/ArithCollect/Structure.cs

# · C# · 1302 lines · 1207 code · 8 blank · 87 comment · 384 complexity · ba327ab612eb083f78bb841f3c239a3f MD5 · raw file

Large files are truncated click here to view the full file

  1. using System;
  2. using System.Collections.Generic;
  3. using System.Linq;
  4. using System.Text;
  5. namespace ArithCollect {
  6. public class TopChain<T> {
  7. protected class Node {
  8. #region INode 成员
  9. public T Data { get; set; }
  10. public int Index { get; set; }
  11. public string Zone { get; set; }
  12. #endregion
  13. internal Node previous;
  14. }
  15. public TopChain() {
  16. this.Count = 0;
  17. }
  18. protected Node top, current;
  19. public int Count { get; private set; }
  20. public void Add(T data, string key = "") {
  21. var node = new Node { Data = data, Index = this.Count, Zone = key };
  22. node.previous = this.current;
  23. this.current = node;
  24. this.top = this.current;
  25. this.Count++;
  26. }
  27. protected void Clear(ref Node t) {
  28. if (t != null && t.previous != null) {
  29. Clear(ref t.previous);
  30. }
  31. if (t != null)
  32. this.Count--;
  33. t = null;
  34. }
  35. protected void Remove(Node t) {
  36. var x = top;
  37. if (x == t) {
  38. top = top.previous;
  39. Count--;
  40. return;
  41. }
  42. while (x != null && x.previous != t) {
  43. x = x.previous;
  44. }
  45. if (x != null) {
  46. x.previous = x.previous.previous;
  47. Count--;
  48. }
  49. }
  50. IEnumerable<Node> QueryNode() {
  51. this.current = this.top;
  52. while (this.current != null) {
  53. yield return this.current;
  54. this.current = this.current.previous;
  55. }
  56. }
  57. public IEnumerable<T> Query() {
  58. this.current = this.top;
  59. while (this.current != null) {
  60. yield return this.current.Data;
  61. this.current = this.current.previous;
  62. }
  63. }
  64. public IEnumerable<T> Query(Func<T, bool> filter) {
  65. return from item in QueryNode() where filter(item.Data) select item.Data;
  66. }
  67. public T this[int index] {
  68. get {
  69. return QueryNode().Single(item => item.Index == index).Data;
  70. }
  71. }
  72. public T this[string key] {
  73. get {
  74. return QueryNode().Single(item => item.Zone == key).Data;
  75. }
  76. }
  77. }
  78. public class BottomChain<T> {
  79. protected partial class Node {
  80. #region INode 成员
  81. public T Data { get; set; }
  82. public int Index { get; set; }
  83. public string Zone { get; set; }
  84. #endregion
  85. internal Node next;
  86. }
  87. public BottomChain() {
  88. this.Count = 0;
  89. }
  90. protected Node root, current;
  91. public int Count { get; protected set; }
  92. public void Add(T data, string key = "") {
  93. var node = new Node { Data = data, Index = this.Count, Zone = key };
  94. if (root == null) {
  95. root = node;
  96. current = root;
  97. }
  98. this.current.next = node;
  99. current = node;
  100. this.Count++;
  101. }
  102. protected void Remove(Node t) {
  103. var x = root;
  104. if (x == t) {
  105. root = root.next;
  106. Count--;
  107. return;
  108. }
  109. while (x != null && x.next != t) {
  110. x = x.next;
  111. }
  112. if (x != null) {
  113. var xx = x.next.next;
  114. x.next = null;
  115. x.next = xx;
  116. xx = null;
  117. Count--;
  118. }
  119. }
  120. protected void Clear(ref Node t) {
  121. if (t != null && t.next != null) {
  122. Clear(ref t.next);
  123. }
  124. if (t != null)
  125. this.Count--;
  126. t = null;
  127. }
  128. protected IEnumerable<Node> QueryNode() {
  129. this.current = this.root;
  130. while (this.current != null) {
  131. yield return this.current;
  132. this.current = this.current.next;
  133. }
  134. }
  135. public IEnumerable<T> Query() {
  136. this.current = this.root;
  137. while (this.current != null) {
  138. yield return this.current.Data;
  139. this.current = this.current.next;
  140. }
  141. }
  142. public IEnumerable<T> Query(Func<T, bool> filter) {
  143. return from item in QueryNode() where filter(item.Data) select item.Data;
  144. }
  145. public T this[int index] {
  146. get {
  147. return QueryNode().Single(item => item.Index == index).Data;
  148. }
  149. }
  150. public T this[string key] {
  151. get {
  152. return QueryNode().Single(item => item.Zone == key).Data;
  153. }
  154. }
  155. }
  156. public enum TreeTraversalType {
  157. Pre, In, Un, Post
  158. }
  159. public class BinFinderTree<T> : IEnumerable<T> where T : IComparable<T> {
  160. public class Node {
  161. public Node left, right, parent;
  162. public Node(T data) {
  163. this.Data = data;
  164. }
  165. //大左小右
  166. public void LeftAdd(Node n) {
  167. if (this.left == null) {
