) :: &
  314. rslopec, rslopec2,rslopec3
  315. REAL, DIMENSION( its:ite , kts:kte, 2) :: &
  316. avedia
  317. REAL, DIMENSION( its:ite , kts:kte ) :: &
  318. workn,falln,falkn
  319. REAL, DIMENSION( its:ite , kts:kte ) :: &
  320. worka,workr
  321. REAL, DIMENSION( its:ite , kts:kte ) :: &
  322. den_tmp, delz_tmp, ncr_tmp
  323. REAL, DIMENSION( its:ite , kts:kte ) :: &
  324. falkc, work1c, work2c, fallc
  325. REAL, DIMENSION( its:ite , kts:kte ) :: &
  326. pcact, prevp, psdep, pgdep, praut, psaut, pgaut, &
  327. pracw, psacw, pgacw, pgacr, pgacs, psaci, pgmlt, praci, &
  328. piacr, pracs, psacr, pgaci, pseml, pgeml
  329. REAL, DIMENSION( its:ite , kts:kte ) :: paacw
  330. REAL, DIMENSION( its:ite , kts:kte ) :: &
  331. nraut, nracw, ncevp, nccol, nrcol, &
  332. nsacw, ngacw, niacr, nsacr, ngacr, naacw, &
  333. nseml, ngeml, ncact
  334. REAL, DIMENSION( its:ite , kts:kte ) :: &
  335. pigen, pidep, pcond, xl, cpm, work2, psmlt, psevp, &
  336. denfac, xni, pgevp,n0sfac, qsum, &
  337. denqrs1, denqr1, denqrs2, denqrs3, denncr3, denqci
  338. REAL, DIMENSION( its:ite ) :: &
  339. delqrs1, delqrs2, delqrs3, delncr3, delqi
  340. REAL, DIMENSION( its:ite ) :: tstepsnow, tstepgraup
  341. REAL :: gfac, sfac
  342. ! variables for optimization
  343. REAL, DIMENSION( its:ite ) :: tvec1
  344. REAL :: temp
  345. INTEGER, DIMENSION( its:ite ) :: mnstep, numndt
  346. INTEGER, DIMENSION( its:ite ) :: mstep, numdt
  347. LOGICAL, DIMENSION( its:ite ) :: flgcld
  348. REAL :: &
  349. cpmcal, xlcal, lamdac, &
  350. diffus, &
  351. viscos, xka, venfac, conden, diffac, &
  352. x, y, z, a, b, c, d, e, &
  353. ndt, qdt, holdrr, holdrs, holdrg, supcol, supcolt, &
  354. pvt, coeres, supsat, dtcld, xmi, eacrs, satdt, &
  355. qimax, diameter, xni0, roqi0, &
  356. fallsum, fallsum_qsi, fallsum_qg, &
  357. vt2i,vt2r,vt2s,vt2g,acrfac,egs,egi, &
  358. xlwork2, factor, source, value, coecol, &
  359. nfrzdtr, nfrzdtc, &
  360. taucon, lencon, lenconcr, &
  361. xlf, pfrzdtc, pfrzdtr, supice, alpha2, delta2, delta3
  362. REAL :: vt2ave
  363. REAL :: holdc, holdci
  364. !
  365. INTEGER :: i, j, k, mstepmax, &
  366. iprt, latd, lond, loop, loops, ifsat, n, idim, kdim
  367. ! Temporaries used for inlining fpvs function
  368. REAL :: dldti, xb, xai, tr, xbi, xa, hvap, cvap, hsub, dldt, ttp
  369. !
  370. !=================================================================
  371. ! compute internal functions
  372. !
  373. cpmcal(x) = cpd*(1.-max(x,qmin))+max(x,qmin)*cpv
  374. xlcal(x) = xlv0-xlv1*(x-t0c)
  375. !----------------------------------------------------------------
  376. ! size distributions: (x=mixing ratio, y=air density):
  377. ! valid for mixing ratio > 1.e-9 kg/kg.
  378. !
  379. ! Optimizatin : A**B => exp(log(A)*(B))
  380. lamdac(x,y,z)= exp(log(((pidnc*z)/(x*y)))*((.33333333)))
  381. !----------------------------------------------------------------
  382. ! diffus: diffusion coefficient of the water vapor
  383. ! viscos: kinematic viscosity(m2s-1)
  384. !
  385. diffus(x,y) = 8.794e-5 * exp(log(x)*(1.81)) / y ! 8.794e-5*x**1.81/y
  386. viscos(x,y) = 1.496e-6 * (x*sqrt(x)) /(x+120.)/y ! 1.496e-6*x**1.5/(x+120.)/y
  387. xka(x,y) = 1.414e3*viscos(x,y)*y
  388. diffac(a,b,c,d,e) = d*a*a/(xka(c,d)*rv*c*c)+1./(e*diffus(c,b))
  389. venfac(a,b,c) = exp(log((viscos(b,c)/diffus(b,a)))*((.3333333))) &
  390. /sqrt(viscos(b,c))*sqrt(sqrt(den0/c))
  391. conden(a,b,c,d,e) = (max(b,qmin)-c)/(1.+d*d/(rv*e)*c/(a*a))
  392. !
  393. idim = ite-its+1
  394. kdim = kte-kts+1
  395. !
