/lib/ode/ode_source/ode/src/stepfast.cpp
http://narutortsproject.googlecode.com/ · C++ · 1143 lines · 816 code · 120 blank · 207 comment · 168 complexity · 21e3dd5c2709ef17758a92cf6579b3b1 MD5 · raw file
- /*************************************************************************
- * *
- * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
- * All rights reserved. Email: russ@q12.org Web: www.q12.org *
- * *
- * Fast iterative solver, David Whittaker. Email: david@csworkbench.com *
- * *
- * This library is free software; you can redistribute it and/or *
- * modify it under the terms of EITHER: *
- * (1) The GNU Lesser General Public License as published by the Free *
- * Software Foundation; either version 2.1 of the License, or (at *
- * your option) any later version. The text of the GNU Lesser *
- * General Public License is included with this library in the *
- * file LICENSE.TXT. *
- * (2) The BSD-style license that is included with this library in *
- * the file LICENSE-BSD.TXT. *
- * *
- * This library is distributed in the hope that it will be useful, *
- * but WITHOUT ANY WARRANTY; without even the implied warranty of *
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
- * LICENSE.TXT and LICENSE-BSD.TXT for more details. *
- * *
- *************************************************************************/
-
- // This is the StepFast code by David Whittaker. This code is faster, but
- // sometimes less stable than, the original "big matrix" code.
- // Refer to the user's manual for more information.
- // Note that this source file duplicates a lot of stuff from step.cpp,
- // eventually we should move the common code to a third file.
-
- #include "objects.h"
- #include "joints/joint.h"
- #include <ode/odeconfig.h>
- #include "config.h"
- #include <ode/objects.h>
- #include <ode/odemath.h>
- #include <ode/rotation.h>
- #include <ode/timer.h>
- #include <ode/error.h>
- #include <ode/matrix.h>
- #include <ode/misc.h>
- #include "lcp.h"
- #include "step.h"
- #include "util.h"
-
-
- // misc defines
-
- #define ALLOCA dALLOCA16
-
- #define RANDOM_JOINT_ORDER
- //#define FAST_FACTOR //use a factorization approximation to the LCP solver (fast, theoretically less accurate)
- #define SLOW_LCP //use the old LCP solver
- //#define NO_ISLANDS //does not perform island creation code (3~4% of simulation time), body disabling doesn't work
- //#define TIMING
-
-
- static int autoEnableDepth = 2;
-
- void dWorldSetAutoEnableDepthSF1 (dxWorld *world, int autodepth)
- {
- if (autodepth > 0)
- autoEnableDepth = autodepth;
- else
- autoEnableDepth = 0;
- }
-
- int dWorldGetAutoEnableDepthSF1 (dxWorld *world)
- {
- return autoEnableDepth;
- }
-
- //little bit of math.... the _sym_ functions assume the return matrix will be symmetric
- static void
- Multiply2_sym_p8p (dReal * A, dReal * B, dReal * C, int p, int Askip)
- {
- int i, j;
- dReal sum, *aa, *ad, *bb, *cc;
- dIASSERT (p > 0 && A && B && C);
- bb = B;
- for (i = 0; i < p; i++)
- {
- //aa is going accross the matrix, ad down
- aa = ad = A;
- cc = C;
- for (j = i; j < p; j++)
- {
- sum = bb[0] * cc[0];
- sum += bb[1] * cc[1];
- sum += bb[2] * cc[2];
- sum += bb[4] * cc[4];
- sum += bb[5] * cc[5];
- sum += bb[6] * cc[6];
- *(aa++) = *ad = sum;
- ad += Askip;
- cc += 8;
- }
- bb += 8;
- A += Askip + 1;
- C += 8;
- }
- }
-
- static void
- MultiplyAdd2_sym_p8p (dReal * A, dReal * B, dReal * C, int p, int Askip)
- {
- int i, j;
- dReal sum, *aa, *ad, *bb, *cc;
- dIASSERT (p > 0 && A && B && C);
- bb = B;
- for (i = 0; i < p; i++)
- {
- //aa is going accross the matrix, ad down
- aa = ad = A;
- cc = C;
- for (j = i; j < p; j++)
- {
- sum = bb[0] * cc[0];
- sum += bb[1] * cc[1];
- sum += bb[2] * cc[2];
- sum += bb[4] * cc[4];
- sum += bb[5] * cc[5];
- sum += bb[6] * cc[6];
- *(aa++) += sum;
- *ad += sum;
- ad += Askip;
- cc += 8;
- }
- bb += 8;
- A += Askip + 1;
- C += 8;
- }
- }
-
-
- // this assumes the 4th and 8th rows of B are zero.
