PageRenderTime 78ms CodeModel.GetById 20ms RepoModel.GetById 1ms app.codeStats 0ms

/drivers/net/wireless/broadcom/brcm80211/brcmfmac/firmware.c

http://github.com/mirrors/linux-2.6
C | 752 lines | 573 code | 104 blank | 75 comment | 134 complexity | f05e1c8363f75304d03f7c8749470374 MD5 | raw file
Possible License(s): LGPL-2.0, AGPL-1.0, GPL-2.0
  1. // SPDX-License-Identifier: ISC
  2. /*
  3. * Copyright (c) 2013 Broadcom Corporation
  4. */
  5. #include <linux/efi.h>
  6. #include <linux/kernel.h>
  7. #include <linux/slab.h>
  8. #include <linux/device.h>
  9. #include <linux/firmware.h>
  10. #include <linux/module.h>
  11. #include <linux/bcm47xx_nvram.h>
  12. #include "debug.h"
  13. #include "firmware.h"
  14. #include "core.h"
  15. #include "common.h"
  16. #include "chip.h"
  17. #define BRCMF_FW_MAX_NVRAM_SIZE 64000
  18. #define BRCMF_FW_NVRAM_DEVPATH_LEN 19 /* devpath0=pcie/1/4/ */
  19. #define BRCMF_FW_NVRAM_PCIEDEV_LEN 10 /* pcie/1/4/ + \0 */
  20. #define BRCMF_FW_DEFAULT_BOARDREV "boardrev=0xff"
  21. enum nvram_parser_state {
  22. IDLE,
  23. KEY,
  24. VALUE,
  25. COMMENT,
  26. END
  27. };
  28. /**
  29. * struct nvram_parser - internal info for parser.
  30. *
  31. * @state: current parser state.
  32. * @data: input buffer being parsed.
  33. * @nvram: output buffer with parse result.
  34. * @nvram_len: length of parse result.
  35. * @line: current line.
  36. * @column: current column in line.
  37. * @pos: byte offset in input buffer.
  38. * @entry: start position of key,value entry.
  39. * @multi_dev_v1: detect pcie multi device v1 (compressed).
  40. * @multi_dev_v2: detect pcie multi device v2.
  41. * @boardrev_found: nvram contains boardrev information.
  42. */
  43. struct nvram_parser {
  44. enum nvram_parser_state state;
  45. const u8 *data;
  46. u8 *nvram;
  47. u32 nvram_len;
  48. u32 line;
  49. u32 column;
  50. u32 pos;
  51. u32 entry;
  52. bool multi_dev_v1;
  53. bool multi_dev_v2;
  54. bool boardrev_found;
  55. };
  56. /**
  57. * is_nvram_char() - check if char is a valid one for NVRAM entry
  58. *
  59. * It accepts all printable ASCII chars except for '#' which opens a comment.
  60. * Please note that ' ' (space) while accepted is not a valid key name char.
  61. */
  62. static bool is_nvram_char(char c)
  63. {
  64. /* comment marker excluded */
  65. if (c == '#')
  66. return false;
  67. /* key and value may have any other readable character */
  68. return (c >= 0x20 && c < 0x7f);
  69. }
  70. static bool is_whitespace(char c)
  71. {
  72. return (c == ' ' || c == '\r' || c == '\n' || c == '\t');
  73. }
  74. static enum nvram_parser_state brcmf_nvram_handle_idle(struct nvram_parser *nvp)
  75. {
  76. char c;
  77. c = nvp->data[nvp->pos];
  78. if (c == '\n')
  79. return COMMENT;
  80. if (is_whitespace(c) || c == '\0')
  81. goto proceed;
  82. if (c == '#')
  83. return COMMENT;
  84. if (is_nvram_char(c)) {
  85. nvp->entry = nvp->pos;
  86. return KEY;
  87. }
  88. brcmf_dbg(INFO, "warning: ln=%d:col=%d: ignoring invalid character\n",
  89. nvp->line, nvp->column);
  90. proceed:
  91. nvp->column++;
  92. nvp->pos++;
  93. return IDLE;
  94. }
  95. static enum nvram_parser_state brcmf_nvram_handle_key(struct nvram_parser *nvp)
  96. {
  97. enum nvram_parser_state st = nvp->state;
  98. char c;
  99. c = nvp->data[nvp->pos];