  396. !----------------------------------------------------------------
  397. ! paddint 0 for negative values generated by dynamics
  398. !
  399. do k = kts, kte
  400. do i = its, ite
  401. qci(i,k,1) = max(qci(i,k,1),0.0)
  402. qrs(i,k,1) = max(qrs(i,k,1),0.0)
  403. qci(i,k,2) = max(qci(i,k,2),0.0)
  404. qrs(i,k,2) = max(qrs(i,k,2),0.0)
  405. qrs(i,k,3) = max(qrs(i,k,3),0.0)
  406. ncr(i,k,1) = max(ncr(i,k,1),0.0)
  407. ncr(i,k,2) = max(ncr(i,k,2),0.0)
  408. ncr(i,k,3) = max(ncr(i,k,3),0.0)
  409. enddo
  410. enddo
  411. !
  412. !----------------------------------------------------------------
  413. ! latent heat for phase changes and heat capacity. neglect the
  414. ! changes during microphysical process calculation
  415. ! emanuel(1994)
  416. !
  417. do k = kts, kte
  418. do i = its, ite
  419. cpm(i,k) = cpmcal(q(i,k))
  420. xl(i,k) = xlcal(t(i,k))
  421. enddo
  422. enddo
  423. do k = kts, kte
  424. do i = its, ite
  425. delz_tmp(i,k) = delz(i,k)
  426. den_tmp(i,k) = den(i,k)
  427. enddo
  428. enddo
  429. !
  430. !----------------------------------------------------------------
  431. ! initialize the surface rain, snow, graupel
  432. !
  433. do i = its, ite
  434. rainncv(i) = 0.
  435. if(PRESENT (snowncv) .AND. PRESENT (snow)) snowncv(i) = 0.
  436. if(PRESENT (graupelncv) .AND. PRESENT (graupel)) graupelncv(i) = 0.
  437. sr(i) = 0.
  438. ! new local array to catch step snow and graupel
  439. tstepsnow(i) = 0.
  440. tstepgraup(i) = 0.
  441. enddo
  442. !
  443. !----------------------------------------------------------------
  444. ! compute the minor time steps.
  445. !
  446. loops = max(nint(delt/dtcldcr),1)
  447. dtcld = delt/loops
  448. if(delt.le.dtcldcr) dtcld = delt
  449. !
  450. do loop = 1,loops
  451. !
  452. !----------------------------------------------------------------
  453. ! initialize the large scale variables
  454. !
  455. do i = its, ite
  456. mstep(i) = 1
  457. mnstep(i) = 1
  458. flgcld(i) = .true.
  459. enddo
  460. !
  461. do k = kts, kte
  462. CALL VREC( tvec1(its), den(its,k), ite-its+1)
  463. do i = its, ite
  464. tvec1(i) = tvec1(i)*den0
  465. enddo
  466. CALL VSQRT( denfac(its,k), tvec1(its), ite-its+1)
  467. enddo
  468. !
  469. ! Inline expansion for fpvs
  470. ! qs(i,k,1) = fpvs(t(i,k),0,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c)
  471. ! qs(i,k,2) = fpvs(t(i,k),1,rd,rv,cpv,cliq,cice,xlv0,xls,psat,t0c)
  472. hsub = xls
  473. hvap = xlv0
  474. cvap = cpv
  475. ttp=t0c+0.01
  476. dldt=cvap-cliq
  477. xa=-dldt/rv
  478. xb=xa+hvap/(rv*ttp)
  479. dldti=cvap-cice
  480. xai=-dldti/rv
  481. xbi=xai+hsub/(rv*ttp)
  482. do k = kts, kte
  483. do i = its, ite
  484. tr=ttp/t(i,k)
  485. qs(i,k,1)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr))
  486. qs(i,k,1) = min(qs(i,k,1),0.99*p(i,k))
  487. qs(i,k,1) = ep2 * qs(i,k,1) / (p(i,k) - qs(i,k,1))
  488. qs(i,k,1) = max(qs(i,k,1),qmin)
  489. rh(i,k,1) = max(q(i,k) / qs(i,k,1),qmin)
  490. tr=ttp/t(i,k)
  491. if(t(i,k).lt.ttp) then
  492. qs(i,k,2)=psat*exp(log(tr)*(xai))*exp(xbi*(1.-tr))
  493. else
  494. qs(i,k,2)=psat*exp(log(tr)*(xa))*exp(xb*(1.-tr))
  495. endif
  496. qs(i,k,2) = min(qs(i,k,2),0.99*p(i,k))
  497. qs(i,k,2) = ep2 * qs(i,k,2) / (p(i,k) - qs(i,k,2))
  498. qs(i,k,2) = max(qs(i,k,2),qmin)
  499. rh(i,k,2) = max(q(i,k) / qs(i,k,2),qmin)
  500. enddo
  501. enddo
  502. !
  503. !----------------------------------------------------------------
  504. ! initialize the variables for microphysical physics
  505. !
  506. !
  507. do k = kts, kte
  508. do i = its, ite
  509. prevp(i,k) = 0.
  510. psdep(i,k) = 0.
  511. pgdep(i,k) = 0.
  512. praut(i,k) = 0.
  513. psaut(i,k) = 0.
  514. pgaut(i,k) = 0.
  515. pracw(i,k) = 0.