  168. n.parent = this;
  169. this.left = n;
  170. } else if (this.left.Data.CompareTo(n.Data) >= 0) {
  171. this.left.LeftAdd(n);
  172. } else {
  173. this.left.RightAdd(n);
  174. }
  175. }
  176. public void RightAdd(Node n) {
  177. if (this.right == null) {
  178. n.parent = this;
  179. this.right = n;
  180. } else if (this.right.Data.CompareTo(n.Data) >= 0) {
  181. this.right.LeftAdd(n);
  182. } else {
  183. this.right.RightAdd(n);
  184. }
  185. }
  186. public T Data { get; set; }
  187. public int index { get; set; }
  188. public int depth;
  189. public int bf;
  190. }
  191. protected Node root;
  192. public BinFinderTree() {
  193. this.Count = 0;
  194. }
  195. /// <summary>
  196. /// 根据索引返回结点
  197. /// </summary>
  198. /// <param name="index"></param>
  199. /// <returns></returns>
  200. public Node this[int index] {
  201. get {
  202. return (from item in Query2(this.root) where item.index == index select item).First();
  203. }
  204. }
  205. public string GetPath(Node n, bool isFromRoot = true) {
  206. string r = null;
  207. while (n != root) {
  208. var x = LeftOrLight(n.parent, n);
  209. if (x) {
  210. r += "1";
  211. } else {
  212. r += "0";
  213. }
  214. n = n.parent;
  215. }
  216. if (r != null && isFromRoot) {
  217. r = new string(r.ToCharArray().Reverse().ToArray());
  218. }
  219. return r;
  220. }
  221. public Node Root { get { return this.root; } }
  222. public T Max {
  223. get {
  224. var current = this.root.Data;
  225. foreach (var item in Query2(this.root)) {
  226. if (current.CompareTo(item.Data) < 0) {
  227. current = item.Data;
  228. }
  229. }
  230. return current;
  231. }
  232. }
  233. public T Min {
  234. get {
  235. var current = this.root.Data;
  236. foreach (var item in Query2(this.root)) {
  237. if (current.CompareTo(item.Data) >= 0) {
  238. current = item.Data;
  239. }
  240. }
  241. return current;
  242. }
  243. }
  244. //右大左小
  245. public void Add(T data) {
  246. Node n = new BinFinderTree<T>.Node(data);
  247. n.index = Count;
  248. Count++;
  249. if (this.root == null) {
  250. this.root = n;
  251. return;
  252. }
  253. if (this.root.Data.CompareTo(n.Data) >= 0) {
  254. this.root.LeftAdd(n);
  255. } else {
  256. this.root.RightAdd(n);
  257. }
  258. }
  259. protected bool LeftOrLight(Node up, Node down) {
  260. var r = false;
  261. if (up.left != null && up.left.Equals(down)) {
  262. r = true;
  263. }
  264. return r;
  265. }
  266. public void Remove(Node n) {
  267. if (n.parent == null) {
  268. var left = n.left;
  269. var right = n.right;
  270. n = null;
  271. left.parent = right.parent = null;
  272. right.LeftAdd(left);
  273. } else if (n.right == null && n.left == null) {
  274. n = null;
  275. } else if (n.left != null && n.right != null) {
  276. var left = n.left;
  277. var right = n.right;
  278. var p = n.parent;
  279. var lor = LeftOrLight(p, n);
  280. n = null;
  281. if (p.left == null && p.right == null) {
  282. if (p.parent != null) {
  283. var p2 = p.parent;
  284. var lor2 = LeftOrLight(p2, p);
  285. if (lor) {
  286. if (lor2) {
  287. p2.left = right;
  288. } else {
  289. p2.right = right;
  290. }
  291. right.parent = p2;
  292. right.RightAdd(p);
  293. right.LeftAdd(left);
  294. } else {
  295. if (lor2) {
  296. p2.left = left;
  297. } else {
  298. p2.right = left;
  299. }
  300. left.parent = p2;
  301. left.RightAdd(right);
  302. left.LeftAdd(p);
  303. }
  304. }
  305. } else {
  306. if (lor) {
  307. p.left = left;
  308. left.parent = p;
  309. p.left.RightAdd(right);
  310. } else {
  311. p.right = right;
  312. right.parent = p;
  313. p.right.LeftAdd(left);
  314. }
  315. }
  316. } else if (n.left == null && n.right != null) {
  317. var x = LeftOrLight(n.parent, n);
  318. if (x) {
  319. n.parent.left = n.right;
  320. n.right.parent = n.parent;
  321. } else {
  322. n.parent.right = n.right;
  323. n.right.parent = n.parent;
  324. }
  325. n = null;
  326. } else if ((n.left != null && n.right == null)) {
  327. var x = LeftOrLight(n.parent, n);
  328. if (x) {
  329. n.parent.left = n.left;
  330. n.left.parent = n.parent;
  331. } else {
  332. n.parent.right = n.left;
  333. n.left.parent = n.parent;
  334. }
  335. n = null;
  336. }
  337. var index = 0;
  338. foreach (var item in Query2(root)) {
  339. item.index = index++;
  340. }
  341. }
  342. public void Remove(T data) {
  343. var x = from item in Query2(this.root) where item.Data.CompareTo(data) == 0 select item;
  344. foreach (var item in x) {
  345. Remove(item);
  346. }
  347. }
  348. public IEnumerable<T> Query(Node n, TreeTraversalType ttt = TreeTraversalType.In) {
