/netlab3.3/rbfjacob.m
http://pmtksupport.googlecode.com/ · MATLAB · 51 lines · 28 code · 7 blank · 16 comment · 6 complexity · 5f1a12e19f16e1840ad3a6d3996a6921 MD5 · raw file
- function jac = rbfjacob(net, x)
- %RBFJACOB Evaluate derivatives of RBF network outputs with respect to inputs.
- %
- % Description
- % G = RBFJACOB(NET, X) takes a network data structure NET and a matrix
- % of input vectors X and returns a three-index matrix G whose I, J, K
- % element contains the derivative of network output K with respect to
- % input parameter J for input pattern I.
- %
- % See also
- % RBF, RBFGRAD, RBFBKP
- %
-
- % Copyright (c) Ian T Nabney (1996-2001)
-
- % Check arguments for consistency
- errstring = consist(net, 'rbf', x);
- if ~isempty(errstring);
- error(errstring);
- end
-
- if ~strcmp(net.outfn, 'linear')
- error('Function only implemented for linear outputs')
- end
-
- [y, z, n2] = rbffwd(net, x);
-
- ndata = size(x, 1);
- jac = zeros(ndata, net.nin, net.nout);
- Psi = zeros(net.nin, net.nhidden);
- % Calculate derivative of activations wrt n2
- switch net.actfn
- case 'gaussian'
- dz = -z./(ones(ndata, 1)*net.wi);
- case 'tps'
- dz = 2*(1 + log(n2+(n2==0)));
- case 'r4logr'
- dz = 2*(n2.*(1+2.*log(n2+(n2==0))));
- otherwise
- error(['Unknown activation function ', net.actfn]);
- end
-
- % Ignore biases as they cannot affect Jacobian
- for n = 1:ndata
- Psi = (ones(net.nin, 1)*dz(n, :)).* ...
- (x(n, :)'*ones(1, net.nhidden) - net.c');
- % Now compute the Jacobian
- jac(n, :, :) = Psi * net.w2;
- end
-
- end