pypy /rpython/rlib/rgc.py

Language Python Lines 1294
MD5 Hash a07bb9df184acaba857f19faaf161806 Estimated Cost $24,244 (why?)
Repository https://bitbucket.org/pypy/pypy/ View Raw File View Project SPDX
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
from __future__ import absolute_import

import gc
import types

from rpython.rlib import jit
from rpython.rlib.objectmodel import we_are_translated, enforceargs, specialize
from rpython.rlib.objectmodel import CDefinedIntSymbolic
from rpython.rtyper.extregistry import ExtRegistryEntry
from rpython.rtyper.lltypesystem import lltype, llmemory

# ____________________________________________________________
# General GC features

collect = gc.collect

def set_max_heap_size(nbytes):
    """Limit the heap size to n bytes.
    """
    pass

# for test purposes we allow objects to be pinned and use
# the following list to keep track of the pinned objects
_pinned_objects = []

def pin(obj):
    """If 'obj' can move, then attempt to temporarily fix it.  This
    function returns True if and only if 'obj' could be pinned; this is
    a special state in the GC.  Note that can_move(obj) still returns
    True even on pinned objects, because once unpinned it will indeed be
    able to move again.  In other words, the code that succeeded in
    pinning 'obj' can assume that it won't move until the corresponding
    call to unpin(obj), despite can_move(obj) still being True.  (This
    is important if multiple threads try to os.write() the same string:
    only one of them will succeed in pinning the string.)

    It is expected that the time between pinning and unpinning an object
    is short. Therefore the expected use case is a single function
    invoking pin(obj) and unpin(obj) only a few lines of code apart.

    Note that this can return False for any reason, e.g. if the 'obj' is
    already non-movable or already pinned, if the GC doesn't support
    pinning, or if there are too many pinned objects.

    Note further that pinning an object does not prevent it from being
    collected if it is not used anymore.
    """
    _pinned_objects.append(obj)
    return True
        

class PinEntry(ExtRegistryEntry):
    _about_ = pin

    def compute_result_annotation(self, s_obj):
        from rpython.annotator import model as annmodel
        return annmodel.SomeBool()

    def specialize_call(self, hop):
        hop.exception_cannot_occur()
        return hop.genop('gc_pin', hop.args_v, resulttype=hop.r_result)

def unpin(obj):
    """Unpin 'obj', allowing it to move again.
    Must only be called after a call to pin(obj) returned True.
    """
    for i in range(len(_pinned_objects)):
        try:
            if _pinned_objects[i] == obj:
                del _pinned_objects[i]
                return
        except TypeError:
            pass


class UnpinEntry(ExtRegistryEntry):
    _about_ = unpin

    def compute_result_annotation(self, s_obj):
        pass

    def specialize_call(self, hop):
        hop.exception_cannot_occur()
        hop.genop('gc_unpin', hop.args_v)

def _is_pinned(obj):
    """Method to check if 'obj' is pinned."""
    for i in range(len(_pinned_objects)):
        try:
            if _pinned_objects[i] == obj:
                return True
        except TypeError:
            pass
    return False


class IsPinnedEntry(ExtRegistryEntry):
    _about_ = _is_pinned

    def compute_result_annotation(self, s_obj):
        from rpython.annotator import model as annmodel
        return annmodel.SomeBool()

    def specialize_call(self, hop):
        hop.exception_cannot_occur()
        return hop.genop('gc__is_pinned', hop.args_v, resulttype=hop.r_result)

# ____________________________________________________________
# Annotation and specialization

# Support for collection.

class CollectEntry(ExtRegistryEntry):
    _about_ = gc.collect

    def compute_result_annotation(self, s_gen=None):
        from rpython.annotator import model as annmodel
        return annmodel.s_None

    def specialize_call(self, hop):
        hop.exception_cannot_occur()
        args_v = []
        if len(hop.args_s) == 1:
            args_v = hop.inputargs(lltype.Signed)
        return hop.genop('gc__collect', args_v, resulttype=hop.r_result)

class SetMaxHeapSizeEntry(ExtRegistryEntry):
    _about_ = set_max_heap_size

    def compute_result_annotation(self, s_nbytes):
        from rpython.annotator import model as annmodel
        return annmodel.s_None

    def specialize_call(self, hop):
        [v_nbytes] = hop.inputargs(lltype.Signed)
        hop.exception_cannot_occur()
        return hop.genop('gc_set_max_heap_size', [v_nbytes],
                         resulttype=lltype.Void)

def can_move(p):
    """Check if the GC object 'p' is at an address that can move.
    Must not be called with None.  With non-moving GCs, it is always False.
    With some moving GCs like the SemiSpace GC, it is always True.
    With other moving GCs like the MiniMark GC, it can be True for some
    time, then False for the same object, when we are sure that it won't
    move any more.
    """
    return True

class CanMoveEntry(ExtRegistryEntry):
    _about_ = can_move

    def compute_result_annotation(self, s_p):
        from rpython.annotator import model as annmodel
        return annmodel.SomeBool()

    def specialize_call(self, hop):
        hop.exception_cannot_occur()
        return hop.genop('gc_can_move', hop.args_v, resulttype=hop.r_result)

def _make_sure_does_not_move(p):
    """'p' is a non-null GC object.  This (tries to) make sure that the
    object does not move any more, by forcing collections if needed.
    Warning: should ideally only be used with the minimark GC, and only
    on objects that are already a bit old, so have a chance to be
    already non-movable."""
    assert p
    if not we_are_translated():
        # for testing purpose
        return not _is_pinned(p)
    #
    if _is_pinned(p):
        # although a pinned object can't move we must return 'False'.  A pinned
        # object can be unpinned any time and becomes movable.
        return False
    i = -1
    while can_move(p):
        if i > 6:
            raise NotImplementedError("can't make object non-movable!")
        collect(i)
        i += 1
    return True