  349. switch (ttt) {
  350. case TreeTraversalType.Pre:
  351. yield return n.Data;
  352. if (n.left != null)
  353. foreach (var item in Query(n.left, ttt))
  354. yield return item;
  355. if (n.right != null)
  356. foreach (var item in Query(n.right, ttt))
  357. yield return item;
  358. break;
  359. case TreeTraversalType.In:
  360. if (n.left != null)
  361. foreach (var item in Query(n.left, ttt))
  362. yield return item;
  363. yield return n.Data;
  364. if (n.right != null)
  365. foreach (var item in Query(n.right, ttt))
  366. yield return item;
  367. break;
  368. case TreeTraversalType.Un:
  369. if (n.right != null)
  370. foreach (var item in Query(n.right, ttt))
  371. yield return item;
  372. yield return n.Data;
  373. if (n.left != null)
  374. foreach (var item in Query(n.left, ttt))
  375. yield return item;
  376. break;
  377. case TreeTraversalType.Post:
  378. if (n.left != null)
  379. foreach (var item in Query(n.left, ttt))
  380. yield return item;
  381. if (n.right != null)
  382. foreach (var item in Query(n.right, ttt))
  383. yield return item;
  384. yield return n.Data;
  385. break;
  386. default:
  387. break;
  388. }
  389. }
  390. public IEnumerable<T> Query(Func<T, bool> filter) {
  391. return from item in Query(this.root, TreeTraversalType.Un)
  392. where filter.Invoke(item)
  393. select item;
  394. }
  395. public IEnumerable<Node> Query2(Node n, TreeTraversalType ttt = TreeTraversalType.In) {
  396. switch (ttt) {
  397. case TreeTraversalType.Pre:
  398. yield return n;
  399. if (n.left != null)
  400. foreach (var item in Query2(n.left, ttt))
  401. yield return item;
  402. if (n.right != null)
  403. foreach (var item in Query2(n.right, ttt))
  404. yield return item;
  405. break;
  406. case TreeTraversalType.In:
  407. if (n.left != null)
  408. foreach (var item in Query2(n.left, ttt))
  409. yield return item;
  410. yield return n;
  411. if (n.right != null)
  412. foreach (var item in Query2(n.right, ttt))
  413. yield return item;
  414. break;
  415. case TreeTraversalType.Un:
  416. if (n.right != null)
  417. foreach (var item in Query2(n.right, ttt))
  418. yield return item;
  419. yield return n;
  420. if (n.left != null)
  421. foreach (var item in Query2(n.left, ttt))
  422. yield return item;
  423. break;
  424. case TreeTraversalType.Post:
  425. if (n.left != null)
  426. foreach (var item in Query2(n.left, ttt))
  427. yield return item;
  428. if (n.right != null)
  429. foreach (var item in Query2(n.right, ttt))
  430. yield return item;
  431. yield return n;
  432. break;
  433. }
  434. }
  435. public List<string> GetPath(T t) {
  436. var ls = new List<string>();
  437. var r = "";
  438. var x = from item in Query2(this.root) where item.Data.CompareTo(t) == 0 select item;
  439. foreach (var item in x) {
  440. r = GetPath(item);
  441. ls.Add(r);
  442. }
  443. return ls;
  444. }
  445. public int Count { get; protected set; }
  446. public int Depth { get; protected set; }
  447. public void LoadData(IEnumerable<T> data) {
  448. foreach (var item in data) {
  449. Add(item);
  450. }
  451. }
  452. protected int GetDepth(Node n, int l, int r) {
  453. if (n.left != null) {
  454. GetDepth(n.left, l++, r);
  455. }
  456. if (n.right != null) {
  457. GetDepth(n.right, l, r++);
  458. }
  459. return l > r ? l : r;
  460. }
  461. public IEnumerator<T> GetEnumerator() {
  462. foreach (var item in Query2(root)) {
  463. yield return item.Data;
  464. }
  465. }
  466. System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator() {
  467. throw new NotImplementedException();
  468. }
  469. }
  470. public class AvlTree<T> : BinFinderTree<T> where T : IComparable<T> {
  471. Stack<Tople<bool?, Node>> path;
  472. public AvlTree() {
  473. path = new Stack<Tople<bool?, Node>>();
  474. this.Count = 0;
  475. }
  476. public new void Remove(T data) { }
  477. #region add
  478. public new void Add(T value) {
  479. if (root == null) {
  480. root = new Node(value);
  481. root.depth = 0;
  482. this.Count++;
  483. } else {
  484. path.Clear();
  485. var temp = root;
  486. var leftOrRight = default(bool?);
  487. while (temp != null) {
  488. path.Push(new Tople<bool?, Node>(leftOrRight, temp));
  489. if (value.CompareTo(temp.Data) >= 0) {
  490. temp = temp.right;
  491. leftOrRight = false;
  492. } else {
  493. temp = temp.left;
  494. leftOrRight = true;
  495. }
  496. }
  497. var n = new Node(value);
  498. n.depth = path.Count;
  499. var toptemp = path.Peek();
  500. if (toptemp.Item1 == null) {
  501. if (value.CompareTo(toptemp.Item2.Data) >= 0) { toptemp.Item2.right = n; toptemp.Item2.bf--; } else { toptemp.Item2.left = n; toptemp.Item2.bf++; }