  100. if (c == '=') {
  101. /* ignore RAW1 by treating as comment */
  102. if (strncmp(&nvp->data[nvp->entry], "RAW1", 4) == 0)
  103. st = COMMENT;
  104. else
  105. st = VALUE;
  106. if (strncmp(&nvp->data[nvp->entry], "devpath", 7) == 0)
  107. nvp->multi_dev_v1 = true;
  108. if (strncmp(&nvp->data[nvp->entry], "pcie/", 5) == 0)
  109. nvp->multi_dev_v2 = true;
  110. if (strncmp(&nvp->data[nvp->entry], "boardrev", 8) == 0)
  111. nvp->boardrev_found = true;
  112. } else if (!is_nvram_char(c) || c == ' ') {
  113. brcmf_dbg(INFO, "warning: ln=%d:col=%d: '=' expected, skip invalid key entry\n",
  114. nvp->line, nvp->column);
  115. return COMMENT;
  116. }
  117. nvp->column++;
  118. nvp->pos++;
  119. return st;
  120. }
  121. static enum nvram_parser_state
  122. brcmf_nvram_handle_value(struct nvram_parser *nvp)
  123. {
  124. char c;
  125. char *skv;
  126. char *ekv;
  127. u32 cplen;
  128. c = nvp->data[nvp->pos];
  129. if (!is_nvram_char(c)) {
  130. /* key,value pair complete */
  131. ekv = (u8 *)&nvp->data[nvp->pos];
  132. skv = (u8 *)&nvp->data[nvp->entry];
  133. cplen = ekv - skv;
  134. if (nvp->nvram_len + cplen + 1 >= BRCMF_FW_MAX_NVRAM_SIZE)
  135. return END;
  136. /* copy to output buffer */
  137. memcpy(&nvp->nvram[nvp->nvram_len], skv, cplen);
  138. nvp->nvram_len += cplen;
  139. nvp->nvram[nvp->nvram_len] = '\0';
  140. nvp->nvram_len++;
  141. return IDLE;
  142. }
  143. nvp->pos++;
  144. nvp->column++;
  145. return VALUE;
  146. }
  147. static enum nvram_parser_state
  148. brcmf_nvram_handle_comment(struct nvram_parser *nvp)
  149. {
  150. char *eoc, *sol;
  151. sol = (char *)&nvp->data[nvp->pos];
  152. eoc = strchr(sol, '\n');
  153. if (!eoc) {
  154. eoc = strchr(sol, '\0');
  155. if (!eoc)
  156. return END;
  157. }
  158. /* eat all moving to next line */
  159. nvp->line++;
  160. nvp->column = 1;
  161. nvp->pos += (eoc - sol) + 1;
  162. return IDLE;
  163. }
  164. static enum nvram_parser_state brcmf_nvram_handle_end(struct nvram_parser *nvp)
  165. {
  166. /* final state */
  167. return END;
  168. }
  169. static enum nvram_parser_state
  170. (*nv_parser_states[])(struct nvram_parser *nvp) = {
  171. brcmf_nvram_handle_idle,
  172. brcmf_nvram_handle_key,
  173. brcmf_nvram_handle_value,
  174. brcmf_nvram_handle_comment,
  175. brcmf_nvram_handle_end
  176. };
  177. static int brcmf_init_nvram_parser(struct nvram_parser *nvp,
  178. const u8 *data, size_t data_len)
  179. {
  180. size_t size;
  181. memset(nvp, 0, sizeof(*nvp));
  182. nvp->data = data;
  183. /* Limit size to MAX_NVRAM_SIZE, some files contain lot of comment */
  184. if (data_len > BRCMF_FW_MAX_NVRAM_SIZE)
  185. size = BRCMF_FW_MAX_NVRAM_SIZE;
  186. else
  187. size = data_len;
  188. /* Alloc for extra 0 byte + roundup by 4 + length field */
  189. size += 1 + 3 + sizeof(u32);
  190. nvp->nvram = kzalloc(size, GFP_KERNEL);
  191. if (!nvp->nvram)
  192. return -ENOMEM;
  193. nvp->line = 1;
  194. nvp->column = 1;
  195. return 0;
  196. }
  197. /* brcmf_fw_strip_multi_v1 :Some nvram files contain settings for multiple
  198. * devices. Strip it down for one device, use domain_nr/bus_nr to determine
  199. * which data is to be returned. v1 is the version where nvram is stored
  200. * compressed and "devpath" maps to index for valid entries.