def needs_write_barrier(obj):
    """ We need to emit write barrier if the right hand of assignment
    is in nursery, used by the JIT for handling set*_gc(Const)
    """
    if not obj:
        return False
    # XXX returning can_move() here might acidentally work for the use
    # cases (see issue #2212), but this is not really safe.  Now we
    # just return True for any non-NULL pointer, and too bad for the
    # few extra 'cond_call_gc_wb'.  It could be improved e.g. to return
    # False if 'obj' is a static prebuilt constant, or if we're not
    # running incminimark...
    return True #can_move(obj)

def _heap_stats():
    raise NotImplementedError # can't be run directly

class DumpHeapEntry(ExtRegistryEntry):
    _about_ = _heap_stats

    def compute_result_annotation(self):
        from rpython.rtyper.llannotation import SomePtr
        from rpython.memory.gc.base import ARRAY_TYPEID_MAP
        return SomePtr(lltype.Ptr(ARRAY_TYPEID_MAP))

    def specialize_call(self, hop):
        hop.exception_is_here()
        return hop.genop('gc_heap_stats', [], resulttype=hop.r_result)


def copy_struct_item(source, dest, si, di):
    TP = lltype.typeOf(source).TO.OF
    i = 0
    while i < len(TP._names):
        setattr(dest[di], TP._names[i], getattr(source[si], TP._names[i]))
        i += 1

class CopyStructEntry(ExtRegistryEntry):
    _about_ = copy_struct_item

    def compute_result_annotation(self, s_source, s_dest, si, di):
        pass

    def specialize_call(self, hop):
        v_source, v_dest, v_si, v_di = hop.inputargs(hop.args_r[0],
                                                     hop.args_r[1],
                                                     lltype.Signed,
                                                     lltype.Signed)
        hop.exception_cannot_occur()
        TP = v_source.concretetype.TO.OF
        for name, TP in TP._flds.iteritems():
            c_name = hop.inputconst(lltype.Void, name)
            v_fld = hop.genop('getinteriorfield', [v_source, v_si, c_name],
                              resulttype=TP)
            hop.genop('setinteriorfield', [v_dest, v_di, c_name, v_fld])


@specialize.ll()
def copy_item(source, dest, si, di):
    TP = lltype.typeOf(source)
    if isinstance(TP.TO.OF, lltype.Struct):
        copy_struct_item(source, dest, si, di)
    else:
        dest[di] = source[si]

@specialize.memo()
def _contains_gcptr(TP):
    if not isinstance(TP, lltype.Struct):
        if isinstance(TP, lltype.Ptr) and TP.TO._gckind == 'gc':
            return True
        return False
    for TP in TP._flds.itervalues():
        if _contains_gcptr(TP):
            return True
    return False


@jit.oopspec('list.ll_arraycopy(source, dest, source_start, dest_start, length)')
@enforceargs(None, None, int, int, int)
@specialize.ll()
def ll_arraycopy(source, dest, source_start, dest_start, length):
    from rpython.rtyper.lltypesystem.lloperation import llop
    from rpython.rlib.objectmodel import keepalive_until_here

    # XXX: Hack to ensure that we get a proper effectinfo.write_descrs_arrays
    # and also, maybe, speed up very small cases
    if length <= 1:
        if length == 1:
            copy_item(source, dest, source_start, dest_start)
        return

    # supports non-overlapping copies only
    if not we_are_translated():
        if source == dest:
            assert (source_start + length <= dest_start or
                    dest_start + length <= source_start)

    TP = lltype.typeOf(source).TO
    assert TP == lltype.typeOf(dest).TO
    if _contains_gcptr(TP.OF):
        # perform a write barrier that copies necessary flags from
        # source to dest
        if not llop.gc_writebarrier_before_copy(lltype.Bool, source, dest,
                                                source_start, dest_start,
                                                length):
            # if the write barrier is not supported, copy by hand
            i = 0
            while i < length:
                copy_item(source, dest, i + source_start, i + dest_start)
                i += 1
            return
    source_addr = llmemory.cast_ptr_to_adr(source)
    dest_addr   = llmemory.cast_ptr_to_adr(dest)
    cp_source_addr = (source_addr + llmemory.itemoffsetof(TP, 0) +
                      llmemory.sizeof(TP.OF) * source_start)
    cp_dest_addr = (dest_addr + llmemory.itemoffsetof(TP, 0) +
                    llmemory.sizeof(TP.OF) * dest_start)

    llmemory.raw_memcopy(cp_source_addr, cp_dest_addr,
                         llmemory.sizeof(TP.OF) * length)
    keepalive_until_here(source)
    keepalive_until_here(dest)


@jit.oopspec('rgc.ll_shrink_array(p, smallerlength)')
@enforceargs(None, int)
@specialize.ll()
def ll_shrink_array(p, smallerlength):
    from rpython.rtyper.lltypesystem.lloperation import llop
    from rpython.rlib.objectmodel import keepalive_until_here

    if llop.shrink_array(lltype.Bool, p, smallerlength):
        return p    # done by the GC
    # XXX we assume for now that the type of p is GcStruct containing a
    # variable array, with no further pointers anywhere, and exactly one
    # field in the fixed part -- like STR and UNICODE.