-
- static void
- Multiply0_p81 (dReal * A, dReal * B, dReal * C, int p)
- {
- int i;
- dIASSERT (p > 0 && A && B && C);
- dReal sum;
- for (i = p; i; i--)
- {
- sum = B[0] * C[0];
- sum += B[1] * C[1];
- sum += B[2] * C[2];
- sum += B[4] * C[4];
- sum += B[5] * C[5];
- sum += B[6] * C[6];
- *(A++) = sum;
- B += 8;
- }
- }
-
-
- // this assumes the 4th and 8th rows of B are zero.
-
- static void
- MultiplyAdd0_p81 (dReal * A, dReal * B, dReal * C, int p)
- {
- int i;
- dIASSERT (p > 0 && A && B && C);
- dReal sum;
- for (i = p; i; i--)
- {
- sum = B[0] * C[0];
- sum += B[1] * C[1];
- sum += B[2] * C[2];
- sum += B[4] * C[4];
- sum += B[5] * C[5];
- sum += B[6] * C[6];
- *(A++) += sum;
- B += 8;
- }
- }
-
-
- // this assumes the 4th and 8th rows of B are zero.
-
- static void
- Multiply1_8q1 (dReal * A, dReal * B, dReal * C, int q)
- {
- int k;
- dReal sum;
- dIASSERT (q > 0 && A && B && C);
- sum = 0;
- for (k = 0; k < q; k++)
- sum += B[k * 8] * C[k];
- A[0] = sum;
- sum = 0;
- for (k = 0; k < q; k++)
- sum += B[1 + k * 8] * C[k];
- A[1] = sum;
- sum = 0;
- for (k = 0; k < q; k++)
- sum += B[2 + k * 8] * C[k];
- A[2] = sum;
- sum = 0;
- for (k = 0; k < q; k++)
- sum += B[4 + k * 8] * C[k];
- A[4] = sum;
- sum = 0;
- for (k = 0; k < q; k++)
- sum += B[5 + k * 8] * C[k];
- A[5] = sum;
- sum = 0;
- for (k = 0; k < q; k++)
- sum += B[6 + k * 8] * C[k];
- A[6] = sum;
- }
-
- //****************************************************************************
- // body rotation
-
- // return sin(x)/x. this has a singularity at 0 so special handling is needed
- // for small arguments.
-
- static inline dReal
- sinc (dReal x)
- {
- // if |x| < 1e-4 then use a taylor series expansion. this two term expansion
- // is actually accurate to one LS bit within this range if double precision
- // is being used - so don't worry!
- if (dFabs (x) < 1.0e-4)
- return REAL (1.0) - x * x * REAL (0.166666666666666666667);
- else
- return dSin (x) / x;
- }
-
- #if 0 // this is just dxStepBody()
- // given a body b, apply its linear and angular rotation over the time
- // interval h, thereby adjusting its position and orientation.
-
- static inline void
- moveAndRotateBody (dxBody * b, dReal h)
- {
- int j;
-
- // handle linear velocity
- for (j = 0; j < 3; j++)
- b->posr.pos[j] += h * b->lvel[j];
-
- if (b->flags & dxBodyFlagFiniteRotation)
- {
- dVector3 irv; // infitesimal rotation vector
- dQuaternion q; // quaternion for finite rotation
-
- if (b->flags & dxBodyFlagFiniteRotationAxis)
- {
- // split the angular velocity vector into a component along the finite
- // rotation axis, and a component orthogonal to it.
- dVector3 frv, irv; // finite rotation vector
- dReal k = dDOT (b->finite_rot_axis, b->avel);
- frv[0] = b->finite_rot_axis[0] * k;
- frv[1] = b->finite_rot_axis[1] * k;
- frv[2] = b->finite_rot_axis[2] * k;
- irv[0] = b->avel[0] - frv[0];
- irv[1] = b->avel[1] - frv[1];
- irv[2] = b->avel[2] - frv[2];
-
- // make a rotation quaternion q that corresponds to frv * h.