  201. */
  202. static void brcmf_fw_strip_multi_v1(struct nvram_parser *nvp, u16 domain_nr,
  203. u16 bus_nr)
  204. {
  205. /* Device path with a leading '=' key-value separator */
  206. char pci_path[] = "=pci/?/?";
  207. size_t pci_len;
  208. char pcie_path[] = "=pcie/?/?";
  209. size_t pcie_len;
  210. u32 i, j;
  211. bool found;
  212. u8 *nvram;
  213. u8 id;
  214. nvram = kzalloc(nvp->nvram_len + 1 + 3 + sizeof(u32), GFP_KERNEL);
  215. if (!nvram)
  216. goto fail;
  217. /* min length: devpath0=pcie/1/4/ + 0:x=y */
  218. if (nvp->nvram_len < BRCMF_FW_NVRAM_DEVPATH_LEN + 6)
  219. goto fail;
  220. /* First search for the devpathX and see if it is the configuration
  221. * for domain_nr/bus_nr. Search complete nvp
  222. */
  223. snprintf(pci_path, sizeof(pci_path), "=pci/%d/%d", domain_nr,
  224. bus_nr);
  225. pci_len = strlen(pci_path);
  226. snprintf(pcie_path, sizeof(pcie_path), "=pcie/%d/%d", domain_nr,
  227. bus_nr);
  228. pcie_len = strlen(pcie_path);
  229. found = false;
  230. i = 0;
  231. while (i < nvp->nvram_len - BRCMF_FW_NVRAM_DEVPATH_LEN) {
  232. /* Format: devpathX=pcie/Y/Z/
  233. * Y = domain_nr, Z = bus_nr, X = virtual ID
  234. */
  235. if (strncmp(&nvp->nvram[i], "devpath", 7) == 0 &&
  236. (!strncmp(&nvp->nvram[i + 8], pci_path, pci_len) ||
  237. !strncmp(&nvp->nvram[i + 8], pcie_path, pcie_len))) {
  238. id = nvp->nvram[i + 7] - '0';
  239. found = true;
  240. break;
  241. }
  242. while (nvp->nvram[i] != 0)
  243. i++;
  244. i++;
  245. }
  246. if (!found)
  247. goto fail;
  248. /* Now copy all valid entries, release old nvram and assign new one */
  249. i = 0;
  250. j = 0;
  251. while (i < nvp->nvram_len) {
  252. if ((nvp->nvram[i] - '0' == id) && (nvp->nvram[i + 1] == ':')) {
  253. i += 2;
  254. if (strncmp(&nvp->nvram[i], "boardrev", 8) == 0)
  255. nvp->boardrev_found = true;
  256. while (nvp->nvram[i] != 0) {
  257. nvram[j] = nvp->nvram[i];
  258. i++;
  259. j++;
  260. }
  261. nvram[j] = 0;
  262. j++;
  263. }
  264. while (nvp->nvram[i] != 0)
  265. i++;
  266. i++;
  267. }
  268. kfree(nvp->nvram);
  269. nvp->nvram = nvram;
  270. nvp->nvram_len = j;
  271. return;
  272. fail:
  273. kfree(nvram);
  274. nvp->nvram_len = 0;
  275. }
  276. /* brcmf_fw_strip_multi_v2 :Some nvram files contain settings for multiple
  277. * devices. Strip it down for one device, use domain_nr/bus_nr to determine
  278. * which data is to be returned. v2 is the version where nvram is stored
  279. * uncompressed, all relevant valid entries are identified by
  280. * pcie/domain_nr/bus_nr:
  281. */
  282. static void brcmf_fw_strip_multi_v2(struct nvram_parser *nvp, u16 domain_nr,
  283. u16 bus_nr)
  284. {
  285. char prefix[BRCMF_FW_NVRAM_PCIEDEV_LEN];
  286. size_t len;
  287. u32 i, j;
  288. u8 *nvram;
  289. nvram = kzalloc(nvp->nvram_len + 1 + 3 + sizeof(u32), GFP_KERNEL);
  290. if (!nvram)
  291. goto fail;
  292. /* Copy all valid entries, release old nvram and assign new one.