    TP = lltype.typeOf(p).TO
    newp = lltype.malloc(TP, smallerlength)

    assert len(TP._names) == 2
    field = getattr(p, TP._names[0])
    setattr(newp, TP._names[0], field)

    ARRAY = getattr(TP, TP._arrayfld)
    offset = (llmemory.offsetof(TP, TP._arrayfld) +
              llmemory.itemoffsetof(ARRAY, 0))
    source_addr = llmemory.cast_ptr_to_adr(p) + offset
    dest_addr = llmemory.cast_ptr_to_adr(newp) + offset
    llmemory.raw_memcopy(source_addr, dest_addr,
                         llmemory.sizeof(ARRAY.OF) * smallerlength)

    keepalive_until_here(p)
    keepalive_until_here(newp)
    return newp

@jit.dont_look_inside
@specialize.ll()
def ll_arrayclear(p):
    # Equivalent to memset(array, 0).  Only for GcArray(primitive-type) for now.
    from rpython.rlib.objectmodel import keepalive_until_here

    length = len(p)
    ARRAY = lltype.typeOf(p).TO
    offset = llmemory.itemoffsetof(ARRAY, 0)
    dest_addr = llmemory.cast_ptr_to_adr(p) + offset
    llmemory.raw_memclear(dest_addr, llmemory.sizeof(ARRAY.OF) * length)
    keepalive_until_here(p)


def no_release_gil(func):
    func._dont_inline_ = True
    func._no_release_gil_ = True
    return func

def no_collect(func):
    func._dont_inline_ = True
    func._gc_no_collect_ = True
    return func

def must_be_light_finalizer(func):
    """Mark a __del__ method as being a destructor, calling only a limited
    set of operations.  See pypy/doc/discussion/finalizer-order.rst.  

    If you use the same decorator on a class, this class and all its
    subclasses are only allowed to have __del__ methods which are
    similarly decorated (or no __del__ at all).  It prevents a class
    hierarchy from having destructors in some parent classes, which are
    overridden in subclasses with (non-light, old-style) finalizers.  
    (This case is the original motivation for FinalizerQueue.)
    """
    func._must_be_light_finalizer_ = True
    return func


class FinalizerQueue(object):
    """A finalizer queue.  See pypy/doc/discussion/finalizer-order.rst.
    Note: only works with the framework GCs (like minimark).  It is
    ignored with Boehm or with refcounting (used by tests).
    """
    # Must be subclassed, and the subclass needs these attributes:
    #
    #    Class:
    #        the class (or base class) of finalized objects
    #
    #    def finalizer_trigger(self):
    #        called to notify that new items have been put in the queue

    def _freeze_(self):
        return True

    @specialize.arg(0)
    @jit.dont_look_inside
    def next_dead(self):
        if we_are_translated():
            from rpython.rtyper.lltypesystem.lloperation import llop
            from rpython.rtyper.rclass import OBJECTPTR
            from rpython.rtyper.annlowlevel import cast_base_ptr_to_instance
            tag = FinalizerQueue._get_tag(self)
            ptr = llop.gc_fq_next_dead(OBJECTPTR, tag)
            return cast_base_ptr_to_instance(self.Class, ptr)
        try:
            return self._queue.popleft()
        except (AttributeError, IndexError):
            return None

    @specialize.arg(0)
    @jit.dont_look_inside
    def register_finalizer(self, obj):
        assert isinstance(obj, self.Class)
        if we_are_translated():
            from rpython.rtyper.lltypesystem.lloperation import llop
            from rpython.rtyper.rclass import OBJECTPTR
            from rpython.rtyper.annlowlevel import cast_instance_to_base_ptr
            tag = FinalizerQueue._get_tag(self)
            ptr = cast_instance_to_base_ptr(obj)
            llop.gc_fq_register(lltype.Void, tag, ptr)
            return
        else:
            self._untranslated_register_finalizer(obj)

    def _get_tag(self):
        "NOT_RPYTHON: special-cased below"

    def _reset(self):
        import collections
        self._weakrefs = set()
        self._queue = collections.deque()

    def _already_registered(self, obj):
        return hasattr(obj, '__enable_del_for_id')

    def _untranslated_register_finalizer(self, obj):
        assert not self._already_registered(obj)

        if not hasattr(self, '_queue'):
            self._reset()

        # Fetch and check the type of 'obj'
        objtyp = obj.__class__
        assert isinstance(objtyp, type), (
            "%r: to run register_finalizer() untranslated, "
            "the object's class must be new-style" % (obj,))
        assert hasattr(obj, '__dict__'), (
            "%r: to run register_finalizer() untranslated, "
            "the object must have a __dict__" % (obj,))
        assert (not hasattr(obj, '__slots__') or
                type(obj).__slots__ == () or
                type(obj).__slots__ == ('__weakref__',)), (
            "%r: to run register_finalizer() untranslated, "
            "the object must not have __slots__" % (obj,))

        # The first time, patch the method __del__ of the class, if
        # any, so that we can disable it on the original 'obj' and
        # enable it only on the 'newobj'
        _fq_patch_class(objtyp)

        # Build a new shadow object with the same class and dict
        newobj = object.__new__(objtyp)
        obj.__dict__ = obj.__dict__.copy() #PyPy: break the dict->obj dependency
        newobj.__dict__ = obj.__dict__

        # A callback that is invoked when (or after) 'obj' is deleted;
        # 'newobj' is still kept alive here
        def callback(wr):
            self._weakrefs.discard(wr)
            self._queue.append(newobj)
            self.finalizer_trigger()

        import weakref
        wr = weakref.ref(obj, callback)
        self._weakrefs.add(wr)