- // compare this with the full-finite-rotation case below.
- h *= REAL (0.5);
- dReal theta = k * h;
- q[0] = dCos (theta);
- dReal s = sinc (theta) * h;
- q[1] = frv[0] * s;
- q[2] = frv[1] * s;
- q[3] = frv[2] * s;
- }
- else
- {
- // make a rotation quaternion q that corresponds to w * h
- dReal wlen = dSqrt (b->avel[0] * b->avel[0] + b->avel[1] * b->avel[1] + b->avel[2] * b->avel[2]);
- h *= REAL (0.5);
- dReal theta = wlen * h;
- q[0] = dCos (theta);
- dReal s = sinc (theta) * h;
- q[1] = b->avel[0] * s;
- q[2] = b->avel[1] * s;
- q[3] = b->avel[2] * s;
- }
-
- // do the finite rotation
- dQuaternion q2;
- dQMultiply0 (q2, q, b->q);
- for (j = 0; j < 4; j++)
- b->q[j] = q2[j];
-
- // do the infitesimal rotation if required
- if (b->flags & dxBodyFlagFiniteRotationAxis)
- {
- dReal dq[4];
- dWtoDQ (irv, b->q, dq);
- for (j = 0; j < 4; j++)
- b->q[j] += h * dq[j];
- }
- }
- else
- {
- // the normal way - do an infitesimal rotation
- dReal dq[4];
- dWtoDQ (b->avel, b->q, dq);
- for (j = 0; j < 4; j++)
- b->q[j] += h * dq[j];
- }
-
- // normalize the quaternion and convert it to a rotation matrix
- dNormalize4 (b->q);
- dQtoR (b->q, b->posr.R);
-
- // notify all attached geoms that this body has moved
- for (dxGeom * geom = b->geom; geom; geom = dGeomGetBodyNext (geom))
- dGeomMoved (geom);
- }
- #endif
-
- //****************************************************************************
- //This is an implementation of the iterated/relaxation algorithm.
- //Here is a quick overview of the algorithm per Sergi Valverde's posts to the
- //mailing list:
- //
- // for i=0..N-1 do
- // for c = 0..C-1 do
- // Solve constraint c-th
- // Apply forces to constraint bodies
- // next
- // next
- // Integrate bodies
-
- void
- dInternalStepFast (dxWorld * world, dxBody * body[2], dReal * GI[2], dReal * GinvI[2], dxJoint * joint, dxJoint::Info1 info, dxJoint::Info2 Jinfo, dReal stepsize)
- {
- int i, j, k;
- # ifdef TIMING
- dTimerNow ("constraint preprocessing");
- # endif
-
- dReal stepsize1 = dRecip (stepsize);
-
- int m = info.m;
- // nothing to do if no constraints.
- if (m <= 0)
- return;
-
- int nub = 0;
- if (info.nub == info.m)
- nub = m;
-
- // compute A = J*invM*J'. first compute JinvM = J*invM. this has the same
- // format as J so we just go through the constraints in J multiplying by
- // the appropriate scalars and matrices.
- # ifdef TIMING
- dTimerNow ("compute A");
- # endif
- dReal JinvM[2 * 6 * 8];
- //dSetZero (JinvM, 2 * m * 8);
-
- dReal *Jsrc = Jinfo.J1l;
- dReal *Jdst = JinvM;
- if (body[0])
- {
- for (j = m - 1; j >= 0; j--)
- {
- for (k = 0; k < 3; k++)
- Jdst[k] = Jsrc[k] * body[0]->invMass;
- dMULTIPLY0_133 (Jdst + 4, Jsrc + 4, GinvI[0]);
- Jsrc += 8;
- Jdst += 8;
- }
- }
- if (body[1])
- {
- Jsrc = Jinfo.J2l;
- Jdst = JinvM + 8 * m;
- for (j = m - 1; j >= 0; j--)
- {
- for (k = 0; k < 3; k++)
- Jdst[k] = Jsrc[k] * body[1]->invMass;
- dMULTIPLY0_133 (Jdst + 4, Jsrc + 4, GinvI[1]);
- Jsrc += 8;
- Jdst += 8;
- }
- }
-
-
- // now compute A = JinvM * J'.