  293. * Valid entries are of type pcie/X/Y/ where X = domain_nr and
  294. * Y = bus_nr.
  295. */
  296. snprintf(prefix, sizeof(prefix), "pcie/%d/%d/", domain_nr, bus_nr);
  297. len = strlen(prefix);
  298. i = 0;
  299. j = 0;
  300. while (i < nvp->nvram_len - len) {
  301. if (strncmp(&nvp->nvram[i], prefix, len) == 0) {
  302. i += len;
  303. if (strncmp(&nvp->nvram[i], "boardrev", 8) == 0)
  304. nvp->boardrev_found = true;
  305. while (nvp->nvram[i] != 0) {
  306. nvram[j] = nvp->nvram[i];
  307. i++;
  308. j++;
  309. }
  310. nvram[j] = 0;
  311. j++;
  312. }
  313. while (nvp->nvram[i] != 0)
  314. i++;
  315. i++;
  316. }
  317. kfree(nvp->nvram);
  318. nvp->nvram = nvram;
  319. nvp->nvram_len = j;
  320. return;
  321. fail:
  322. kfree(nvram);
  323. nvp->nvram_len = 0;
  324. }
  325. static void brcmf_fw_add_defaults(struct nvram_parser *nvp)
  326. {
  327. if (nvp->boardrev_found)
  328. return;
  329. memcpy(&nvp->nvram[nvp->nvram_len], &BRCMF_FW_DEFAULT_BOARDREV,
  330. strlen(BRCMF_FW_DEFAULT_BOARDREV));
  331. nvp->nvram_len += strlen(BRCMF_FW_DEFAULT_BOARDREV);
  332. nvp->nvram[nvp->nvram_len] = '\0';
  333. nvp->nvram_len++;
  334. }
  335. /* brcmf_nvram_strip :Takes a buffer of "<var>=<value>\n" lines read from a fil
  336. * and ending in a NUL. Removes carriage returns, empty lines, comment lines,
  337. * and converts newlines to NULs. Shortens buffer as needed and pads with NULs.
  338. * End of buffer is completed with token identifying length of buffer.
  339. */
  340. static void *brcmf_fw_nvram_strip(const u8 *data, size_t data_len,
  341. u32 *new_length, u16 domain_nr, u16 bus_nr)
  342. {
  343. struct nvram_parser nvp;
  344. u32 pad;
  345. u32 token;
  346. __le32 token_le;
  347. if (brcmf_init_nvram_parser(&nvp, data, data_len) < 0)
  348. return NULL;
  349. while (nvp.pos < data_len) {
  350. nvp.state = nv_parser_states[nvp.state](&nvp);
  351. if (nvp.state == END)
  352. break;
  353. }
  354. if (nvp.multi_dev_v1) {
  355. nvp.boardrev_found = false;
  356. brcmf_fw_strip_multi_v1(&nvp, domain_nr, bus_nr);
  357. } else if (nvp.multi_dev_v2) {
  358. nvp.boardrev_found = false;
  359. brcmf_fw_strip_multi_v2(&nvp, domain_nr, bus_nr);
  360. }
  361. if (nvp.nvram_len == 0) {
  362. kfree(nvp.nvram);
  363. return NULL;
  364. }
  365. brcmf_fw_add_defaults(&nvp);
  366. pad = nvp.nvram_len;
  367. *new_length = roundup(nvp.nvram_len + 1, 4);
  368. while (pad != *new_length) {
  369. nvp.nvram[pad] = 0;
  370. pad++;
  371. }
  372. token = *new_length / 4;
  373. token = (~token << 16) | (token & 0x0000FFFF);
  374. token_le = cpu_to_le32(token);
  375. memcpy(&nvp.nvram[*new_length], &token_le, sizeof(token_le));
  376. *new_length += sizeof(token_le);
  377. return nvp.nvram;
  378. }
  379. void brcmf_fw_nvram_free(void *nvram)
  380. {
  381. kfree(nvram);
  382. }
  383. struct brcmf_fw {
  384. struct device *dev;
  385. struct brcmf_fw_request *req;
  386. u32 curpos;
  387. void (*done)(struct device *dev, int err, struct brcmf_fw_request *req);
  388. };
  389. static void brcmf_fw_request_done(const struct firmware *fw, void *ctx);
  390. #ifdef CONFIG_EFI
  391. /* In some cases the EFI-var stored nvram contains "ccode=ALL" or "ccode=XV"
  392. * to specify "worldwide" compatible settings, but these 2 ccode-s do not work
  393. * properly. "ccode=ALL" causes channels 12 and 13 to not be available,
  394. * "ccode=XV" causes all 5GHz channels to not be available. So we replace both
  395. * with "ccode=X2" which allows channels 12+13 and 5Ghz channels in
  396. * no-Initiate-Radiation mode. This means that we will never send on these
  397. * channels without first having received valid wifi traffic on the channel.