  516. praci(i,k) = 0.
  517. piacr(i,k) = 0.
  518. psaci(i,k) = 0.
  519. psacw(i,k) = 0.
  520. pracs(i,k) = 0.
  521. psacr(i,k) = 0.
  522. pgacw(i,k) = 0.
  523. paacw(i,k) = 0.
  524. pgaci(i,k) = 0.
  525. pgacr(i,k) = 0.
  526. pgacs(i,k) = 0.
  527. pigen(i,k) = 0.
  528. pidep(i,k) = 0.
  529. pcond(i,k) = 0.
  530. psmlt(i,k) = 0.
  531. pgmlt(i,k) = 0.
  532. pseml(i,k) = 0.
  533. pgeml(i,k) = 0.
  534. psevp(i,k) = 0.
  535. pgevp(i,k) = 0.
  536. pcact(i,k) = 0.
  537. falk(i,k,1) = 0.
  538. falk(i,k,2) = 0.
  539. falk(i,k,3) = 0.
  540. fall(i,k,1) = 0.
  541. fall(i,k,2) = 0.
  542. fall(i,k,3) = 0.
  543. fallc(i,k) = 0.
  544. falkc(i,k) = 0.
  545. falln(i,k) =0.
  546. falkn(i,k) =0.
  547. xni(i,k) = 1.e3
  548. nsacw(i,k) = 0.
  549. ngacw(i,k) = 0.
  550. naacw(i,k) = 0.
  551. niacr(i,k) = 0.
  552. nsacr(i,k) = 0.
  553. ngacr(i,k) = 0.
  554. nseml(i,k) = 0.
  555. ngeml(i,k) = 0.
  556. nracw(i,k) = 0.
  557. nccol(i,k) = 0.
  558. nrcol(i,k) = 0.
  559. ncact(i,k) = 0.
  560. nraut(i,k) = 0.
  561. ncevp(i,k) = 0.
  562. enddo
  563. enddo
  564. do k = kts, kte
  565. do i = its, ite
  566. if(qci(i,k,1).le.qmin .or. ncr(i,k,2).le.ncmin ) then
  567. rslopec(i,k) = rslopecmax
  568. rslopec2(i,k) = rslopec2max
  569. rslopec3(i,k) = rslopec3max
  570. else
  571. rslopec(i,k) = 1./lamdac(qci(i,k,1),den(i,k),ncr(i,k,2))
  572. rslopec2(i,k) = rslopec(i,k)*rslopec(i,k)
  573. rslopec3(i,k) = rslopec2(i,k)*rslopec(i,k)
  574. endif
  575. !-------------------------------------------------------------
  576. ! Ni: ice crystal number concentraiton [HDC 5c]
  577. !-------------------------------------------------------------
  578. temp = (den(i,k)*max(qci(i,k,2),qmin))
  579. temp = sqrt(sqrt(temp*temp*temp))
  580. xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6)
  581. enddo
  582. enddo
  583. !----------------------------------------------------------------
  584. ! compute the fallout term:
  585. ! first, vertical terminal velosity for minor loops
  586. !----------------------------------------------------------------
  587. do k = kts, kte
  588. do i = its, ite
  589. qrs_tmp(i,k,1) = qrs(i,k,1)
  590. qrs_tmp(i,k,2) = qrs(i,k,2)
  591. qrs_tmp(i,k,3) = qrs(i,k,3)
  592. ncr_tmp(i,k) = ncr(i,k,3)
  593. enddo
  594. enddo
  595. call slope_wdm6(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, &
  596. rslope3,work1,workn,its,ite,kts,kte)
  597. !
  598. ! vt update for qr and nr
  599. mstepmax = 1
  600. numdt = 1
  601. do k = kte, kts, -1
  602. do i = its, ite
  603. work1(i,k,1) = work1(i,k,1)/delz(i,k)
  604. workn(i,k) = workn(i,k)/delz(i,k)
  605. numdt(i) = max(nint(max(work1(i,k,1),workn(i,k))*dtcld+.5),1)
  606. if(numdt(i).ge.mstep(i)) mstep(i) = numdt(i)
  607. enddo
  608. enddo
  609. do i = its, ite
  610. if(mstepmax.le.mstep(i)) mstepmax = mstep(i)
  611. enddo
  612. !
  613. do n = 1, mstepmax
  614. k = kte
  615. do i = its, ite
  616. if(n.le.mstep(i)) then
  617. falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)/mstep(i)
  618. falkn(i,k) = ncr(i,k,3)*workn(i,k)/mstep(i)
  619. fall(i,k,1) = fall(i,k,1)+falk(i,k,1)
  620. falln(i,k) = falln(i,k)+falkn(i,k)
  621. qrs(i,k,1) = max(qrs(i,k,1)-falk(i,k,1)*dtcld/den(i,k),0.)
  622. ncr(i,k,3) = max(ncr(i,k,3)-falkn(i,k)*dtcld,0.)
  623. endif
  624. enddo
  625. do k = kte-1, kts, -1
  626. do i = its, ite
  627. if(n.le.mstep(i)) then
  628. falk(i,k,1) = den(i,k)*qrs(i,k,1)*work1(i,k,1)/mstep(i)
  629. falkn(i,k) = ncr(i,k,3)*workn(i,k)/mstep(i)
  630. fall(i,k,1) = fall(i,k,1)+falk(i,k,1)
  631. falln(i,k) = falln(i,k)+falkn(i,k)
  632. qrs(i,k,1) = max(qrs(i,k,1)-(falk(i,k,1)-falk(i,k+1,1) &
  633. *delz(i,k+1)/delz(i,k))*dtcld/den(i,k),0.)