  502. } else {
  503. if (value.CompareTo(toptemp.Item2.Data) < 0) { toptemp.Item2.left = n; toptemp.Item2.bf++; } else { toptemp.Item2.right = n; toptemp.Item2.bf--; }
  504. }
  505. n.parent = toptemp.Item2;
  506. n.index = this.Count;
  507. this.Count++;
  508. //下面检查树的平衡因子----bf
  509. /*
  510. * 当旋转根的BF值为2时:
  511. 如果旋转根的左孩子的BF值为1,则进行LL型旋转;
  512. 如果旋转根的左孩子的BF值为-1,则进行LR型旋转。
  513. 当旋转根的BF值为-2时:
  514. 如果旋转根的右孩子的BF值为1,则进行RL型旋转;
  515. 如果旋转根的右孩子的BF值为-1,则进行RR型旋转。
  516. */
  517. SetBf(path);
  518. foreach (var item in path) {
  519. switch (item.Item2.bf) {
  520. case 2:
  521. temp = item.Item2.left;
  522. if (temp != null && temp.bf == 1) LL(item.Item2);
  523. else if (temp != null && temp.bf == -1) LR(item.Item2);
  524. break;
  525. case -2:
  526. temp = item.Item2.right;
  527. if (temp != null && temp.bf == 1) RL(item.Item2);
  528. else if (temp != null && temp.bf == -1) RR(item.Item2);
  529. break;
  530. }
  531. }
  532. }
  533. }
  534. /*
  535. * avl平衡旋转 的意思是平衡左右子树的高度,让高度大的一方向小的一方旋移
  536. * 旋转一共4种类型,分左右两类相互对称,"八"字形的一对为LL,RR "><"形的一对为RL,LR,其中
  537. * LL,LR与RR,RL 相互对称故只需要搞清楚一边另一边自动明白。
  538. * 你注意到了所有4种类型的旋转都在3个路径节点上展开理解这点是理解旋转的关键。其识别规律是
  539. * 沿失衡节点开始向下追述到路径节点的孙子节点。
  540. * 旋转的基本规则是 LL变成 ^,LR先旋转为LL再 转为^,与之对称的 右边与之完全一至只是方向相反
  541. * 旋转形状变化了解以后 需要解决的是 “重构冲突”规则,从失衡节点的父节点开始需要断开重连
  542. * 以失衡节点为旋转原根节点,旋转时需要寻找新根,对于LL来说 原根节点是 最上面的,其实所
  543. * 有失衡节点(原根)都是三节点中最上面的节点,LL的新根节点将是原根(失衡)节点的左子节点,
  544. * 对于LR来说是其孙子节点(左子之右子),所以只需要描述LL则LR就自然清楚,LL旋转时原根节点
  545. * 所左子树和父节点被断开了,它的新父节点将是它原来的左子(新根节点)它的新左子节点,将是
  546. * 其左子的右子节点,不论其是否为空。LL中原根断开的父连接将由新根接续起来,所有这些断开然后
  547. * 接续的变化就是“重构冲突”的解决,为什么称之为冲突呢,因为旋转后如果不交换子节点有节点就会
  548. * 在没有空位的之上依然需要加在此位置上加上新子节点,所以叫冲突。交换这些子节点使之位置匹配
  549. * 就是冲突的解决,这就是通过节点断开与接续来完成。
  550. */
  551. void LR(Node n) {
  552. var x = R(n.left);
  553. switch (x.bf) {
  554. case -1: x.left.bf = 1; x.bf = 1; break;
  555. case 1: x.left.bf = 0; x.bf = 2; break;
  556. case 0: x.left.bf = 0; x.bf = 1; break;
  557. default:
  558. break;
  559. }
  560. var x2 = L(n);
  561. switch (x2.bf) {
  562. case 1: x2.right.bf = 0; x2.bf = 0; break;
  563. case 2: x2.right.bf = -1; x2.bf = 0; break;
  564. default:
  565. break;
  566. }
  567. }
  568. void RL(Node n) {
  569. var x = L(n.right);
  570. switch (x.bf) {
  571. case 1: x.right.bf = -1; x.bf = -1; break;
  572. case -1: x.right.bf = 0; x.bf = -2; break;
  573. case 0: x.right.bf = 0; x.bf = -1; break;
  574. }
  575. var x2 = R(n);
  576. switch (x2.bf) {
  577. case -2: x2.left.bf = 1; x2.bf = 0; break;
  578. case -1: x2.left.bf = 0; x2.bf = 0; break;
  579. }
  580. }
  581. void LL(Node n) {
  582. var x = L(n);
  583. //下面两个bf为0有深刻的逻辑判断支撑
  584. //路径节点必然为长节点必然为左左支,中心点上去后必然为0,right.bf也一样,都是通过失衡节点为2以及左左支为路径必
  585. //为长轴(子树高支)为判断依据得到的
  586. x.bf = 0;
  587. x.right.bf = 0;
  588. }
  589. void RR(Node n) {
  590. var x = R(n);
  591. x.bf = 0;
  592. x.left.bf = 0;
  593. }
  594. /*
  595. * 旋转其实只有两种R和L 这两种旋转互为镜像,这两种旋转只是在两个节点上展开
  596. * 由它们组合构成4种所有avl的基本旋转分类 LL RR LR RL, LL RR旋转就是L R旋转
  597. * 而LR RL旋转分别 是先做R旋转再做L旋转,RL是先做L旋转再做R旋转,旋转以后计
  598. * 算它们的bf值,就是两个旋转相差节点的bf值就可以了。这个也很容易
  599. */
  600. Node L(Node n) {
  601. var o = n.left;
  602. n.left = o.right;
  603. if (n.left != null)
  604. n.left.parent = n;
  605. o.right = n;
  606. var p = n.parent;
  607. n.parent = o;
  608. if (p != null) {
  609. if (p.Data.CompareTo(o.Data) > 0) { p.left = o; } else { p.right = o; }
  610. o.parent = p;
  611. } else {
  612. this.root = o;
  613. this.root.parent = null;
  614. }
  615. return o;
  616. }
  617. Node R(Node n) {
  618. var o = n.right;
  619. n.right = o.left;
  620. if (n.right != null)
  621. n.right.parent = n;
  622. o.left = n;
  623. var p = n.parent;
  624. n.parent = o;
  625. if (p != null) {
  626. if (p.Data.CompareTo(o.Data) > 0) { p.left = o; } else { p.right = o; }
  627. o.parent = p;
  628. } else {
  629. this.root = o;
  630. this.root.parent = null;
  631. }
  632. return o;
  633. }
  634. int GetBf(Node n) {
  635. if (n.left != null && n.right != null) {
  636. return Math.Abs(n.left.bf) - Math.Abs(n.right.bf);
  637. } else if (n.left == null && n.right != null) {
  638. return -(Math.Abs(n.right.bf) + 1);
  639. } else if (n.left != null && n.right == null) {
  640. return Math.Abs(n.left.bf) + 1;
  641. } else {
  642. return 0;
  643. }
  644. }
  645. void SetBf(Stack<Tople<bool?, Node>> path) {
  646. var len = path.Count() - 1;
  647. var path2 = path.ToArray();
  648. for (int i = 0; i < len; i++) {
  649. //|| path2[i].Item2.bf == 2 || path2[i].Item2.bf == -2
  650. if (path2[i].Item2.bf == 0 || path2[i].Item2.bf == 2 || path2[i].Item2.bf == -2) {
  651. //为什么这些值要跳出?