  398. */
  399. static void brcmf_fw_fix_efi_nvram_ccode(char *data, unsigned long data_len)
  400. {
  401. char *ccode;
  402. ccode = strnstr((char *)data, "ccode=ALL", data_len);
  403. if (!ccode)
  404. ccode = strnstr((char *)data, "ccode=XV\r", data_len);
  405. if (!ccode)
  406. return;
  407. ccode[6] = 'X';
  408. ccode[7] = '2';
  409. ccode[8] = '\r';
  410. }
  411. static u8 *brcmf_fw_nvram_from_efi(size_t *data_len_ret)
  412. {
  413. const u16 name[] = { 'n', 'v', 'r', 'a', 'm', 0 };
  414. struct efivar_entry *nvram_efivar;
  415. unsigned long data_len = 0;
  416. u8 *data = NULL;
  417. int err;
  418. nvram_efivar = kzalloc(sizeof(*nvram_efivar), GFP_KERNEL);
  419. if (!nvram_efivar)
  420. return NULL;
  421. memcpy(&nvram_efivar->var.VariableName, name, sizeof(name));
  422. nvram_efivar->var.VendorGuid = EFI_GUID(0x74b00bd9, 0x805a, 0x4d61,
  423. 0xb5, 0x1f, 0x43, 0x26,
  424. 0x81, 0x23, 0xd1, 0x13);
  425. err = efivar_entry_size(nvram_efivar, &data_len);
  426. if (err)
  427. goto fail;
  428. data = kmalloc(data_len, GFP_KERNEL);
  429. if (!data)
  430. goto fail;
  431. err = efivar_entry_get(nvram_efivar, NULL, &data_len, data);
  432. if (err)
  433. goto fail;
  434. brcmf_fw_fix_efi_nvram_ccode(data, data_len);
  435. brcmf_info("Using nvram EFI variable\n");
  436. kfree(nvram_efivar);
  437. *data_len_ret = data_len;
  438. return data;
  439. fail:
  440. kfree(data);
  441. kfree(nvram_efivar);
  442. return NULL;
  443. }
  444. #else
  445. static inline u8 *brcmf_fw_nvram_from_efi(size_t *data_len) { return NULL; }
  446. #endif
  447. static void brcmf_fw_free_request(struct brcmf_fw_request *req)
  448. {
  449. struct brcmf_fw_item *item;
  450. int i;
  451. for (i = 0, item = &req->items[0]; i < req->n_items; i++, item++) {
  452. if (item->type == BRCMF_FW_TYPE_BINARY)
  453. release_firmware(item->binary);
  454. else if (item->type == BRCMF_FW_TYPE_NVRAM)
  455. brcmf_fw_nvram_free(item->nv_data.data);
  456. }
  457. kfree(req);
  458. }
  459. static int brcmf_fw_request_nvram_done(const struct firmware *fw, void *ctx)
  460. {
  461. struct brcmf_fw *fwctx = ctx;
  462. struct brcmf_fw_item *cur;
  463. bool free_bcm47xx_nvram = false;
  464. bool kfree_nvram = false;
  465. u32 nvram_length = 0;
  466. void *nvram = NULL;
  467. u8 *data = NULL;
  468. size_t data_len;
  469. brcmf_dbg(TRACE, "enter: dev=%s\n", dev_name(fwctx->dev));
  470. cur = &fwctx->req->items[fwctx->curpos];
  471. if (fw && fw->data) {
  472. data = (u8 *)fw->data;
  473. data_len = fw->size;
  474. } else {
  475. if ((data = bcm47xx_nvram_get_contents(&data_len)))
  476. free_bcm47xx_nvram = true;
  477. else if ((data = brcmf_fw_nvram_from_efi(&data_len)))
  478. kfree_nvram = true;
  479. else if (!(cur->flags & BRCMF_FW_REQF_OPTIONAL))
  480. goto fail;
  481. }
  482. if (data)