- int mskip = dPAD (m);
- dReal A[6 * 8];
- //dSetZero (A, 6 * 8);
-
- if (body[0]) {
- Multiply2_sym_p8p (A, JinvM, Jinfo.J1l, m, mskip);
- if (body[1])
- MultiplyAdd2_sym_p8p (A, JinvM + 8 * m, Jinfo.J2l,
- m, mskip);
- } else {
- if (body[1])
- Multiply2_sym_p8p (A, JinvM + 8 * m, Jinfo.J2l,
- m, mskip);
- }
-
- // add cfm to the diagonal of A
- for (i = 0; i < m; i++)
- A[i * mskip + i] += Jinfo.cfm[i] * stepsize1;
-
- // compute the right hand side `rhs'
- # ifdef TIMING
- dTimerNow ("compute rhs");
- # endif
- dReal tmp1[16];
- //dSetZero (tmp1, 16);
- // put v/h + invM*fe into tmp1
- for (i = 0; i < 2; i++)
- {
- if (!body[i])
- continue;
- for (j = 0; j < 3; j++)
- tmp1[i * 8 + j] = body[i]->facc[j] * body[i]->invMass + body[i]->lvel[j] * stepsize1;
- dMULTIPLY0_331 (tmp1 + i * 8 + 4, GinvI[i], body[i]->tacc);
- for (j = 0; j < 3; j++)
- tmp1[i * 8 + 4 + j] += body[i]->avel[j] * stepsize1;
- }
- // put J*tmp1 into rhs
- dReal rhs[6];
- //dSetZero (rhs, 6);
-
- if (body[0]) {
- Multiply0_p81 (rhs, Jinfo.J1l, tmp1, m);
- if (body[1])
- MultiplyAdd0_p81 (rhs, Jinfo.J2l, tmp1 + 8, m);
- } else {
- if (body[1])
- Multiply0_p81 (rhs, Jinfo.J2l, tmp1 + 8, m);
- }
-
- // complete rhs
- for (i = 0; i < m; i++)
- rhs[i] = Jinfo.c[i] * stepsize1 - rhs[i];
-
- #ifdef SLOW_LCP
- // solve the LCP problem and get lambda.
- // this will destroy A but that's okay
- # ifdef TIMING
- dTimerNow ("solving LCP problem");
- # endif
- dReal *lambda = (dReal *) ALLOCA (m * sizeof (dReal));
- dReal *residual = (dReal *) ALLOCA (m * sizeof (dReal));
- dReal lo[6], hi[6];
- memcpy (lo, Jinfo.lo, m * sizeof (dReal));
- memcpy (hi, Jinfo.hi, m * sizeof (dReal));
- dSolveLCP (m, A, lambda, rhs, residual, nub, lo, hi, Jinfo.findex);
- #endif
-
- // LCP Solver replacement:
- // This algorithm goes like this:
- // Do a straightforward LDLT factorization of the matrix A, solving for
- // A*x = rhs
- // For each x[i] that is outside of the bounds of lo[i] and hi[i],
- // clamp x[i] into that range.
- // Substitute into A the now known x's
- // subtract the residual away from the rhs.
- // Remove row and column i from L, updating the factorization
- // place the known x's at the end of the array, keeping up with location in p
- // Repeat until all constraints have been clamped or all are within bounds
- //
- // This is probably only faster in the single joint case where only one repeat is
- // the norm.
-
- #ifdef FAST_FACTOR
- // factorize A (L*D*L'=A)
- # ifdef TIMING
- dTimerNow ("factorize A");
- # endif
- dReal d[6];
- dReal L[6 * 8];
- memcpy (L, A, m * mskip * sizeof (dReal));
- dFactorLDLT (L, d, m, mskip);
-
- // compute lambda
- # ifdef TIMING
- dTimerNow ("compute lambda");
- # endif
-
- int left = m; //constraints left to solve.