  634. ncr(i,k,3) = max(ncr(i,k,3)-(falkn(i,k)-falkn(i,k+1)*delz(i,k+1) &
  635. /delz(i,k))*dtcld,0.)
  636. endif
  637. enddo
  638. enddo
  639. do k = kts, kte
  640. do i = its, ite
  641. qrs_tmp(i,k,1) = qrs(i,k,1)
  642. ncr_tmp(i,k) = ncr(i,k,3)
  643. enddo
  644. enddo
  645. call slope_rain(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, &
  646. rslope3,work1,workn,its,ite,kts,kte)
  647. do k = kte, kts, -1
  648. do i = its, ite
  649. work1(i,k,1) = work1(i,k,1)/delz(i,k)
  650. workn(i,k) = workn(i,k)/delz(i,k)
  651. enddo
  652. enddo
  653. enddo
  654. ! for semi
  655. do k = kte, kts, -1
  656. do i = its, ite
  657. qsum(i,k) = max( (qrs(i,k,2)+qrs(i,k,3)), 1.E-15)
  658. if(qsum(i,k) .gt. 1.e-15 ) then
  659. worka(i,k) = (work1(i,k,2)*qrs(i,k,2) + work1(i,k,3)*qrs(i,k,3)) &
  660. /qsum(i,k)
  661. else
  662. worka(i,k) = 0.
  663. endif
  664. denqrs2(i,k) = den(i,k)*qrs(i,k,2)
  665. denqrs3(i,k) = den(i,k)*qrs(i,k,3)
  666. enddo
  667. enddo
  668. call nislfv_rain_plm6(idim,kdim,den_tmp,denfac,t,delz_tmp,worka, &
  669. denqrs2,denqrs3,delqrs2,delqrs3,dtcld,1,1)
  670. do k = kts, kte
  671. do i = its, ite
  672. qrs(i,k,2) = max(denqrs2(i,k)/den(i,k),0.)
  673. qrs(i,k,3) = max(denqrs3(i,k)/den(i,k),0.)
  674. fall(i,k,2) = denqrs2(i,k)*worka(i,k)/delz(i,k)
  675. fall(i,k,3) = denqrs3(i,k)*worka(i,k)/delz(i,k)
  676. enddo
  677. enddo
  678. do i = its, ite
  679. fall(i,1,2) = delqrs2(i)/delz(i,1)/dtcld
  680. fall(i,1,3) = delqrs3(i)/delz(i,1)/dtcld
  681. enddo
  682. do k = kts, kte
  683. do i = its, ite
  684. qrs_tmp(i,k,1) = qrs(i,k,1)
  685. qrs_tmp(i,k,2) = qrs(i,k,2)
  686. qrs_tmp(i,k,3) = qrs(i,k,3)
  687. ncr_tmp(i,k) = ncr(i,k,3)
  688. enddo
  689. enddo
  690. call slope_wdm6(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, &
  691. rslope3,work1,workn,its,ite,kts,kte)
  692. !
  693. do k = kte, kts, -1
  694. do i = its, ite
  695. supcol = t0c-t(i,k)
  696. n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.)
  697. if(t(i,k).gt.t0c) then
  698. !---------------------------------------------------------------
  699. ! psmlt: melting of snow [HL A33] [RH83 A25]
  700. ! (T>T0: QS->QR)
  701. !---------------------------------------------------------------
  702. xlf = xlf0
  703. work2(i,k) = venfac(p(i,k),t(i,k),den(i,k))
  704. if(qrs(i,k,2).gt.0.) then
  705. coeres = rslope2(i,k,2)*sqrt(rslope(i,k,2)*rslopeb(i,k,2))
  706. psmlt(i,k) = xka(t(i,k),den(i,k))/xlf*(t0c-t(i,k))*pi/2. &
  707. *n0sfac(i,k)*(precs1*rslope2(i,k,2) &
  708. +precs2*work2(i,k)*coeres)
  709. psmlt(i,k) = min(max(psmlt(i,k)*dtcld/mstep(i),-qrs(i,k,2) &
  710. /mstep(i)),0.)
  711. qrs(i,k,2) = qrs(i,k,2) + psmlt(i,k)
  712. qrs(i,k,1) = qrs(i,k,1) - psmlt(i,k)
  713. !-------------------------------------------------------------------
  714. ! nsmlt: melting of snow [LH A27]
  715. ! (T>T0: ->NR)
  716. !-------------------------------------------------------------------
  717. if(qrs(i,k,2).gt.qcrmin) then
  718. sfac = rslope(i,k,2)*n0s*n0sfac(i,k)/qrs(i,k,2)
  719. ncr(i,k,3) = ncr(i,k,3) - sfac*psmlt(i,k)
  720. endif
  721. t(i,k) = t(i,k) + xlf/cpm(i,k)*psmlt(i,k)
  722. endif
  723. !---------------------------------------------------------------
  724. ! pgmlt: melting of graupel [HL A23] [LFO 47]
  725. ! (T>T0: QG->QR)
  726. !---------------------------------------------------------------
  727. if(qrs(i,k,3).gt.0.) then
  728. coeres = rslope2(i,k,3)*sqrt(rslope(i,k,3)*rslopeb(i,k,3))
  729. pgmlt(i,k) = xka(t(i,k),den(i,k))/xlf*(t0c-t(i,k))*(precg1 &
  730. *rslope2(i,k,3) + precg2*work2(i,k)*coeres)
  731. pgmlt(i,k) = min(max(pgmlt(i,k)*dtcld/mstep(i), &
  732. -qrs(i,k,3)/mstep(i)),0.)