  483. nvram = brcmf_fw_nvram_strip(data, data_len, &nvram_length,
  484. fwctx->req->domain_nr,
  485. fwctx->req->bus_nr);
  486. if (free_bcm47xx_nvram)
  487. bcm47xx_nvram_release_contents(data);
  488. if (kfree_nvram)
  489. kfree(data);
  490. release_firmware(fw);
  491. if (!nvram && !(cur->flags & BRCMF_FW_REQF_OPTIONAL))
  492. goto fail;
  493. brcmf_dbg(TRACE, "nvram %p len %d\n", nvram, nvram_length);
  494. cur->nv_data.data = nvram;
  495. cur->nv_data.len = nvram_length;
  496. return 0;
  497. fail:
  498. return -ENOENT;
  499. }
  500. static int brcmf_fw_complete_request(const struct firmware *fw,
  501. struct brcmf_fw *fwctx)
  502. {
  503. struct brcmf_fw_item *cur = &fwctx->req->items[fwctx->curpos];
  504. int ret = 0;
  505. brcmf_dbg(TRACE, "firmware %s %sfound\n", cur->path, fw ? "" : "not ");
  506. switch (cur->type) {
  507. case BRCMF_FW_TYPE_NVRAM:
  508. ret = brcmf_fw_request_nvram_done(fw, fwctx);
  509. break;
  510. case BRCMF_FW_TYPE_BINARY:
  511. if (fw)
  512. cur->binary = fw;
  513. else
  514. ret = -ENOENT;
  515. break;
  516. default:
  517. /* something fishy here so bail out early */
  518. brcmf_err("unknown fw type: %d\n", cur->type);
  519. release_firmware(fw);
  520. ret = -EINVAL;
  521. }
  522. return (cur->flags & BRCMF_FW_REQF_OPTIONAL) ? 0 : ret;
  523. }
  524. static int brcmf_fw_request_firmware(const struct firmware **fw,
  525. struct brcmf_fw *fwctx)
  526. {
  527. struct brcmf_fw_item *cur = &fwctx->req->items[fwctx->curpos];
  528. int ret;
  529. /* nvram files are board-specific, first try a board-specific path */
  530. if (cur->type == BRCMF_FW_TYPE_NVRAM && fwctx->req->board_type) {
  531. char alt_path[BRCMF_FW_NAME_LEN];
  532. strlcpy(alt_path, cur->path, BRCMF_FW_NAME_LEN);
  533. /* strip .txt at the end */
  534. alt_path[strlen(alt_path) - 4] = 0;
  535. strlcat(alt_path, ".", BRCMF_FW_NAME_LEN);
  536. strlcat(alt_path, fwctx->req->board_type, BRCMF_FW_NAME_LEN);
  537. strlcat(alt_path, ".txt", BRCMF_FW_NAME_LEN);
  538. ret = request_firmware(fw, alt_path, fwctx->dev);
  539. if (ret == 0)
  540. return ret;
  541. }
  542. return request_firmware(fw, cur->path, fwctx->dev);
  543. }
  544. static void brcmf_fw_request_done(const struct firmware *fw, void *ctx)
  545. {
  546. struct brcmf_fw *fwctx = ctx;
  547. int ret;
  548. ret = brcmf_fw_complete_request(fw, fwctx);
  549. while (ret == 0 && ++fwctx->curpos < fwctx->req->n_items) {
  550. brcmf_fw_request_firmware(&fw, fwctx);
  551. ret = brcmf_fw_complete_request(fw, ctx);
  552. }
  553. if (ret) {
  554. brcmf_fw_free_request(fwctx->req);
  555. fwctx->req = NULL;
  556. }
  557. fwctx->done(fwctx->dev, ret, fwctx->req);
  558. kfree(fwctx);
  559. }
  560. static bool brcmf_fw_request_is_valid(struct brcmf_fw_request *req)
  561. {
  562. struct brcmf_fw_item *item;