  652. //为0的时候说明 其祖节点集都不会增加相差树高
  653. //为2或-2是因为插入节点最多只能引起一次旋转来抵销,而抵销旋转只需要找到第一个遇到2,或-2的节点即可
  654. break;
  655. }
  656. if (path2[i].Item1.Value) {
  657. path2[i + 1].Item2.bf++;
  658. } else {
  659. path2[i + 1].Item2.bf--;
  660. }
  661. }
  662. }
  663. #endregion
  664. #region remove
  665. enum RemoveNodeType {
  666. onlyleft, onlyright, all, leaf
  667. }
  668. RemoveNodeType CheckRemoveNodeType(Node n) {
  669. var nt = RemoveNodeType.leaf;
  670. if (n.left != null && n.right == null) nt = RemoveNodeType.onlyleft;
  671. else if (n.left == null && n.right != null) nt = RemoveNodeType.onlyright;
  672. else if (n.left != null && n.right != null) nt = RemoveNodeType.all;
  673. return nt;
  674. }
  675. Node FindMaxRightNode(Node n) {
  676. var b = false;
  677. var r = default(Node);
  678. foreach (var item in Query2(n, TreeTraversalType.In)) {
  679. if (b) {
  680. r = item;
  681. break;
  682. }
  683. if (n.Equals(item)) {
  684. b = true;
  685. }
  686. }
  687. return r;
  688. }
  689. Node FindMinLeftNode(Node n) {
  690. var b = false;
  691. var r = default(Node);
  692. foreach (var item in Query2(n, TreeTraversalType.Un)) {
  693. if (b) {
  694. r = item;
  695. break;
  696. }
  697. if (n.Equals(item)) {
  698. b = true;
  699. }
  700. }
  701. return r;
  702. }
  703. Node FindInLeafMapping(Node n) {
  704. var b = false;
  705. var r = default(Node);
  706. foreach (var item in Query2(n, TreeTraversalType.In)) {
  707. if (b) {
  708. r = item;
  709. break;
  710. }
  711. if (n.Equals(item)) {
  712. b = true;
  713. }
  714. }
  715. return r;
  716. }
  717. Node Swap(Node target, Node leaf) {
  718. if (!target.Equals(leaf)) {
  719. var p2 = leaf.parent;
  720. leaf.parent = target.parent;
  721. if (target.left != null && !target.left.Equals(leaf)) {
  722. leaf.left = target.left;
  723. target.left.parent = leaf;
  724. target.left = null;
  725. }
  726. if (target.right != null && !target.right.Equals(leaf)) {
  727. leaf.right = target.right;
  728. target.right.parent = leaf;
  729. target.right = null;
  730. }
  731. if (target.parent != null) {
  732. if (LeftOrLight(target.parent, target)) {
  733. target.parent.left = leaf;
  734. } else {
  735. target.parent.right = leaf;
  736. }
  737. } else {
  738. this.root = leaf;
  739. }
  740. if (!p2.Equals(target)) {
  741. if (LeftOrLight(p2, leaf)) {
  742. p2.left = target;
  743. } else {
  744. p2.right = target;
  745. }
  746. target.parent = p2;
  747. } else {
  748. if (LeftOrLight(p2, leaf)) {
  749. leaf.left = target;
  750. } else {
  751. leaf.right = target;
  752. }
  753. target.parent = leaf;
  754. }
  755. }
  756. return target;
  757. }
  758. Node LL2(Node n) {
  759. var x = L(n);
  760. x.bf = 0;
  761. x.right.bf = 0;
  762. return x;
  763. }
  764. Node LL2A(Node n) {
  765. var x = L(n);
  766. x.bf = 0;
  767. x.right.bf = 1;
  768. return x;
  769. }
  770. Node LR2(Node n) {
  771. var x = R(n.left);
  772. switch (x.bf) {
  773. case -1: x.left.bf = 1; x.bf = 1; break;
  774. case 1: x.left.bf = 0; x.bf = 2; break;
  775. case 0: x.left.bf = 0; x.bf = 1; break;
  776. default:
  777. break;
  778. }
  779. var x2 = L(n);
  780. switch (x2.bf) {
  781. case 1: x2.right.bf = 0; x2.bf = 0; break;
  782. case 2: x2.right.bf = -1; x2.bf = 0; break;
  783. default:
  784. break;
  785. }
  786. return x2;
  787. }
  788. Node RR2(Node n) {
  789. var x = L(n);
  790. x.bf = 0;
  791. x.left.bf = 0;
  792. return x;
  793. }
  794. Node RR2A(Node n) {
  795. var x = L(n);
  796. x.bf = 0;
  797. x.left.bf = 1;
  798. return x;
  799. }
  800. Node RL2(Node n) {
  801. var x = L(n.right);
  802. switch (x.bf) {
  803. case 1: x.right.bf = -1; x.bf = -1; break;
  804. case -1: x.right.bf = 0; x.bf = -2; break;
  805. case 0: x.right.bf = 0; x.bf = -1; break;
  806. }
  807. var x2 = R(n);
  808. switch (x2.bf) {
  809. case -2: x2.left.bf = 1; x2.bf = 0; break;
  810. case -1: x2.left.bf = 0; x2.bf = 0; break;
  811. }
  812. return x2;
  813. }
  814. void RefreshBf(Node target) {
  815. var temp = target;
  816. while (temp.parent != null) {
  817. if (LeftOrLight(temp.parent, temp)) {
  818. temp.parent.bf--;
  819. } else {
  820. temp.parent.bf++;
  821. }
  822. temp = temp.parent;
  823. switch (temp.bf) {
  824. case 2:
  825. if (temp.left.bf == 1) {
  826. temp = LL2(temp);
  827. } else if (temp.left.bf == 0) {
  828. temp = LL2A(temp);
  829. } else if (temp.left.bf == -1) {
  830. temp = LR2(temp);
  831. }
  832. break;
  833. case -2:
  834. if (temp.right.bf == 1) {
  835. temp = RL2(temp);
  836. } else if (temp.right.bf == 0) {
  837. temp = RR2A(temp);