- int remove[6];
- dReal lambda[6];
- dReal x[6];
- int p[6];
- for (i = 0; i < 6; i++)
- p[i] = i;
- while (true)
- {
- memcpy (x, rhs, left * sizeof (dReal));
- dSolveLDLT (L, d, x, left, mskip);
-
- int fixed = 0;
- for (i = 0; i < left; i++)
- {
- j = p[i];
- remove[i] = false;
- // This isn't the exact same use of findex as dSolveLCP.... since x[findex]
- // may change after I've already clamped x[i], but it should be close
- if (Jinfo.findex[j] > -1)
- {
- dReal f = fabs (Jinfo.hi[j] * x[p[Jinfo.findex[j]]]);
- if (x[i] > f)
- x[i] = f;
- else if (x[i] < -f)
- x[i] = -f;
- else
- continue;
- }
- else
- {
- if (x[i] > Jinfo.hi[j])
- x[i] = Jinfo.hi[j];
- else if (x[i] < Jinfo.lo[j])
- x[i] = Jinfo.lo[j];
- else
- continue;
- }
- remove[i] = true;
- fixed++;
- }
- if (fixed == 0 || fixed == left) //no change or all constraints solved
- break;
-
- for (i = 0; i < left; i++) //sub in to right hand side.
- if (remove[i])
- for (j = 0; j < left; j++)
- if (!remove[j])
- rhs[j] -= A[j * mskip + i] * x[i];
-
- for (int r = left - 1; r >= 0; r--) //eliminate row/col for fixed variables
- {
- if (remove[r])
- {
- //dRemoveLDLT adapted for use without row pointers.
- if (r == left - 1)
- {
- left--;
- continue; // deleting last row/col is easy
- }
- else if (r == 0)
- {
- dReal a[6];
- for (i = 0; i < left; i++)
- a[i] = -A[i * mskip];
- a[0] += REAL (1.0);
- dLDLTAddTL (L, d, a, left, mskip);
- }
- else
- {
- dReal t[6];
- dReal a[6];
- for (i = 0; i < r; i++)
- t[i] = L[r * mskip + i] / d[i];
- for (i = 0; i < left - r; i++)
- a[i] = dDot (L + (r + i) * mskip, t, r) - A[(r + i) * mskip + r];
- a[0] += REAL (1.0);
- dLDLTAddTL (L + r * mskip + r, d + r, a, left - r, mskip);
- }
-
- dRemoveRowCol (L, left, mskip, r);
- //end dRemoveLDLT
-
- left--;
- if (r < (left - 1))
- {
- dReal tx = x[r];
- memmove (d + r, d + r + 1, (left - r) * sizeof (dReal));
- memmove (rhs + r, rhs + r + 1, (left - r) * sizeof (dReal));
- //x will get written over by rhs anyway, no need to move it around
- //just store the fixed value we just discovered in it.
- x[left] = tx;
- for (i = 0; i < m; i++)
- if (p[i] > r && p[i] <= left)
- p[i]--;
- p[r] = left;
- }
- }
- }
- }
-
- for (i = 0; i < m; i++)
- lambda[i] = x[p[i]];
- # endif
- // compute the constraint force `cforce'
- # ifdef TIMING
- dTimerNow ("compute constraint force");
- #endif
-
- // compute cforce = J'*lambda
- dJointFeedback *fb = joint->feedback;
- dReal cforce[16];
- //dSetZero (cforce, 16);
-
- if (fb)
- {
- // the user has requested feedback on the amount of force that this
- // joint is applying to the bodies. we use a slightly slower
- // computation that splits out the force components and puts them
- // in the feedback structure.