        # Disable __del__ on the original 'obj' and enable it only on
        # the 'newobj'.  Use id() and not a regular reference, because
        # that would make a cycle between 'newobj' and 'obj.__dict__'
        # (which is 'newobj.__dict__' too).
        setattr(obj, '__enable_del_for_id', id(newobj))


def _fq_patch_class(Cls):
    if Cls in _fq_patched_classes:
        return
    if '__del__' in Cls.__dict__:
        def __del__(self):
            if not we_are_translated():
                try:
                    if getattr(self, '__enable_del_for_id') != id(self):
                        return
                except AttributeError:
                    pass
            original_del(self)
        original_del = Cls.__del__
        Cls.__del__ = __del__
        _fq_patched_classes.add(Cls)
    for BaseCls in Cls.__bases__:
        _fq_patch_class(BaseCls)

_fq_patched_classes = set()

class FqTagEntry(ExtRegistryEntry):
    _about_ = FinalizerQueue._get_tag.im_func

    def compute_result_annotation(self, s_fq):
        assert s_fq.is_constant()
        fq = s_fq.const
        s_func = self.bookkeeper.immutablevalue(fq.finalizer_trigger)
        self.bookkeeper.emulate_pbc_call(self.bookkeeper.position_key,
                                         s_func, [])
        if not hasattr(fq, '_fq_tag'):
            fq._fq_tag = CDefinedIntSymbolic(
                '0 /*FinalizerQueue TAG for %s*/' % fq.__class__.__name__,
                default=fq)
        return self.bookkeeper.immutablevalue(fq._fq_tag)

    def specialize_call(self, hop):
        from rpython.rtyper.rclass import InstanceRepr
        translator = hop.rtyper.annotator.translator
        fq = hop.args_s[0].const
        graph = translator._graphof(fq.finalizer_trigger.im_func)
        InstanceRepr.check_graph_of_del_does_not_call_too_much(hop.rtyper,
                                                               graph)
        hop.exception_cannot_occur()
        return hop.inputconst(lltype.Signed, hop.s_result.const)


# ____________________________________________________________


def get_rpy_roots():
    "NOT_RPYTHON"
    # Return the 'roots' from the GC.
    # The gc typically returns a list that ends with a few NULL_GCREFs.
    return [_GcRef(x) for x in gc.get_objects()]

def get_rpy_referents(gcref):
    "NOT_RPYTHON"
    x = gcref._x
    if isinstance(x, list):
        d = x
    elif isinstance(x, dict):
        d = x.keys() + x.values()
    else:
        d = []
        if hasattr(x, '__dict__'):
            d = x.__dict__.values()
        if hasattr(type(x), '__slots__'):
            for slot in type(x).__slots__:
                try:
                    d.append(getattr(x, slot))
                except AttributeError:
                    pass
    # discard objects that are too random or that are _freeze_=True
    return [_GcRef(x) for x in d if _keep_object(x)]

def _keep_object(x):
    if isinstance(x, type) or type(x) is types.ClassType:
        return False      # don't keep any type
    if isinstance(x, (list, dict, str)):
        return True       # keep lists and dicts and strings
    if hasattr(x, '_freeze_'):
        return False
    return type(x).__module__ != '__builtin__'   # keep non-builtins

def add_memory_pressure(estimate):
    """Add memory pressure for OpaquePtrs."""
    pass

class AddMemoryPressureEntry(ExtRegistryEntry):
    _about_ = add_memory_pressure

    def compute_result_annotation(self, s_nbytes):
        from rpython.annotator import model as annmodel
        return annmodel.s_None

    def specialize_call(self, hop):
        [v_size] = hop.inputargs(lltype.Signed)
        hop.exception_cannot_occur()
        return hop.genop('gc_add_memory_pressure', [v_size],
                         resulttype=lltype.Void)


def get_rpy_memory_usage(gcref):
    "NOT_RPYTHON"
    # approximate implementation using CPython's type info
    Class = type(gcref._x)
    size = Class.__basicsize__
    if Class.__itemsize__ > 0:
        size += Class.__itemsize__ * len(gcref._x)
    return size

def get_rpy_type_index(gcref):
    "NOT_RPYTHON"
    from rpython.rlib.rarithmetic import intmask
    Class = gcref._x.__class__
    return intmask(id(Class))

def cast_gcref_to_int(gcref):
    # This is meant to be used on cast_instance_to_gcref results.
    # Don't use this on regular gcrefs obtained e.g. with
    # lltype.cast_opaque_ptr().
    if we_are_translated():
        return lltype.cast_ptr_to_int(gcref)
    else:
        return id(gcref._x)

def dump_rpy_heap(fd):
    "NOT_RPYTHON"
    raise NotImplementedError

def get_typeids_z():
    "NOT_RPYTHON"
    raise NotImplementedError

def get_typeids_list():
    "NOT_RPYTHON"
    raise NotImplementedError

def has_gcflag_extra():
    "NOT_RPYTHON"
    return True
has_gcflag_extra._subopnum = 1

_gcflag_extras = set()

def get_gcflag_extra(gcref):
    "NOT_RPYTHON"
    assert gcref   # not NULL!
    return gcref in _gcflag_extras
get_gcflag_extra._subopnum = 2

def toggle_gcflag_extra(gcref):
    "NOT_RPYTHON"
    assert gcref   # not NULL!
    try:
        _gcflag_extras.remove(gcref)
    except KeyError:
        _gcflag_extras.add(gcref)
toggle_gcflag_extra._subopnum = 3

def assert_no_more_gcflags():
    if not we_are_translated():
        assert not _gcflag_extras