  838. } else if (temp.right.bf == -1) {
  839. temp = RR2(temp);
  840. }
  841. break;
  842. }
  843. if (temp.bf == 1 || temp.bf == -1) break;
  844. }
  845. }
  846. public new void Remove(Node n) {
  847. var x = CheckRemoveNodeType(n);
  848. var leaf = default(Node);
  849. switch (x) {
  850. case RemoveNodeType.onlyleft:
  851. leaf = FindMaxRightNode(n);
  852. break;
  853. case RemoveNodeType.onlyright:
  854. leaf = FindMinLeftNode(n);
  855. break;
  856. case RemoveNodeType.all:
  857. leaf = FindInLeafMapping(n);
  858. break;
  859. case RemoveNodeType.leaf:
  860. leaf = n;
  861. break;
  862. }
  863. var x2 = Swap(n, leaf);
  864. RefreshBf(x2);
  865. DeleteNode(x2);
  866. this.Count--;
  867. }
  868. void DeleteNode(Node n) {
  869. this[Count - 1].index = n.index;
  870. if (LeftOrLight(n.parent, n)) {
  871. n.parent.left = null;
  872. } else {
  873. n.parent.right = null;
  874. }
  875. n.parent = null;
  876. n.left = null;
  877. n.right = null;
  878. n = null;
  879. }
  880. #endregion
  881. }
  882. public class RbTree<T> : BinFinderTree<T> where T : IComparable<T> {
  883. //平衡因子bf 为0时为黑节点,为1时为红节点
  884. }
  885. public class Graph<T> {
  886. public class Node {
  887. public T Data { get; set; }
  888. /// <summary>index 可用于ID此值是唯一的</summary>
  889. public int Index { get; set; }
  890. /// <summary>备注,注释,标记</summary>
  891. public string Key { get; set; }
  892. public bool IsVisited { get; set; }
  893. /// <summary>
  894. /// 已经顶点的关联关系,注意这些顶点只是已经有顶点的引用 并不来自新添加
  895. /// </summary>
  896. public List<Node> Association { get; set; }
  897. public int GroupIndex { get; set; }
  898. public string GroupName { get; set; }
  899. public int x, y, z;//节点的相对位置坐标(3d Decare coordinate)
  900. public Node(T data, string key = "", string gn = "", int gi = 0, int x = 0, int y = 0, int z = 0) {
  901. Data = data; this.Key = key; this.GroupName = gn; this.GroupIndex = gi; this.x = x; this.y = y; this.z = z;
  902. Association = new List<Node>();
  903. }
  904. }
  905. /// <summary>顶点集合</summary>
  906. List<Node> vertexs { get; set; }
  907. public int Count { get { return vertexs.Count; } }
  908. /// <summary>
  909. /// 边权表:
  910. /// 开头是个数组[] 每个数组是个List<Tople<int,float>>
  911. /// 每个数组代表一个顶点的索引,顶点索引必须以连接整数序列
  912. /// 每个顶点包含一组边集合,这个边集合为一个List<Tople<int,float>>
  913. /// 表示,每个List中的Tople<int,float>第一个Item(Item1)表示其它某
  914. /// 个顶点的索引,而第二个值表示由数组索引到List索引方向的一个连接边
  915. /// float就代表这个边的权值
  916. /// </summary>
  917. List<Tople<int, float>>[] sides;
  918. internal List<Tople<int, float>>[] Sides { get { return sides; } }
  919. /// <summary>索引和设置边的权值</summary>
  920. public float? GetEdge(int index1, int index2) {
  921. try {
  922. var x = sides[index1].Single(i => i.Item1 == index2);
  923. //var x = sides[index1][index2];
  924. return x.Item2;
  925. } catch {
  926. return null;
  927. }
  928. }
  929. public void SetEdge(int index1, int index2, float value) {
  930. sides[index1].Single(i => i.Item1 == index2).Item2 = value;
  931. }
  932. #region ctor collection
  933. public Graph() {
  934. vertexs = new List<Node>();
  935. }
  936. public Graph(params T[] ts) {
  937. vertexs = new List<Node>();
  938. var index = 0;
  939. foreach (var item in ts) {
  940. vertexs.Add(new Node(item) { Index = index++ });
  941. }
  942. }
  943. public Graph(params T[][] ts) {
  944. vertexs = new List<Node>();
  945. for (int i = 0; i < ts.Length; i++) { var ylen = ts[i].Length; for (int j = 0; j < ylen; j++) { vertexs.Add(new Node(ts[i][j], x: i, y: j)); } }
  946. }
  947. public Graph(params T[][][] ts) {
  948. vertexs = new List<Node>();
  949. for (int i = 0; i < ts.Length; i++) {
  950. var ylen = ts[i].Length;
  951. for (int j = 0; j < ylen; j++) {
  952. var zlen = ts[i][j].Length;
  953. for (int k = 0; k < zlen; k++) { vertexs.Add(new Node(ts[i][j][k], x: i, y: j, z: k)); }
  954. }
  955. }
  956. }
  957. /// <summary>
  958. /// 传入邻接表,第一维是所有的顶点集合,第二维元组中的第一个值代表
  959. /// 第一维索引相关的关联节点的索引值,第二个值为这个关联所代表的有向或无向边的权值
  960. /// </summary>
  961. /// <param name="ts"></param>
  962. public Graph(Tople<int, float>[][] ts) {
  963. var count = ts.Length;
  964. for (int i = 0; i < count; i++) { this.Add(default(T)); }
  965. sides = new List<Tople<int, float>>[count];
  966. for (int i = 0; i < ts.Length; i++) {
  967. sides[i] = new List<Tople<int, float>>();
  968. for (int j = 0; j < ts[i].Length; j++) {
  969. this[i].Association.Add(this[ts[i][j].Item1]);
  970. sides[i].Add(new Tople<int, float>(ts[i][j].Item1, ts[i][j].Item2));
  971. }
  972. }
  973. }
  974. #endregion
  975. #region add
  976. /// <summary>添加一个顶点</summary>