- dReal data1[8], data2[8];
- if (body[0])
- {
- Multiply1_8q1 (data1, Jinfo.J1l, lambda, m);
- dReal *cf1 = cforce;
- cf1[0] = (fb->f1[0] = data1[0]);
- cf1[1] = (fb->f1[1] = data1[1]);
- cf1[2] = (fb->f1[2] = data1[2]);
- cf1[4] = (fb->t1[0] = data1[4]);
- cf1[5] = (fb->t1[1] = data1[5]);
- cf1[6] = (fb->t1[2] = data1[6]);
- }
- if (body[1])
- {
- Multiply1_8q1 (data2, Jinfo.J2l, lambda, m);
- dReal *cf2 = cforce + 8;
- cf2[0] = (fb->f2[0] = data2[0]);
- cf2[1] = (fb->f2[1] = data2[1]);
- cf2[2] = (fb->f2[2] = data2[2]);
- cf2[4] = (fb->t2[0] = data2[4]);
- cf2[5] = (fb->t2[1] = data2[5]);
- cf2[6] = (fb->t2[2] = data2[6]);
- }
- }
- else
- {
- // no feedback is required, let's compute cforce the faster way
- if (body[0])
- Multiply1_8q1 (cforce, Jinfo.J1l, lambda, m);
- if (body[1])
- Multiply1_8q1 (cforce + 8, Jinfo.J2l, lambda, m);
- }
-
- for (i = 0; i < 2; i++)
- {
- if (!body[i])
- continue;
- for (j = 0; j < 3; j++)
- {
- body[i]->facc[j] += cforce[i * 8 + j];
- body[i]->tacc[j] += cforce[i * 8 + 4 + j];
- }
- }
- }
-
- void
- dInternalStepIslandFast (dxWorld * world, dxBody * const *bodies, int nb, dxJoint * const *_joints, int nj, dReal stepsize, int maxiterations)
- {
- # ifdef TIMING
- dTimerNow ("preprocessing");
- # endif
- dxBody *bodyPair[2], *body;
- dReal *GIPair[2], *GinvIPair[2];
- dxJoint *joint;
- int iter, b, j, i;
- dReal ministep = stepsize / maxiterations;
-
- // make a local copy of the joint array, because we might want to modify it.
- // (the "dxJoint *const*" declaration says we're allowed to modify the joints
- // but not the joint array, because the caller might need it unchanged).
- dxJoint **joints = (dxJoint **) ALLOCA (nj * sizeof (dxJoint *));
- memcpy (joints, _joints, nj * sizeof (dxJoint *));
-
- // get m = total constraint dimension, nub = number of unbounded variables.
- // create constraint offset array and number-of-rows array for all joints.
- // the constraints are re-ordered as follows: the purely unbounded
- // constraints, the mixed unbounded + LCP constraints, and last the purely
- // LCP constraints. this assists the LCP solver to put all unbounded
- // variables at the start for a quick factorization.
- //
- // joints with m=0 are inactive and are removed from the joints array
- // entirely, so that the code that follows does not consider them.
- // also number all active joints in the joint list (set their tag values).
- // inactive joints receive a tag value of -1.
-
- int m = 0;
- dxJoint::Info1 * info = (dxJoint::Info1 *) ALLOCA (nj * sizeof (dxJoint::Info1));
- int *ofs = (int *) ALLOCA (nj * sizeof (int));
- for (i = 0, j = 0; j < nj; j++)
- { // i=dest, j=src
- joints[j]->getInfo1 (info + i);
- dIASSERT (info[i].m >= 0 && info[i].m <= 6 && info[i].nub >= 0 && info[i].nub <= info[i].m);
- if (info[i].m > 0)
- {
- joints[i] = joints[j];
- joints[i]->tag = i;
- i++;
- }
- else
- {
- joints[j]->tag = -1;
- }
- }
- nj = i;
-
- // the purely unbounded constraints
- for (i = 0; i < nj; i++)
- {
- ofs[i] = m;
- m += info[i].m;
- }
- dReal *c = NULL;
- dReal *cfm = NULL;
- dReal *lo = NULL;
- dReal *hi = NULL;
- int *findex = NULL;
-
- dReal *J = NULL;
- dxJoint::Info2 * Jinfo = NULL;
-
- if (m)
- {
- // create a constraint equation right hand side vector `c', a constraint
- // force mixing vector `cfm', and LCP low and high bound vectors, and an
- // 'findex' vector.
- c = (dReal *) ALLOCA (m * sizeof (dReal));
- cfm = (dReal *) ALLOCA (m * sizeof (dReal));
- lo = (dReal *) ALLOCA (m * sizeof (dReal));
- hi = (dReal *) ALLOCA (m * sizeof (dReal));
- findex = (int *) ALLOCA (m * sizeof (int));
- dSetZero (c, m);
- dSetValue (cfm, m, world->global_cfm);
- dSetValue (lo, m, -dInfinity);
- dSetValue (hi, m, dInfinity);
- for (i = 0; i < m; i++)
- findex[i] = -1;
-
- // get jacobian data from constraints. a (2*m)x8 matrix will be created
- // to store the two jacobian blocks from each constraint. it has this
- // format:
- //
- // l l l 0 a a a 0 \ .