ARRAY_OF_CHAR = lltype.Array(lltype.Char)
NULL_GCREF = lltype.nullptr(llmemory.GCREF.TO)

class _GcRef(object):
    # implementation-specific: there should not be any after translation
    __slots__ = ['_x', '_handle']
    _TYPE = llmemory.GCREF
    def __init__(self, x):
        self._x = x
    def __hash__(self):
        return object.__hash__(self._x)
    def __eq__(self, other):
        if isinstance(other, lltype._ptr):
            assert other == NULL_GCREF, (
                "comparing a _GcRef with a non-NULL lltype ptr")
            return False
        assert isinstance(other, _GcRef)
        return self._x is other._x
    def __ne__(self, other):
        return not self.__eq__(other)
    def __repr__(self):
        return "_GcRef(%r)" % (self._x, )
    def _freeze_(self):
        raise Exception("instances of rlib.rgc._GcRef cannot be translated")

def cast_instance_to_gcref(x):
    # Before translation, casts an RPython instance into a _GcRef.
    # After translation, it is a variant of cast_object_to_ptr(GCREF).
    if we_are_translated():
        from rpython.rtyper import annlowlevel
        x = annlowlevel.cast_instance_to_base_ptr(x)
        return lltype.cast_opaque_ptr(llmemory.GCREF, x)
    else:
        return _GcRef(x)
cast_instance_to_gcref._annspecialcase_ = 'specialize:argtype(0)'

def try_cast_gcref_to_instance(Class, gcref):
    # Before translation, unwraps the RPython instance contained in a _GcRef.
    # After translation, it is a type-check performed by the GC.
    if we_are_translated():
        from rpython.rtyper.rclass import OBJECTPTR, ll_isinstance
        from rpython.rtyper.annlowlevel import cast_base_ptr_to_instance
        if _is_rpy_instance(gcref):
            objptr = lltype.cast_opaque_ptr(OBJECTPTR, gcref)
            if objptr.typeptr:   # may be NULL, e.g. in rdict's dummykeyobj
                clsptr = _get_llcls_from_cls(Class)
                if ll_isinstance(objptr, clsptr):
                    return cast_base_ptr_to_instance(Class, objptr)
        return None
    else:
        if isinstance(gcref._x, Class):
            return gcref._x
        return None
try_cast_gcref_to_instance._annspecialcase_ = 'specialize:arg(0)'

_ffi_cache = None
def _fetch_ffi():
    global _ffi_cache
    if _ffi_cache is None:
        try:
            import _cffi_backend
            _ffi_cache = _cffi_backend.FFI()
        except (ImportError, AttributeError):
            import py
            py.test.skip("need CFFI >= 1.0")
    return _ffi_cache

@jit.dont_look_inside
def hide_nonmovable_gcref(gcref):
    from rpython.rtyper.lltypesystem import lltype, llmemory, rffi
    if we_are_translated():
        assert lltype.typeOf(gcref) == llmemory.GCREF
        assert not can_move(gcref)
        return rffi.cast(llmemory.Address, gcref)
    else:
        assert isinstance(gcref, _GcRef)
        x = gcref._x
        ffi = _fetch_ffi()
        if not hasattr(x, '__handle'):
            x.__handle = ffi.new_handle(x)
        addr = int(ffi.cast("intptr_t", x.__handle))
        return rffi.cast(llmemory.Address, addr)

@jit.dont_look_inside
def reveal_gcref(addr):
    from rpython.rtyper.lltypesystem import lltype, llmemory, rffi
    assert lltype.typeOf(addr) == llmemory.Address
    if we_are_translated():
        return rffi.cast(llmemory.GCREF, addr)
    else:
        addr = rffi.cast(lltype.Signed, addr)
        if addr == 0:
            return lltype.nullptr(llmemory.GCREF.TO)
        ffi = _fetch_ffi()
        x = ffi.from_handle(ffi.cast("void *", addr))
        return _GcRef(x)

# ------------------- implementation -------------------

_cache_s_list_of_gcrefs = None

def s_list_of_gcrefs():
    global _cache_s_list_of_gcrefs
    if _cache_s_list_of_gcrefs is None:
        from rpython.annotator import model as annmodel
        from rpython.rtyper.llannotation import SomePtr
        from rpython.annotator.listdef import ListDef
        s_gcref = SomePtr(llmemory.GCREF)
        _cache_s_list_of_gcrefs = annmodel.SomeList(
            ListDef(None, s_gcref, mutated=True, resized=False))
    return _cache_s_list_of_gcrefs

class Entry(ExtRegistryEntry):
    _about_ = get_rpy_roots
    def compute_result_annotation(self):
        return s_list_of_gcrefs()
    def specialize_call(self, hop):
        hop.exception_cannot_occur()
        return hop.genop('gc_get_rpy_roots', [], resulttype = hop.r_result)

class Entry(ExtRegistryEntry):
    _about_ = get_rpy_referents

    def compute_result_annotation(self, s_gcref):
        from rpython.rtyper.llannotation import SomePtr
        assert SomePtr(llmemory.GCREF).contains(s_gcref)
        return s_list_of_gcrefs()

    def specialize_call(self, hop):
        vlist = hop.inputargs(hop.args_r[0])
        hop.exception_cannot_occur()
        return hop.genop('gc_get_rpy_referents', vlist,
                         resulttype=hop.r_result)

class Entry(ExtRegistryEntry):
    _about_ = get_rpy_memory_usage
    def compute_result_annotation(self, s_gcref):
        from rpython.annotator import model as annmodel
        return annmodel.SomeInteger()
    def specialize_call(self, hop):
        vlist = hop.inputargs(hop.args_r[0])
        hop.exception_cannot_occur()
        return hop.genop('gc_get_rpy_memory_usage', vlist,
                         resulttype = hop.r_result)

class Entry(ExtRegistryEntry):
    _about_ = get_rpy_type_index
    def compute_result_annotation(self, s_gcref):
        from rpython.annotator import model as annmodel
        return annmodel.SomeInteger()
    def specialize_call(self, hop):
        vlist = hop.inputargs(hop.args_r[0])
        hop.exception_cannot_occur()
        return hop.genop('gc_get_rpy_type_index', vlist,
                         resulttype = hop.r_result)