  977. public void Add(T t, string zone = "", string gn = "", int gi = 0, int x = 0, int y = 0, int z = 0) {
  978. vertexs.Add(new Node(t, key: zone, gn: gn, gi: gi, x: x, y: y, z: z) { Index = vertexs.Count, Key = vertexs.Count.ToString() });
  979. }
  980. /// <summary>根据邻接表构造一个完整的图</summary>
  981. public void AddRange(Tople<int, float>[][] ts) {
  982. var count = ts.Length;
  983. for (int i = 0; i < count; i++) { this.Add(default(T)); }
  984. sides = new List<Tople<int, float>>[count];
  985. for (int i = 0; i < ts.Length; i++) {
  986. sides[i] = new List<Tople<int, float>>();
  987. for (int j = 0; j < ts[i].Length; j++) {
  988. this[i].Association.Add(this[ts[i][j].Item1]);
  989. sides[i].Add(new Tople<int, float>(ts[i][j].Item1, ts[i][j].Item2));
  990. }
  991. }
  992. }
  993. /// <summary>根据2维索引添加一组顶点</summary>
  994. public void AddRange(T[] ts) { for (int i = 0; i < ts.Length; i++) { Add(ts[i]); } }
  995. #endregion
  996. #region set associate
  997. internal Node[] Vertexs { get { return vertexs.ToArray(); } }
  998. /// <summary>设置可计算的长度全为1.0f 的边</summary>
  999. public void InitialUnitEdges() {
  1000. var length = Count;
  1001. this.sides = new List<Tople<int, float>>[length];
  1002. for (int i = 0; i < length; i++) {
  1003. var len = this[i].Association.Count;
  1004. sides[i] = new List<Tople<int, float>>();
  1005. for (int j = 0; j < len; j++) {
  1006. sides[i].Add(new Tople<int, float>(this[i].Association[j].Index, 1f));
  1007. }
  1008. }
  1009. }
  1010. public Node this[params int[] ids] {
  1011. get {
  1012. if (ids.Length == 1)
  1013. return this.vertexs.Single(item => item.Index == ids[0]);
  1014. else if (ids.Length == 2)
  1015. return this.vertexs.Single(item => item.x == ids[0] && item.y == ids[1]);
  1016. else if (ids.Length == 3)
  1017. return this.vertexs.Single(item => item.x == ids[0] && item.y == ids[1] && item.z == ids[2]);
  1018. else
  1019. throw new Exception("len must less than 3");
  1020. }
  1021. }
  1022. public Node this[string key] { get { return vertexs.Single(item => item.Key == key); } }
  1023. /// <summary>
  1024. /// 建立关系通过 index
  1025. /// </summary>
  1026. /// <param name="nodeindex">待添加节点索引</param>
  1027. /// <param name="assos">待添加节点的子节点索引集</param>
  1028. public void SetAssociateByIndex(int nodeindex, params int[] assos) {
  1029. foreach (var item in assos) {
  1030. this[nodeindex].Association.Add(this[item]);
  1031. }
  1032. }
  1033. public void SetAssociateBy2DCoordinate(Tople<int, int> nodeindex, params Tople<int, int>[] assos) {
  1034. foreach (var item in assos) {
  1035. this[nodeindex.Item1, nodeindex.Item2].Association.Add(this[item.Item1, item.Item2]);
  1036. }
  1037. }
  1038. public void SetAssociateBy3DCoordinate(Tople<int, int, int> nodeindex, params Tople<int, int, int>[] assos) {
  1039. foreach (var item in assos) {
  1040. this[nodeindex.Item1, nodeindex.Item2, nodeindex.Item3].Association.Add(this[item.Item1, item.Item2, item.Item3]);
  1041. }
  1042. }
  1043. public void SetAssociate(string key, params string[] otherkeys) {
  1044. foreach (var item in otherkeys) {
  1045. this[key].Association.Add(this[item]);
  1046. }
  1047. }
  1048. #endregion
  1049. public void ResetVisit() {
  1050. foreach (var item in vertexs) {
  1051. item.IsVisited = false;
  1052. }
  1053. }
  1054. /// <summary>
  1055. /// 获取图中一个未访问的节点
  1056. /// </summary>
  1057. /// <param name="graph"></param>
  1058. /// <returns></returns>
  1059. protected Node GetNodeUnVisited() {
  1060. foreach (Node node in vertexs)
  1061. if (!node.IsVisited)
  1062. return node;
  1063. return null;
  1064. }
  1065. protected Node GetNodeUnVisited(IEnumerable<Node> nodes) {
  1066. foreach (Node node in nodes)
  1067. if (!node.IsVisited)
  1068. return node;
  1069. return null;
  1070. }
  1071. IEnumerable<Node> BreadthFirstTraverse(int index = 0) {
  1072. var current = vertexs.Single(item => item.Index == index);
  1073. if (!current.IsVisited) {
  1074. current.IsVisited = true;
  1075. yield return current;
  1076. var q = new Queue<Node>();
  1077. q.Enqueue(current);
  1078. while (q.Count > 0) {
  1079. foreach (var item in current.Association) {
  1080. if (!item.IsVisited) {
  1081. q.Enqueue(item);
  1082. item.IsVisited = true;
  1083. }
  1084. }
  1085. current = q.Dequeue();
  1086. yield return current;
  1087. }
  1088. }
  1089. }
  1090. public HashSet<T> BFT() {
  1091. var x = new HashSet<T>();
  1092. ResetVisit();
  1093. var node = GetNodeUnVisited();
  1094. while (node != null) {
  1095. var x2 = (from item in BreadthFirstTraverse(node.Index) select item.Data).ToArray();
  1096. x.UnionWith(x2);