  733. qrs(i,k,3) = qrs(i,k,3) + pgmlt(i,k)
  734. qrs(i,k,1) = qrs(i,k,1) - pgmlt(i,k)
  735. !-------------------------------------------------------------------
  736. ! ngmlt: melting of graupel [LH A28]
  737. ! (T>T0: ->NR)
  738. !-------------------------------------------------------------------
  739. if(qrs(i,k,3).gt.qcrmin) then
  740. gfac = rslope(i,k,3)*n0g/qrs(i,k,3)
  741. ncr(i,k,3) = ncr(i,k,3) - gfac*pgmlt(i,k)
  742. endif
  743. t(i,k) = t(i,k) + xlf/cpm(i,k)*pgmlt(i,k)
  744. endif
  745. endif
  746. enddo
  747. enddo
  748. !---------------------------------------------------------------
  749. ! Vice [ms-1] : fallout of ice crystal [HDC 5a]
  750. !---------------------------------------------------------------
  751. do k = kte, kts, -1
  752. do i = its, ite
  753. if(qci(i,k,2).le.0.) then
  754. work1c(i,k) = 0.
  755. else
  756. xmi = den(i,k)*qci(i,k,2)/xni(i,k)
  757. diameter = max(min(dicon * sqrt(xmi),dimax), 1.e-25)
  758. work1c(i,k) = 1.49e4*exp(log(diameter)*(1.31))
  759. endif
  760. enddo
  761. enddo
  762. !
  763. ! forward semi-laglangian scheme (JH), PCM (piecewise constant), (linear)
  764. !
  765. do k = kte, kts, -1
  766. do i = its, ite
  767. denqci(i,k) = den(i,k)*qci(i,k,2)
  768. enddo
  769. enddo
  770. call nislfv_rain_plmr(idim,kdim,den_tmp,denfac,t,delz_tmp,work1c,denqci,denqci, &
  771. delqi,dtcld,1,0,0)
  772. do k = kts, kte
  773. do i = its, ite
  774. qci(i,k,2) = max(denqci(i,k)/den(i,k),0.)
  775. enddo
  776. enddo
  777. do i = its, ite
  778. fallc(i,1) = delqi(i)/delz(i,1)/dtcld
  779. enddo
  780. !
  781. !----------------------------------------------------------------
  782. ! rain (unit is mm/sec;kgm-2s-1: /1000*delt ===> m)==> mm for wrf
  783. !
  784. do i = its, ite
  785. fallsum = fall(i,kts,1)+fall(i,kts,2)+fall(i,kts,3)+fallc(i,kts)
  786. fallsum_qsi = fall(i,kts,2)+fallc(i,kts)
  787. fallsum_qg = fall(i,kts,3)
  788. if(fallsum.gt.0.) then
  789. rainncv(i) = fallsum*delz(i,kts)/denr*dtcld*1000. + rainncv(i)
  790. rain(i) = fallsum*delz(i,kts)/denr*dtcld*1000. + rain(i)
  791. endif
  792. If(fallsum_qsi.gt.0.) then
  793. tstepsnow(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + tstepsnow(i)
  794. IF( PRESENT (snowncv) .AND. PRESENT (snow)) THEN
  795. snowncv(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + snowncv(i)
  796. snow(i) = fallsum_qsi*delz(i,kts)/denr*dtcld*1000. + snow(i)
  797. ENDIF
  798. ENDIF
  799. IF(fallsum_qg.gt.0.) then
  800. tstepgraup(i) = fallsum_qg*delz(i,kts)/denr*dtcld*1000. &
  801. + tstepgraup(i)
  802. IF( PRESENT (graupelncv) .AND. PRESENT (graupel)) THEN
  803. graupelncv(i) = fallsum_qg*delz(i,kts)/denr*dtcld*1000. &
  804. + graupelncv(i)
  805. graupel(i) = fallsum_qg*delz(i,kts)/denr*dtcld*1000. + graupel(i)
  806. ENDIF
  807. ENDIF
  808. if(fallsum.gt.0.) sr(i) = (tstepsnow(i) + tstepgraup(i)) &
  809. /(rainncv(i)+1.e-12)
  810. enddo
  811. !