def _is_rpy_instance(gcref):
    "NOT_RPYTHON"
    raise NotImplementedError

def _get_llcls_from_cls(Class):
    "NOT_RPYTHON"
    raise NotImplementedError

class Entry(ExtRegistryEntry):
    _about_ = _is_rpy_instance
    def compute_result_annotation(self, s_gcref):
        from rpython.annotator import model as annmodel
        return annmodel.SomeBool()
    def specialize_call(self, hop):
        vlist = hop.inputargs(hop.args_r[0])
        hop.exception_cannot_occur()
        return hop.genop('gc_is_rpy_instance', vlist,
                         resulttype = hop.r_result)

class Entry(ExtRegistryEntry):
    _about_ = _get_llcls_from_cls
    def compute_result_annotation(self, s_Class):
        from rpython.rtyper.llannotation import SomePtr
        from rpython.rtyper.rclass import CLASSTYPE
        assert s_Class.is_constant()
        return SomePtr(CLASSTYPE)

    def specialize_call(self, hop):
        from rpython.rtyper.rclass import getclassrepr, CLASSTYPE
        from rpython.flowspace.model import Constant
        Class = hop.args_s[0].const
        classdef = hop.rtyper.annotator.bookkeeper.getuniqueclassdef(Class)
        classrepr = getclassrepr(hop.rtyper, classdef)
        vtable = classrepr.getvtable()
        assert lltype.typeOf(vtable) == CLASSTYPE
        hop.exception_cannot_occur()
        return Constant(vtable, concretetype=CLASSTYPE)

class Entry(ExtRegistryEntry):
    _about_ = dump_rpy_heap
    def compute_result_annotation(self, s_fd):
        from rpython.annotator.model import s_Bool
        return s_Bool
    def specialize_call(self, hop):
        vlist = hop.inputargs(lltype.Signed)
        hop.exception_is_here()
        return hop.genop('gc_dump_rpy_heap', vlist, resulttype = hop.r_result)

class Entry(ExtRegistryEntry):
    _about_ = get_typeids_z

    def compute_result_annotation(self):
        from rpython.rtyper.llannotation import SomePtr
        return SomePtr(lltype.Ptr(ARRAY_OF_CHAR))

    def specialize_call(self, hop):
        hop.exception_is_here()
        return hop.genop('gc_typeids_z', [], resulttype = hop.r_result)

class Entry(ExtRegistryEntry):
    _about_ = get_typeids_list

    def compute_result_annotation(self):
        from rpython.rtyper.llannotation import SomePtr
        from rpython.rtyper.lltypesystem import llgroup
        return SomePtr(lltype.Ptr(lltype.Array(llgroup.HALFWORD)))

    def specialize_call(self, hop):
        hop.exception_is_here()
        return hop.genop('gc_typeids_list', [], resulttype = hop.r_result)

class Entry(ExtRegistryEntry):
    _about_ = (has_gcflag_extra, get_gcflag_extra, toggle_gcflag_extra)
    def compute_result_annotation(self, s_arg=None):
        from rpython.annotator.model import s_Bool
        return s_Bool
    def specialize_call(self, hop):
        subopnum = self.instance._subopnum
        vlist = [hop.inputconst(lltype.Signed, subopnum)]
        vlist += hop.inputargs(*hop.args_r)
        hop.exception_cannot_occur()
        return hop.genop('gc_gcflag_extra', vlist, resulttype = hop.r_result)

def lltype_is_gc(TP):
    return getattr(getattr(TP, "TO", None), "_gckind", "?") == 'gc'

def register_custom_trace_hook(TP, lambda_func):
    """ This function does not do anything, but called from any annotated
    place, will tell that "func" is used to trace GC roots inside any instance
    of the type TP.  The func must be specified as "lambda: func" in this
    call, for internal reasons.  Note that the func will be automatically
    specialized on the 'callback' argument value.  Example:

        def customtrace(gc, obj, callback, arg):
            gc._trace_callback(callback, arg, obj + offset_of_x)
        lambda_customtrace = lambda: customtrace
    """

@specialize.ll()
def ll_writebarrier(gc_obj):
    """Use together with custom tracers.  When you update some object pointer
    stored in raw memory, you must call this function on 'gc_obj', which must
    be the object of type TP with the custom tracer (*not* the value stored!).
    This makes sure that the custom hook will be called again."""
    from rpython.rtyper.lltypesystem.lloperation import llop
    llop.gc_writebarrier(lltype.Void, gc_obj)

class RegisterGcTraceEntry(ExtRegistryEntry):
    _about_ = register_custom_trace_hook

    def compute_result_annotation(self, s_tp, s_lambda_func):
        pass

    def specialize_call(self, hop):
        TP = hop.args_s[0].const
        lambda_func = hop.args_s[1].const
        hop.exception_cannot_occur()
        hop.rtyper.custom_trace_funcs.append((TP, lambda_func()))

def register_custom_light_finalizer(TP, lambda_func):
    """ This function does not do anything, but called from any annotated
    place, will tell that "func" is used as a lightweight finalizer for TP.
    The func must be specified as "lambda: func" in this call, for internal
    reasons.
    """