  1097. node = GetNodeUnVisited();
  1098. }
  1099. return x;
  1100. }
  1101. IEnumerable<Node> DeepFirstTraverse(int index = 0) {
  1102. var current = vertexs.Single(item => item.Index == index);
  1103. if (!current.IsVisited) {
  1104. current.IsVisited = true;
  1105. yield return current;
  1106. var node = GetNodeUnVisited(current.Association);
  1107. if (node != null)
  1108. foreach (var item2 in DeepFirstTraverse(node.Index)) {
  1109. yield return item2;
  1110. }
  1111. }
  1112. }
  1113. public HashSet<T> DFT() {
  1114. var x = new HashSet<T>();
  1115. ResetVisit();
  1116. var node = GetNodeUnVisited();
  1117. while (node != null) {
  1118. var x2 = (from item in DeepFirstTraverse(node.Index) select item.Data).ToArray();
  1119. x.UnionWith(x2);
  1120. node = GetNodeUnVisited();
  1121. }
  1122. return x;
  1123. }
  1124. }
  1125. /// <summary>
  1126. /// a 星搜索 标准2度数组
  1127. /// </summary>
  1128. public class Astar {
  1129. protected class Node {
  1130. public double estimation;//估值
  1131. public int step;//步数值
  1132. public double Value { get { return estimation + step; } }
  1133. public byte mark;
  1134. public Tople<int, int> coordinate;
  1135. public Node(int x, int y, byte mark) {
  1136. coordinate = new Tople<int, int>(x, y);
  1137. this.mark = mark;
  1138. }
  1139. public bool CheckOne(Tople<int, int> target) {
  1140. return this.coordinate.Item1 == target.Item1 && this.coordinate.Item2 == target.Item2;
  1141. }
  1142. public bool CheckRelationship(Node n) {
  1143. return Math.Abs(this.coordinate.Item1 - n.coordinate.Item1) <= 1 && Math.Abs(this.coordinate.Item2 - n.coordinate.Item2) <= 1;
  1144. }
  1145. }
  1146. HashSet<Node> map; int x, y;
  1147. Node this[Tople<int, int> key] {
  1148. get { return this.map.Single(item => item.CheckOne(key)); }
  1149. }
  1150. public static Astar Create(byte[,] map, bool? movestyle = null) {
  1151. var r = new Astar();
  1152. r.movestyle = movestyle;
  1153. r.x = map.GetLength(0);
  1154. r.y = map.GetLength(1);
  1155. r.map = new HashSet<Node>();
  1156. for (int i = 0; i < r.x; i++) {
  1157. for (int j = 0; j < r.y; j++) {
  1158. r.map.Add(new Node(i, j, map[i, j]));
  1159. }
  1160. }
  1161. return r;
  1162. }
  1163. Astar() {
  1164. openlist = new HashSet<Node>();
  1165. closelist = new HashSet<Node>();
  1166. }
  1167. public List<Tople<int, int>> Search(Tople<int, int> start, Tople<int, int> end, byte stopvalue = 255) {
  1168. var r = new List<Tople<int, int>>();
  1169. var isNothing = true;
  1170. var x = this[start];
  1171. openlist.Clear();
  1172. closelist.Clear();
  1173. closelist.Add(x);
  1174. while (!x.CheckOne(end)) {
  1175. var x2 = this.GetCurrentList(x.coordinate);
  1176. var x3 = x2.Except(closelist);
  1177. x3.ExceptWith((from item in x3 where item.mark == stopvalue select item).ToArray());
  1178. foreach (var item in x3) {
  1179. item.estimation = GetValue(item, this[end]);
  1180. }
  1181. openlist.UnionWith(x3);
  1182. if (openlist.Count > 0) {
  1183. var x4 = openlist.Min(item => item.estimation);
  1184. x = (from item in openlist where item.estimation == x4 select item).First();
  1185. openlist.Remove(x);
  1186. x.step = closelist.Count;
  1187. closelist.Add(x);
  1188. } else {
  1189. isNothing = false;
  1190. break;
  1191. }
  1192. }
  1193. if (isNothing) {
  1194. var x5 = from item in closelist orderby item.step descending select item;
  1195. var x6 = x5.ToArray();
  1196. var length = closelist.Count;
  1197. var key = x6[0];
  1198. for (int i = 0; i < length; i++) {
  1199. if (!key.CheckRelationship(x6[i])) {
  1200. continue;
  1201. }
  1202. r.Add(key.coordinate);
  1203. key = x6[i];
  1204. if (key.CheckOne(start)) {
  1205. break;
  1206. }
  1207. }
  1208. }
  1209. return r;
  1210. }
  1211. HashSet<Node> openlist;
  1212. HashSet<Node> closelist;
  1213. Node GetMaxValueCoordinate(Node p) {
  1214. var x = default(Node);
  1215. var x2 = 0d;
  1216. foreach (var item in openlist) {
  1217. var x3 = GetValue(p, item);
  1218. if (x3 > x2) {
  1219. x = item;
  1220. x3 = x2;
  1221. }
  1222. }
  1223. return x;
  1224. }
  1225. bool? movestyle;
  1226. HashSet<Node> GetCurrentList(Tople<int, int> thepoint) {
  1227. var ol = new HashSet<Node>();
  1228. switch (movestyle) {
  1229. case null: //周围8格(全)
  1230. if (thepoint.Item1 + 1 < x) {
  1231. ol.Add(this[Tople.C(thepoint.Item1 + 1, thepoint.Item2)]);
  1232. }
  1233. if (thepoint.Item1 - 1 >= 0) {
  1234. ol.Add(this[Tople.C(thepoint.Item1 - 1, thepoint.Item2)]);
  1235. }
  1236. if (thepoint.Item2 + 1 < y) {
  1237. ol.Add(this[Tople.C(thepoint.Item1, thepoint.Item2 + 1)]);