  563. int i;
  564. if (!req->n_items)
  565. return false;
  566. for (i = 0, item = &req->items[0]; i < req->n_items; i++, item++) {
  567. if (!item->path)
  568. return false;
  569. }
  570. return true;
  571. }
  572. int brcmf_fw_get_firmwares(struct device *dev, struct brcmf_fw_request *req,
  573. void (*fw_cb)(struct device *dev, int err,
  574. struct brcmf_fw_request *req))
  575. {
  576. struct brcmf_fw_item *first = &req->items[0];
  577. struct brcmf_fw *fwctx;
  578. int ret;
  579. brcmf_dbg(TRACE, "enter: dev=%s\n", dev_name(dev));
  580. if (!fw_cb)
  581. return -EINVAL;
  582. if (!brcmf_fw_request_is_valid(req))
  583. return -EINVAL;
  584. fwctx = kzalloc(sizeof(*fwctx), GFP_KERNEL);
  585. if (!fwctx)
  586. return -ENOMEM;
  587. fwctx->dev = dev;
  588. fwctx->req = req;
  589. fwctx->done = fw_cb;
  590. ret = request_firmware_nowait(THIS_MODULE, true, first->path,
  591. fwctx->dev, GFP_KERNEL, fwctx,
  592. brcmf_fw_request_done);
  593. if (ret < 0)
  594. brcmf_fw_request_done(NULL, fwctx);
  595. return 0;
  596. }
  597. struct brcmf_fw_request *
  598. brcmf_fw_alloc_request(u32 chip, u32 chiprev,
  599. const struct brcmf_firmware_mapping mapping_table[],
  600. u32 table_size, struct brcmf_fw_name *fwnames,
  601. u32 n_fwnames)
  602. {
  603. struct brcmf_fw_request *fwreq;
  604. char chipname[12];
  605. const char *mp_path;
  606. size_t mp_path_len;
  607. u32 i, j;
  608. char end = '\0';
  609. for (i = 0; i < table_size; i++) {
  610. if (mapping_table[i].chipid == chip &&
  611. mapping_table[i].revmask & BIT(chiprev))
  612. break;
  613. }
  614. brcmf_chip_name(chip, chiprev, chipname, sizeof(chipname));
  615. if (i == table_size) {
  616. brcmf_err("Unknown chip %s\n", chipname);
  617. return NULL;
  618. }
  619. fwreq = kzalloc(struct_size(fwreq, items, n_fwnames), GFP_KERNEL);
  620. if (!fwreq)
  621. return NULL;
  622. brcmf_info("using %s for chip %s\n",
  623. mapping_table[i].fw_base, chipname);
  624. mp_path = brcmf_mp_global.firmware_path;
  625. mp_path_len = strnlen(mp_path, BRCMF_FW_ALTPATH_LEN);
  626. if (mp_path_len)
  627. end = mp_path[mp_path_len - 1];
  628. fwreq->n_items = n_fwnames;
  629. for (j = 0; j < n_fwnames; j++) {
  630. fwreq->items[j].path = fwnames[j].path;
  631. fwnames[j].path[0] = '\0';
  632. /* check if firmware path is provided by module parameter */
  633. if (brcmf_mp_global.firmware_path[0] != '\0') {
  634. strlcpy(fwnames[j].path, mp_path,
  635. BRCMF_FW_NAME_LEN);
  636. if (end != '/') {
  637. strlcat(fwnames[j].path, "/",
  638. BRCMF_FW_NAME_LEN);
  639. }
  640. }
  641. strlcat(fwnames[j].path, mapping_table[i].fw_base,
  642. BRCMF_FW_NAME_LEN);
  643. strlcat(fwnames[j].path, fwnames[j].extension,
  644. BRCMF_FW_NAME_LEN);
  645. fwreq->items[j].path = fwnames[j].path;
  646. }
  647. return fwreq;
  648. }