wrf-fire /other/Matlab/detection/patch3.m

Language MATLAB Lines 249
MD5 Hash 3d54a621f924530457ea2294d7c2bf74
Repository git://github.com/jbeezley/wrf-fire.git View Raw File View Project SPDX
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
% to create conus.kml:
% download http://firemapper.sc.egov.usda.gov/data_viirs/kml/conus_hist/conus_20120914.kmz
% and gunzip 
% 
% to create w.mat:
% run Adam's simulation, currently results in
%
% /share_home/akochans/WRF341F/wrf-fire/WRFV3/test/em_utfire_1d_med_4km_200m
% then in Matlab
% arrays needed only once
% f='wrfout_d01_2013-08-20_00:00:00'; 
% t=nc2struct(f,{'Times'},{});  n=size(t.times,2)  
% w=nc2struct(f,{'Times','TIGN_G','FXLONG','FXLAT','UNIT_FXLAT','UNIT_FXLONG','XLONG','XLAT','NFUEL_CAT'},{},n);
% save ~/w.mat w    
%
% array at fire resolution every saved timestep
% to create s.mat:
% a=dir('wrfout_d01*');
% s=read_wrfout_sel({a.name},{'FGRNHFX',Times}); 
% save ~/s.mat s 
% 
% arrays at atm resolution every saved timestep
% to create ss.mat
% a=dir('wrfout_d01*')
% s=read_wrfout_sel({a.name},{'Times','UAH','VAH'})
% save ss s
% 
% fuels.m is created by WRF-SFIRE at the beginning of the run

% ****** REQUIRES Matlab 2013a - will not run in earlier versions *******

% run patch_load first

% figures
figmap=2;
fig3d=0;

% convert tign_g to datenum 
w.time=datenum(char(w.times)');
red.tign=(red.tign_g - max(red.tign_g(:)))/(24*60*60) + w.time;
min_tign=min(red.tign(:));
max_tign=max(red.tign(:));

red.tign(find(red.tign==max_tign))=NaN; % squash the top
if fig3d>0,
    figure(fig3d); clf
    hold off
    h=surf(red.fxlong,red.fxlat,red.tign-min_tign); 
    xlabel('longitude'),ylabel('latitude'),zlabel('days')
    set(h,'EdgeAlpha',0,'FaceAlpha',0.5); % show faces only
    drawnow
end

cmap=cmapmod14;
cmap2=cmap;
cmap2(1:7,:)=NaN;
plot_all_level2=true;

figure(figmap);clf
iframe=1;
for i=1:length(r.x),
    x=r.x{i};
    [x.xlon,x.xlat]=meshgrid(x.lon,x.lat);
    if any(x.data(:)>6), % some data present - not all absent, water, or cloud
            figure(figmap);clf
            showmod14(x)
            hold on
            contour(red.fxlong,red.fxlat,red.tign,[x.time x.time],'-r');
            fprintf('image time            %s\n',datestr(x.time));
            fprintf('min wind field time   %s\n',datestr(ss.min_time));
            fprintf('max wind field time   %s\n',datestr(ss.max_time));
            if x.time>=ss.min_time && x.time <= ss.max_time,
                step=interp1(ss.time,ss.num,x.time);
                step0=floor(step);
                if step0 < ss.steps,
                    step1 = step0+1;
                else
                    step1=step0;
                    step0=step1-1;
                end
                w0=step1-step;
                w1=step-step0;
                uu=w0*ss.uh(:,:,step0)+w1*ss.uh(:,:,step1);
                vv=w0*ss.vh(:,:,step0)+w1*ss.vh(:,:,step1);
                fprintf('wind interpolated to %s from\n',datestr(x.time))
                fprintf('step %i %s weight %8.3f\n',step0,datestr(ss.time(step0)),w0)
                fprintf('step %i %s weight %8.3f\n',step1,datestr(ss.time(step1)),w1)
                fprintf('wind interpolated to %s from\n',datestr(x.time))
                sc=0.006;quiver(w.xlong,w.xlat,sc*uu,sc*vv,0);
            end
            hold off
            axis(red.axis)
            drawnow
            M(i)=getframe(gcf);
    end
    if any(x.data(:)>7) && fig3d>0,
            figure(fig3d)
            x.C2=cmap2(x.data+1,:); % translate data to RGB colormap, NaN=no detection
            x.C2=reshape(x.C2,[size(x.data),size(cmap2,2)]);
            hold on
            h2=surf(x.xlon,x.xlat,(v.time-min_tign)*ones(size(x.data)),x.C2);
            set(h2,'EdgeAlpha',0,'FaceAlpha',1); % show faces only
            hold off
            drawnow
    end
end

return

tim_in = tim_all(bii);
u_in = unique(tim_in);
fprintf('detection times from first ignition\n')
for i=1:length(u_in)
    fprintf('%8.5f days %s UTC %3i %s detections\n',u_in(i)-min_tign,...
    datestr(u_in(i)+w.time),sum(tim_in==u_in(i)),detection);
end
detection_bounds=input('enter detection bounds as [upper,lower]: ')
bi = bii & detection_bounds(1)  + min_tign <= tim_all ... 
         & tim_all <= detection_bounds(2)  + min_tign;
% now detection selected in time and space
lon=v.lon(bi);
lat=v.lat(bi);
res=v.res(bi);
tim=tim_all(bi); 
tim_ref = mean(tim);

fprintf('%i detections selected\n',sum(bi)),
fprintf('mean detection time %g days from ignition %s UTC\n',...
    tim_ref-min_tign,datestr(tim_ref+w.time));
fprintf('days from ignition  min %8.5f max %8.5f\n',min(tim)-min_tign,max(tim)-min_tign);
fprintf('longitude           min %8.5f max %8.5f\n',min(lon),max(lon));
fprintf('latitude            min %8.5f max %8.5f\n',min(lat),max(lat));