@specialize.arg(0)
def do_get_objects(callback):
    """ Get all the objects that satisfy callback(gcref) -> obj
    """
    roots = get_rpy_roots()
    if not roots:      # is always None on translations using Boehm or None GCs
        return []
    roots = [gcref for gcref in roots if gcref]
    result_w = []
    #
    if not we_are_translated():   # fast path before translation
        seen = set()
        while roots:
            gcref = roots.pop()
            if gcref not in seen:
                seen.add(gcref)
                w_obj = callback(gcref)
                if w_obj is not None:
                    result_w.append(w_obj)
                roots.extend(get_rpy_referents(gcref))
        return result_w
    #
    pending = roots[:]
    while pending:
        gcref = pending.pop()
        if not get_gcflag_extra(gcref):
            toggle_gcflag_extra(gcref)
            w_obj = callback(gcref)
            if w_obj is not None:
                result_w.append(w_obj)
            pending.extend(get_rpy_referents(gcref))
    clear_gcflag_extra(roots)
    assert_no_more_gcflags()
    return result_w

class RegisterCustomLightFinalizer(ExtRegistryEntry):
    _about_ = register_custom_light_finalizer

    def compute_result_annotation(self, s_tp, s_lambda_func):
        pass

    def specialize_call(self, hop):
        from rpython.rtyper.llannotation import SomePtr
        TP = hop.args_s[0].const
        lambda_func = hop.args_s[1].const
        ll_func = lambda_func()
        args_s = [SomePtr(lltype.Ptr(TP))]
        funcptr = hop.rtyper.annotate_helper_fn(ll_func, args_s)
        hop.exception_cannot_occur()
        lltype.attachRuntimeTypeInfo(TP, destrptr=funcptr)

def clear_gcflag_extra(fromlist):
    pending = fromlist[:]
    while pending:
        gcref = pending.pop()
        if get_gcflag_extra(gcref):
            toggle_gcflag_extra(gcref)
            pending.extend(get_rpy_referents(gcref))

all_typeids = {}
        
def get_typeid(obj):
    raise Exception("does not work untranslated")

class GetTypeidEntry(ExtRegistryEntry):
    _about_ = get_typeid

    def compute_result_annotation(self, s_obj):
        from rpython.annotator import model as annmodel
        return annmodel.SomeInteger()

    def specialize_call(self, hop):
        hop.exception_cannot_occur()
        return hop.genop('gc_gettypeid', hop.args_v, resulttype=lltype.Signed)

# ____________________________________________________________


class _rawptr_missing_item(object):
    pass
_rawptr_missing_item = _rawptr_missing_item()


class _ResizableListSupportingRawPtr(list):
    """Calling this class is a no-op after translation.

    Before translation, it returns a new instance of
    _ResizableListSupportingRawPtr, on which
    rgc.nonmoving_raw_ptr_for_resizable_list() might be
    used if needed.  For now, only supports lists of chars.
    """
    __slots__ = ('_raw_items',)   # either None or a rffi.CCHARP

    def __init__(self, lst):
        self._raw_items = None
        self.__from_list(lst)

    def __resize(self):
        """Called before an operation changes the size of the list"""
        if self._raw_items is not None:
            list.__init__(self, self.__as_list())
            self._raw_items = None

    def __from_list(self, lst):
        """Initialize the list from a copy of the list 'lst'."""
        assert isinstance(lst, list)
        for x in lst:
            assert isinstance(x, str) and len(x) == 1
        if self is lst:
            return
        if len(self) != len(lst):
            self.__resize()
        if self._raw_items is None:
            list.__init__(self, lst)
        else:
            assert len(self) == self._raw_items._obj.getlength() == len(lst)
            for i in range(len(self)):
                self._raw_items[i] = lst[i]

    def __as_list(self):
        """Return a list (the same or a different one) which contains the
        items in the regular way."""
        if self._raw_items is None:
            return self
        length = self._raw_items._obj.getlength()
        assert length == len(self)
        return [self._raw_items[i] for i in range(length)]

    def __getitem__(self, index):
        if self._raw_items is None:
            return list.__getitem__(self, index)
        if index < 0:
            index += len(self)
        if not (0 <= index < len(self)):
            raise IndexError
        return self._raw_items[index]

    def __setitem__(self, index, new):
        if self._raw_items is None:
            return list.__setitem__(self, index, new)
        if index < 0:
            index += len(self)
        if not (0 <= index < len(self)):
            raise IndexError
        self._raw_items[index] = new

    def __delitem__(self, index):
        self.__resize()
        list.__delitem__(self, index)

    def __getslice__(self, i, j):
        return list.__getslice__(self.__as_list(), i, j)

    def __setslice__(self, i, j, new):
        lst = self.__as_list()
        list.__setslice__(lst, i, j, new)
        self.__from_list(lst)

    def __delslice__(self, i, j):
        lst = self.__as_list()
        list.__delslice__(lst, i, j)
        self.__from_list(lst)

    def __iter__(self):
        try:
            i = 0
            while True:
                yield self[i]
                i += 1
        except IndexError:
            pass

    def __reversed__(self):
        i = len(self)
        while i > 0:
            i -= 1
            yield self[i]

    def __contains__(self, item):
        return list.__contains__(self.__as_list(), item)

    def __add__(self, other):
        if isinstance(other, _ResizableListSupportingRawPtr):
            other = other.__as_list()
        return list.__add__(self.__as_list(), other)

    def __radd__(self, other):
        if isinstance(other, _ResizableListSupportingRawPtr):
            other = other.__as_list()
        return list.__add__(other, self.__as_list())

    def __iadd__(self, other):
        self.__resize()
        return list.__iadd__(self, other)

    def __eq__(self, other):
        return list.__eq__(self.__as_list(), other)
    def __ne__(self, other):
        return list.__ne__(self.__as_list(), other)
    def __ge__(self, other):
        return list.__ge__(self.__as_list(), other)
    def __gt__(self, other):
        return list.__gt__(self.__as_list(), other)
    def __le__(self, other):
        return list.__le__(self.__as_list(), other)
    def __lt__(self, other):
        return list.__lt__(self.__as_list(), other)

