/netlab3.3/olgd.m
http://pmtksupport.googlecode.com/ · MATLAB · 183 lines · 92 code · 16 blank · 75 comment · 19 complexity · fafc4c614f3103151b4d81bb0da0d28f MD5 · raw file
- function [net, options, errlog, pointlog] = olgd(net, options, x, t)
- %OLGD On-line gradient descent optimization.
- %
- % Description
- % [NET, OPTIONS, ERRLOG, POINTLOG] = OLGD(NET, OPTIONS, X, T) uses on-
- % line gradient descent to find a local minimum of the error function
- % for the network NET computed on the input data X and target values T.
- % A log of the error values after each cycle is (optionally) returned
- % in ERRLOG, and a log of the points visited is (optionally) returned
- % in POINTLOG. Because the gradient is computed on-line (i.e. after
- % each pattern) this can be quite inefficient in Matlab.
- %
- % The error function value at final weight vector is returned in
- % OPTIONS(8).
- %
- % The optional parameters have the following interpretations.
- %
- % OPTIONS(1) is set to 1 to display error values; also logs error
- % values in the return argument ERRLOG, and the points visited in the
- % return argument POINTSLOG. If OPTIONS(1) is set to 0, then only
- % warning messages are displayed. If OPTIONS(1) is -1, then nothing is
- % displayed.
- %
- % OPTIONS(2) is the precision required for the value of X at the
- % solution. If the absolute difference between the values of X between
- % two successive steps is less than OPTIONS(2), then this condition is
- % satisfied.
- %
- % OPTIONS(3) is the precision required of the objective function at the
- % solution. If the absolute difference between the error functions
- % between two successive steps is less than OPTIONS(3), then this
- % condition is satisfied. Both this and the previous condition must be
- % satisfied for termination. Note that testing the function value at
- % each iteration roughly halves the speed of the algorithm.
- %
- % OPTIONS(5) determines whether the patterns are sampled randomly with
- % replacement. If it is 0 (the default), then patterns are sampled in
- % order.
- %
- % OPTIONS(6) determines if the learning rate decays. If it is 1 then
- % the learning rate decays at a rate of 1/T. If it is 0 (the default)
- % then the learning rate is constant.
- %
- % OPTIONS(9) should be set to 1 to check the user defined gradient
- % function.
- %
- % OPTIONS(10) returns the total number of function evaluations
- % (including those in any line searches).
- %
- % OPTIONS(11) returns the total number of gradient evaluations.
- %
- % OPTIONS(14) is the maximum number of iterations (passes through the
- % complete pattern set); default 100.
- %
- % OPTIONS(17) is the momentum; default 0.5.
- %
- % OPTIONS(18) is the learning rate; default 0.01.
- %
- % See also
- % GRADDESC
- %
-
- % Copyright (c) Ian T Nabney (1996-2001)
-
- % Set up the options.
- if length(options) < 18
- error('Options vector too short')
- end
-
- if (options(14))
- niters = options(14);
- else
- niters = 100;
- end
-
- % Learning rate: must be positive
- if (options(18) > 0)
- eta = options(18);
- else
- eta = 0.01;
- end
- % Save initial learning rate for annealing
- lr = eta;
- % Momentum term: allow zero momentum
- if (options(17) >= 0)
- mu = options(17);
- else
- mu = 0.5;
- end
-
- pakstr = [net.type, 'pak'];
- unpakstr = [net.type, 'unpak'];
-
- % Extract initial weights from the network
- w = feval(pakstr, net);
-
- display = options(1);
-
- % Work out if we need to compute f at each iteration.
- % Needed if display results or if termination
- % criterion requires it.
- fcneval = (display | options(3));
-
- % Check gradients
- if (options(9))
- feval('gradchek', w, 'neterr', 'netgrad', net, x, t);
- end
-
- dwold = zeros(1, length(w));
- fold = 0; % Must be initialised so that termination test can be performed
- ndata = size(x, 1);
-
- if fcneval
- fnew = neterr(w, net, x, t);
- options(10) = options(10) + 1;
- fold = fnew;
- end
-
- j = 1;
- if nargout >= 3
- errlog(j, :) = fnew;
- if nargout == 4
- pointlog(j, :) = w;
- end
- end
-
- % Main optimization loop.
- while j <= niters
- wold = w;
- if options(5)
- % Randomise order of pattern presentation: with replacement
- pnum = ceil(rand(ndata, 1).*ndata);
- else
- pnum = 1:ndata;
- end
- for k = 1:ndata
- grad = netgrad(w, net, x(pnum(k),:), t(pnum(k),:));
- if options(6)
- % Let learning rate decrease as 1/t
- lr = eta/((j-1)*ndata + k);
- end
- dw = mu*dwold - lr*grad;
- w = w + dw;
- dwold = dw;
- end
- options(11) = options(11) + 1; % Increment gradient evaluation count
- if fcneval
- fold = fnew;
- fnew = neterr(w, net, x, t);
- options(10) = options(10) + 1;
- end
- if display
- fprintf(1, 'Iteration %5d Error %11.8f\n', j, fnew);
- end
- j = j + 1;
- if nargout >= 3
- errlog(j) = fnew;
- if nargout == 4
- pointlog(j, :) = w;
- end
- end
- if (max(abs(w - wold)) < options(2) & abs(fnew - fold) < options(3))
- % Termination criteria are met
- options(8) = fnew;
- net = feval(unpakstr, net, w);
- return;
- end
- end
-
- if fcneval
- options(8) = fnew;
- else
- % Return error on entire dataset
- options(8) = neterr(w, net, x, t);
- options(10) = options(10) + 1;
- end
- if (options(1) >= 0)
- disp(maxitmess);
- end
-
- net = feval(unpakstr, net, w);
-
- end