  812. !---------------------------------------------------------------
  813. ! pimlt: instantaneous melting of cloud ice [HL A47] [RH83 A28]
  814. ! (T>T0: QI->QC)
  815. !---------------------------------------------------------------
  816. do k = kts, kte
  817. do i = its, ite
  818. supcol = t0c-t(i,k)
  819. xlf = xls-xl(i,k)
  820. if(supcol.lt.0.) xlf = xlf0
  821. if(supcol.lt.0 .and. qci(i,k,2).gt.0.) then
  822. qci(i,k,1) = qci(i,k,1) + qci(i,k,2)
  823. !---------------------------------------------------------------
  824. ! nimlt: instantaneous melting of cloud ice [LH A18]
  825. ! (T>T0: ->NC)
  826. !--------------------------------------------------------------
  827. ncr(i,k,2) = ncr(i,k,2) + xni(i,k)
  828. t(i,k) = t(i,k) - xlf/cpm(i,k)*qci(i,k,2)
  829. qci(i,k,2) = 0.
  830. endif
  831. !---------------------------------------------------------------
  832. ! pihmf: homogeneous of cloud water below -40c [HL A45]
  833. ! (T<-40C: QC->QI)
  834. !---------------------------------------------------------------
  835. if(supcol.gt.40. .and. qci(i,k,1).gt.0.) then
  836. qci(i,k,2) = qci(i,k,2) + qci(i,k,1)
  837. !---------------------------------------------------------------
  838. ! nihmf: homogeneous of cloud water below -40c [LH A17]
  839. ! (T<-40C: NC->)
  840. !---------------------------------------------------------------
  841. if(ncr(i,k,2).gt.0.) ncr(i,k,2) = 0.
  842. t(i,k) = t(i,k) + xlf/cpm(i,k)*qci(i,k,1)
  843. qci(i,k,1) = 0.
  844. endif
  845. !---------------------------------------------------------------
  846. ! pihtf: heterogeneous of cloud water [HL A44]
  847. ! (T0>T>-40C: QC->QI)
  848. !---------------------------------------------------------------
  849. if(supcol.gt.0. .and. qci(i,k,1).gt.qmin) then
  850. supcolt=min(supcol,70.)
  851. pfrzdtc = min(pi*pi*pfrz1*(exp(pfrz2*supcolt)-1.)*denr/den(i,k) &
  852. *ncr(i,k,2)*rslopec3(i,k)*rslopec3(i,k)/18.*dtcld &
  853. ,qci(i,k,1))
  854. !---------------------------------------------------------------
  855. ! nihtf: heterogeneous of cloud water [LH A16]
  856. ! (T0>T>-40C: NC->)
  857. !---------------------------------------------------------------
  858. if(ncr(i,k,2).gt.ncmin) then
  859. nfrzdtc = min(pi*pfrz1*(exp(pfrz2*supcolt)-1.)*ncr(i,k,2) &
  860. *rslopec3(i,k)/6.*dtcld,ncr(i,k,2))
  861. ncr(i,k,2) = ncr(i,k,2) - nfrzdtc
  862. endif
  863. qci(i,k,2) = qci(i,k,2) + pfrzdtc
  864. t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtc
  865. qci(i,k,1) = qci(i,k,1)-pfrzdtc
  866. endif
  867. !---------------------------------------------------------------
  868. ! pgfrz: freezing of rain water [HL A20] [LFO 45]
  869. ! (T<T0, QR->QG)
  870. !---------------------------------------------------------------
  871. if(supcol.gt.0. .and. qrs(i,k,1).gt.0.) then
  872. supcolt=min(supcol,70.)
  873. pfrzdtr = min(140.*(pi*pi)*pfrz1*ncr(i,k,3)*denr/den(i,k) &
  874. *(exp(pfrz2*supcolt)-1.)*rslope3(i,k,1)*rslope3(i,k,1) &
  875. *dtcld,qrs(i,k,1))
  876. !---------------------------------------------------------------
  877. ! ngfrz: freezing of rain water [LH A26]
  878. ! (T<T0, NR-> )
  879. !---------------------------------------------------------------
  880. if(ncr(i,k,3).gt.nrmin) then
  881. nfrzdtr = min(4.*pi*pfrz1*ncr(i,k,3)*(exp(pfrz2*supcolt)-1.) &
  882. *rslope3(i,k,1)*dtcld, ncr(i,k,3))
  883. ncr(i,k,3) = ncr(i,k,3) - nfrzdtr
  884. endif
  885. qrs(i,k,3) = qrs(i,k,3) + pfrzdtr
  886. t(i,k) = t(i,k) + xlf/cpm(i,k)*pfrzdtr
  887. qrs(i,k,1) = qrs(i,k,1) - pfrzdtr
  888. endif
  889. enddo
  890. enddo
  891. !
  892. do k = kts, kte
  893. do i = its, ite
  894. ncr(i,k,2) = max(ncr(i,k,2),0.0)
  895. ncr(i,k,3) = max(ncr(i,k,3),0.0)
  896. enddo
  897. enddo
  898. !
  899. !----------------------------------------------------------------
  900. ! update the slope parameters for microphysics computation
  901. !
  902. do k = kts, kte
  903. do i = its, ite
  904. qrs_tmp(i,k,1) = qrs(i,k,1)
  905. qrs_tmp(i,k,2) = qrs(i,k,2)
  906. qrs_tmp(i,k,3) = qrs(i,k,3)
  907. ncr_tmp(i,k) = ncr(i,k,3)
  908. enddo
  909. enddo
  910. call slope_wdm6(qrs_tmp,ncr_tmp,den_tmp,denfac,t,rslope,rslopeb,rslope2, &
  911. rslope3,work1,workn,its,ite,kts,kte)
  912. do k = kts, kte
  913. do i = its, ite
  914. !-----------------------------------------------------------------
  915. ! compute the mean-volume drop diameter [LH A10]
  916. ! for raindrop distribution
  917. !-----------------------------------------------------------------
  918. avedia(i,k,2) = rslope(i,k,1)*((24.)**(.3333333))
  919. !