    def __mul__(self, other):
        return list.__mul__(self.__as_list(), other)

    def __rmul__(self, other):
        return list.__mul__(self.__as_list(), other)

    def __imul__(self, other):
        self.__resize()
        return list.__imul__(self, other)

    def __repr__(self):
        return '_ResizableListSupportingRawPtr(%s)' % (
            list.__repr__(self.__as_list()),)

    def append(self, object):
        self.__resize()
        return list.append(self, object)

    def count(self, value):
        return list.count(self.__as_list(), value)

    def extend(self, iterable):
        self.__resize()
        return list.extend(self, iterable)

    def index(self, value, *start_stop):
        return list.index(self.__as_list(), value, *start_stop)

    def insert(self, index, object):
        self.__resize()
        return list.insert(self, index, object)

    def pop(self, *opt_index):
        self.__resize()
        return list.pop(self, *opt_index)

    def remove(self, value):
        self.__resize()
        return list.remove(self, value)

    def reverse(self):
        lst = self.__as_list()
        list.reverse(lst)
        self.__from_list(lst)

    def sort(self, *args, **kwds):
        lst = self.__as_list()
        list.sort(lst, *args, **kwds)
        self.__from_list(lst)

    def _nonmoving_raw_ptr_for_resizable_list(self):
        if self._raw_items is None:
            existing_items = list(self)
            from rpython.rtyper.lltypesystem import lltype, rffi
            self._raw_items = lltype.malloc(rffi.CCHARP.TO, len(self),
                                           flavor='raw', immortal=True)
            self.__from_list(existing_items)
            assert self._raw_items is not None
        return self._raw_items

def resizable_list_supporting_raw_ptr(lst):
    return _ResizableListSupportingRawPtr(lst)

def nonmoving_raw_ptr_for_resizable_list(lst):
    assert isinstance(lst, _ResizableListSupportingRawPtr)
    return lst._nonmoving_raw_ptr_for_resizable_list()


def _check_resizable_list_of_chars(s_list):
    from rpython.annotator import model as annmodel
    from rpython.rlib import debug
    if annmodel.s_None.contains(s_list):
        return    # "None", will likely be generalized later
    if not isinstance(s_list, annmodel.SomeList):
        raise Exception("not a list, got %r" % (s_list,))
    if not isinstance(s_list.listdef.listitem.s_value,
                      (annmodel.SomeChar, annmodel.SomeImpossibleValue)):
        raise debug.NotAListOfChars
    s_list.listdef.resize()    # must be resizable

class Entry(ExtRegistryEntry):
    _about_ = resizable_list_supporting_raw_ptr

    def compute_result_annotation(self, s_list):
        _check_resizable_list_of_chars(s_list)
        return s_list

    def specialize_call(self, hop):
        hop.exception_cannot_occur()
        return hop.inputarg(hop.args_r[0], 0)

class Entry(ExtRegistryEntry):
    _about_ = nonmoving_raw_ptr_for_resizable_list

    def compute_result_annotation(self, s_list):
        from rpython.rtyper.lltypesystem import lltype, rffi
        from rpython.rtyper.llannotation import SomePtr
        _check_resizable_list_of_chars(s_list)
        return SomePtr(rffi.CCHARP)

    def specialize_call(self, hop):
        v_list = hop.inputarg(hop.args_r[0], 0)
        hop.exception_cannot_occur()   # ignoring MemoryError
        return hop.gendirectcall(ll_nonmovable_raw_ptr_for_resizable_list,
                                 v_list)

@jit.dont_look_inside
def ll_nonmovable_raw_ptr_for_resizable_list(ll_list):
    """
    WARNING: dragons ahead.
    Return the address of the internal char* buffer of 'll_list', which
    must be a resizable list of chars.

    This makes sure that the list items are non-moving, if necessary by
    first copying the GcArray inside 'll_list.items' outside the GC
    nursery.  The returned 'char *' pointer is guaranteed to be valid
    until one of these occurs:

       * 'll_list' gets garbage-collected; or
       * you do an operation on 'll_list' that changes its size.
    """
    from rpython.rtyper.lltypesystem import lltype, rffi
    array = ll_list.items
    if can_move(array):
        length = ll_list.length
        new_array = lltype.malloc(lltype.typeOf(ll_list).TO.items.TO, length,
                                  nonmovable=True)
        ll_arraycopy(array, new_array, 0, 0, length)
        ll_list.items = new_array
        array = new_array
    ptr = lltype.direct_arrayitems(array)
    # ptr is a Ptr(FixedSizeArray(Char, 1)).  Cast it to a rffi.CCHARP
    return rffi.cast(rffi.CCHARP, ptr)

@jit.dont_look_inside
@no_collect
@specialize.ll()
def ll_write_final_null_char(s):
    """'s' is a low-level STR; writes a terminating NULL character after
    the other characters in 's'.  Warning, this only works because of
    the 'extra_item_after_alloc' hack inside the definition of STR.
    """
    from rpython.rtyper.lltypesystem import rffi
    PSTR = lltype.typeOf(s)
    assert has_final_null_char(PSTR) == 1
    n = llmemory.offsetof(PSTR.TO, 'chars')
    n += llmemory.itemoffsetof(PSTR.TO.chars, 0)
    n = llmemory.raw_malloc_usage(n)
    n += len(s.chars)
    # no GC operation from here!
    ptr = rffi.cast(rffi.CCHARP, s)
    ptr[n] = '\x00'

@specialize.memo()
def has_final_null_char(PSTR):
    return PSTR.TO.chars._hints.get('extra_item_after_alloc', 0)
Back to Top