% detection selected in time and space
lon=v.lon(bi);
lat=v.lat(bi);
res=v.res(bi);
tim=tim_all(bi); 

% plot satellite detection points

% plot3(lon,lat,tim,'ko'),
% m=500; n=500;
[m,n]=size(w.fxlong);
for j=1:length(fuel), W(j)=fuel(j).weight;end
for j=length(fuel)+1:max(c.nfuel_cat(:)),W(j)=NaN;end
T = zeros(m,n);
for j=1:n, for i=1:m
        T(i,j)=W(c.nfuel_cat(i,j));
end,end

while 1
tscale = 1000; % multiply fuel.weight by this to get detection time scale 
a=input('enter [tscale dir add1p add1m add2p add2m] (1,rad,s/m,s/m)\n');
% magic match to u(1) and viirs seems [1000 3*pi/4 -0.0002  -0.0001 0 0.00005]
tscale=a(1)
if tscale<=0, break, end
dir=a(2)
add1p=a(3)
add1m=a(4)
add2p=a(5)
add2m=a(6)

v1=[cos(dir),sin(dir)]; % main direction
v2=[cos(dir+pi/2),sin(dir+pi/2)]; % secondary direction

% find ignition point
[i_ign,j_ign]=find(w.tign_g == min(w.tign_g(:)));
    
% vector field (x,y) - (x_ign,y_ign) 
VDx=(w.fxlong-w.fxlong(i_ign,j_ign))*w.unit_fxlong;
VDy=(w.fxlat-w.fxlat(i_ign,j_ign))*w.unit_fxlat;
    
p1 = VDx*v1(1)+VDy*v1(2); % projections on main direction
p2 = VDx*v2(1)+VDy*v2(2); % projections on secondary direction
[theta,rho]=cart2pol(p1,p2); % in polar coordinates, theta between [-pi,pi]
thetas=pi*[-3/2,-1,-1/2,0,1/2,1,3/2];
deltas=[add2p add1m add2m add1p add2p add1m add2m];
delta = interp1(thetas,deltas,theta,'pchip').*rho;

tign_mod = tign + delta;

% probability of detection, assuming selected times are close
pmap = p_map(tscale*T/(24*60*60),tign_mod - tim_ref);

[mm,nn]=size(w.fxlong);
mi=1:ceil(mm/m):mm;
ni=1:ceil(nn/n):nn;
mesh_fxlong=w.fxlong(mi,ni);
mesh_fxlat=w.fxlat(mi,ni);
mesh_fgrnhfx=s.fgrnhfx(mi,ni,:);
mesh_pmap = pmap(mi,ni); 
mesh_lon = mesh_fxlong(mi,ni);
mesh_lat = mesh_fxlat(mi,ni);
mesh_tign= tign(mi,ni); 

% draw the fireline
figure(1)
hold off, clf
%contour(mesh_fxlong,mesh_fxlat,mesh_tign,[tim_ref,tim_ref]);

% add the detection probability map
%hold on
h=pcolor(mesh_fxlong,mesh_fxlat,pmap);
set(h,'EdgeAlpha',0,'FaceAlpha',0.5);
colorbar
cc=colormap; cc(1,:)=1; colormap(cc);

hold on
plot(w.fxlong(i_ign,j_ign),w.fxlat(i_ign,j_ign),'xk')
fprintf('first ignition at %g %g, marked by black x\n',w.fxlong(i_ign,j_ign),w.fxlat(i_ign,j_ign))
drawnow
pause(1)

% plot detection squares

C=0.5*ones(1,length(res));
rlon=0.5*res/w.unit_fxlong;
rlat=0.5*res/w.unit_fxlat;
X=[lon-rlon,lon+rlon,lon+rlon,lon-rlon]';
Y=[lat-rlat,lat-rlat,lat+rlat,lat+rlat]';
hold on
hh=fill(X,Y,C);
hold off

grid,drawnow

% hold on, (mesh_lon,mesh_lat,mesh_tim2),grid on
assim_string='';if any(delta(:)),assim_string='assimilation',end
daspect([w.unit_fxlat,w.unit_fxlong,1])                % axis aspect ratio length to length
title(sprintf('Barker Canyon fire %s %s %s UTC',...
    assim_string, detection, datestr(tim_ref+w.time)))
ylabel('latitude')
xlabel('longitude')
drawnow

% evaluate likelihood
ndetect=length(res);
likelihood=zeros(1,ndetect);
mask=cell(1,ndetect);
for i=1:ndetect
    mask{i}=lon(i)-rlon(i) <= w.fxlong & w.fxlong <= lon(i)+rlon(i) & ...
            lat(i)-rlat(i) <= w.fxlat  & w.fxlat  <= lat(i)+rlat(i);
    likelihood(i)=ssum(pmap(mask{i}))/ssum(mask{i});
end
likelihood,
total_likelihood=sum(likelihood) % should be really a product if they are independeny
                                 % but the sum seems to work little better
end
Back to Top