  920. if(qci(i,k,1).le.qmin .or. ncr(i,k,2).le.ncmin) then
  921. rslopec(i,k) = rslopecmax
  922. rslopec2(i,k) = rslopec2max
  923. rslopec3(i,k) = rslopec3max
  924. else
  925. rslopec(i,k) = 1./lamdac(qci(i,k,1),den(i,k),ncr(i,k,2))
  926. rslopec2(i,k) = rslopec(i,k)*rslopec(i,k)
  927. rslopec3(i,k) = rslopec2(i,k)*rslopec(i,k)
  928. endif
  929. !--------------------------------------------------------------------
  930. ! compute the mean-volume drop diameter [LH A7]
  931. ! for cloud-droplet distribution
  932. !--------------------------------------------------------------------
  933. avedia(i,k,1) = rslopec(i,k)
  934. enddo
  935. enddo
  936. !
  937. do k = kts, kte
  938. do i = its, ite
  939. work1(i,k,1) = diffac(xl(i,k),p(i,k),t(i,k),den(i,k),qs(i,k,1))
  940. work1(i,k,2) = diffac(xls,p(i,k),t(i,k),den(i,k),qs(i,k,2))
  941. work2(i,k) = venfac(p(i,k),t(i,k),den(i,k))
  942. enddo
  943. enddo
  944. !
  945. !===============================================================
  946. !
  947. ! warm rain processes
  948. !
  949. ! - follows the double-moment processes in Lim and Hong
  950. !
  951. !===============================================================
  952. !
  953. do k = kts, kte
  954. do i = its, ite
  955. supsat = max(q(i,k),qmin)-qs(i,k,1)
  956. satdt = supsat/dtcld
  957. !---------------------------------------------------------------
  958. ! praut: auto conversion rate from cloud to rain [LH 9] [CP 17]
  959. ! (QC->QR)
  960. !--------------------------------------------------------------
  961. lencon = 2.7e-2*den(i,k)*qci(i,k,1)*(1.e20/16.*rslopec2(i,k) &
  962. *rslopec2(i,k)-0.4)
  963. lenconcr = max(1.2*lencon, qcrmin)
  964. if(avedia(i,k,1).gt.di15) then
  965. taucon = 3.7/den(i,k)/qci(i,k,1)/(0.5e6*rslopec(i,k)-7.5)
  966. taucon = max(taucon, 1.e-12)
  967. praut(i,k) = lencon/(taucon*den(i,k))
  968. praut(i,k) = min(max(praut(i,k),0.),qci(i,k,1)/dtcld)
  969. !---------------------------------------------------------------
  970. ! nraut: auto conversion rate from cloud to rain [LH A6] [CP 18 & 19]
  971. ! (NC->NR)
  972. !---------------------------------------------------------------
  973. nraut(i,k) = 3.5e9*den(i,k)*praut(i,k)
  974. if(qrs(i,k,1).gt.lenconcr) &
  975. nraut(i,k) = ncr(i,k,3)/qrs(i,k,1)*praut(i,k)
  976. nraut(i,k) = min(nraut(i,k),ncr(i,k,2)/dtcld)
  977. endif
  978. !---------------------------------------------------------------
  979. ! pracw: accretion of cloud water by rain [LH 10] [CP 22 & 23]
  980. ! (QC->QR)
  981. ! nracw: accretion of cloud water by rain [LH A9]
  982. ! (NC->)
  983. !---------------------------------------------------------------
  984. if(qrs(i,k,1).ge.lenconcr) then
  985. if(avedia(i,k,2).ge.di100) then
  986. nracw(i,k) = min(ncrk1*ncr(i,k,2)*ncr(i,k,3)*(rslopec3(i,k) &
  987. + 24.*rslope3(i,k,1)),ncr(i,k,2)/dtcld)
  988. pracw(i,k) = min(pi/6.*(denr/den(i,k))*ncrk1*ncr(i,k,2) &
  989. *ncr(i,k,3)*rslopec3(i,k)*(2.*rslopec3(i,k) &
  990. + 24.*rslope3(i,k,1)),qci(i,k,1)/dtcld)
  991. else
  992. nracw(i,k) = min(ncrk2*ncr(i,k,2)*ncr(i,k,3)*(2.*rslopec3(i,k) &
  993. *rslopec3(i,k)+5040.*rslope3(i,k,1) &
  994. *rslope3(i,k,1)),ncr(i,k,2)/dtcld)
  995. pracw(i,k) = min(pi/6.*(denr/den(i,k))*ncrk2*ncr(i,k,2) &
  996. *ncr(i,k,3)*rslopec3(i,k)*(6.*rslopec3(i,k) &
  997. *rslopec3(i,k)+5040.*rslope3(i,k,1)*rslope3(i,k,1)) &
  998. ,qci(i,k,1)/dtcld)
  999. endif
  1000. endif
  1001. !----------------------------------------------------------------
  1002. ! nccol: self collection of cloud water [LH A8] [CP 24 & 25]
  1003. ! (NC->)
  1004. !----------------------------------------------------------------
  1005. if(avedia(i,k,1).ge.di100) then
  1006. nccol(i,k) = ncrk1*ncr(i,k,2)*ncr(i,k,2)*rslopec3(i,k)
  1007. else
  1008. nccol(i,k) = 2.*ncrk2*ncr(i,k,2)*ncr(i,k,2)*rslopec3(i,k) &
  1009. *rslopec3(i,k)
  1010. endif
  1011. !----------------------------------------------------------------
  1012. ! nrcol: self collection of rain-drops and break-up [LH A21] [CP 24 & 25]
  1013. ! (NR->)
  1014. !----------------------------------------------------------------
  1015. if(qrs(i,k,1).ge.lenconcr) then
  1016. if(avedia(i,k,2).lt.di100) then
  1017. nrcol(i,k) = 5040.*ncrk2*ncr(i,k,3)*ncr(i,k,3)*rslope3(i,k,1) &
  1018. *rslope3(i,k,1)
  1019. elseif(avedia(i,k,2).ge.di100 .and. avedia(i,k,2).lt.di600) then
  1020. nrcol(i,k) = 24.*ncrk1*ncr(i,k,3)*ncr(i,k,3)*rslope3(i,k,1)
  1021. elseif(avedia(i,k,2).ge.di600 .and. avedia(i,k,2).lt.di2000) then
  1022. coecol = -2.5e3*(avedia(i,k,2)-di600)
  1023. nrcol(i,k) = 24.*exp(coecol)*ncrk1*ncr(i,k,3)*ncr(i,k,3) &
  1024. *rslope3(i,k,1)
  1025. else
  1026. nrcol(i,k) = 0.
  1027. endif
  1028. endif
  1029. !---------------------------------------------------------------
  1030. ! prevp: evaporation/condensation rate of rain [HL A41]
  1031. ! (QV->QR or QR->QV)
  1032. !---------------------------------------------------------------
  1033. if(qrs(i,k,1).gt.0.) then
  1034. coeres = rslope(i,k,1)*sqrt(rslope(i,k,1)*rslopeb(i,k,1))
  1035. prevp(i,k) = (rh(i,k,1)-1.)*ncr(i,k,3)*(precr1*rslope(i,k,1) &
  1036. + precr2*work2(i,k)*coeres)/work1(i,k,1)
  1037. if(prevp(i,k).lt.0.) then
  1038. prevp(i,k) = max(prevp(i,k),-qrs(i,k,1)/dtcld)
  1039. prevp(i,k) = max(prevp(i,k),satdt/2)
  1040. !----------------------------------------------------------------
  1041. ! Nrevp: evaporation/condensation rate of rain [LH A14]
  1042. ! (NR->NCCN)
  1043. !----------------------------------------------------------------
  1044. if(prevp(i,k).eq.-qrs(i,k,1)/dtcld) then
  1045. ncr(i,k,1) = ncr(i,k,1)+ncr(i,k,3)
  1046. ncr(i,k,3) = 0.
  1047. endif
  1048. else
  1049. !
  1050. prevp(i,k) = min(prevp(i,k),satdt/2)
  1051. endif
  1052. endif
  1053. enddo
  1054. enddo
  1055. !
  1056. !===============================================================
  1057. !
  1058. ! cold rain processes
  1059. !
  1060. ! - follows the revised ice microphysics processes in HDC
  1061. ! - the processes same as in RH83 and RH84 and LFO behave
  1062. ! following ice crystal hapits defined in HDC, inclduing
  1063. ! intercept parameter for snow (n0s), ice crystal number
  1064. ! concentration (ni), ice nuclei number concentration
  1065. ! (n0i), ice diameter (d)
  1066. !
  1067. !===============================================================
  1068. !
  1069. do k = kts, kte
  1070. do i = its, ite
  1071. supcol = t0c-t(i,k)
  1072. n0sfac(i,k) = max(min(exp(alpha*supcol),n0smax/n0s),1.)
  1073. supsat = max(q(i,k),qmin)-qs(i,k,2)
  1074. satdt = supsat/dtcld
  1075. ifsat = 0
  1076. !-------------------------------------------------------------
  1077. ! Ni: ice crystal number concentraiton [HDC 5c]
  1078. !-------------------------------------------------------------
  1079. ! xni(i,k) = min(max(5.38e7*(den(i,k) &
  1080. ! *max(qci(i,k,2),qmin))**0.75,1.e3),1.e6)
  1081. temp = (den(i,k)*max(qci(i,k,2),qmin))
  1082. temp = sqrt(sqrt(temp*temp*temp))
  1083. xni(i,k) = min(max(5.38e7*temp,1.e3),1.e6)
  1084. eacrs = exp(0.07*(-supcol))
  1085. !
  1086. xmi = den(i,k)*qci(i,k,2)/xni(i,k)
  1087. diameter = min(dicon * sqrt(xmi),dimax)
  1088. vt2i = 1.49e4*diameter**1.31
  1089. vt2r=pvtr*rslopeb(i,k,1)*denfac(i,k)
  1090. vt2s=pvts*rslopeb(i,k,2)*denfac(i,k)
  1091. vt2g

Large files files are truncated, but you can click here to view the full file