- // l l l 0 a a a 0 }-- jacobian body 1 block for joint 0 (3 rows)
- // l l l 0 a a a 0 /
- // l l l 0 a a a 0 \ .
- // l l l 0 a a a 0 }-- jacobian body 2 block for joint 0 (3 rows)
- // l l l 0 a a a 0 /
- // l l l 0 a a a 0 }--- jacobian body 1 block for joint 1 (1 row)
- // l l l 0 a a a 0 }--- jacobian body 2 block for joint 1 (1 row)
- // etc...
- //
- // (lll) = linear jacobian data
- // (aaa) = angular jacobian data
- //
- # ifdef TIMING
- dTimerNow ("create J");
- # endif
- J = (dReal *) ALLOCA (2 * m * 8 * sizeof (dReal));
- dSetZero (J, 2 * m * 8);
- Jinfo = (dxJoint::Info2 *) ALLOCA (nj * sizeof (dxJoint::Info2));
- for (i = 0; i < nj; i++)
- {
- Jinfo[i].rowskip = 8;
- Jinfo[i].fps = dRecip (stepsize);
- Jinfo[i].erp = world->global_erp;
- Jinfo[i].J1l = J + 2 * 8 * ofs[i];
- Jinfo[i].J1a = Jinfo[i].J1l + 4;
- Jinfo[i].J2l = Jinfo[i].J1l + 8 * info[i].m;
- Jinfo[i].J2a = Jinfo[i].J2l + 4;
- Jinfo[i].c = c + ofs[i];
- Jinfo[i].cfm = cfm + ofs[i];
- Jinfo[i].lo = lo + ofs[i];
- Jinfo[i].hi = hi + ofs[i];
- Jinfo[i].findex = findex + ofs[i];
- //joints[i]->getInfo2 (Jinfo+i);
- }
-
- }
-
- dReal *saveFacc = (dReal *) ALLOCA (nb * 4 * sizeof (dReal));
- dReal *saveTacc = (dReal *) ALLOCA (nb * 4 * sizeof (dReal));
- dReal *globalI = (dReal *) ALLOCA (nb * 12 * sizeof (dReal));
- dReal *globalInvI = (dReal *) ALLOCA (nb * 12 * sizeof (dReal));
- for (b = 0; b < nb; b++)
- {
- for (i = 0; i < 4; i++)
- {
- saveFacc[b * 4 + i] = bodies[b]->facc[i];
- saveTacc[b * 4 + i] = bodies[b]->tacc[i];
- }
- bodies[b]->tag = b;
- }
-
- for (iter = 0; iter < maxiterations; iter++)
- {
- # ifdef TIMING
- dTimerNow ("applying inertia and gravity");
- # endif
- dReal tmp[12] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
-
- for (b = 0; b < nb; b++)
- {
- body = bodies[b];
-
- // for all bodies, compute the inertia tensor and its inverse in the global
- // frame, and compute the rotational force and add it to the torque
- // accumulator. I and invI are vertically stacked 3x4 matrices, one per body.
- // @@@ check computation of rotational force.
-
- // compute inertia tensor in global frame
- dMULTIPLY2_333 (tmp, body->mass.I, body->posr.R);
- dMULTIPLY0_333 (globalI + b * 12, body->posr.R, tmp);
- // compute inverse inertia tensor in global frame
- dMULTIPLY2_333 (tmp, body->invI, body->posr.R);
- dMULTIPLY0_333 (globalInvI + b * 12, body->posr.R, tmp);
-
- for (i = 0; i < 4; i++)
- body->tacc[i] = saveTacc[b * 4 + i];
-
- if (body->flags & dxBodyGyroscopic) {
- // DanielKO: this doesn't look right/efficient, but anyways...
- // compute rotational force
- dMULTIPLY0_331 (tmp, globalI + b * 12, body->avel);
- dCROSS (body->tacc, -=, body->avel, tmp);
- }
-
- // add the gravity force to all bodies
- if ((body->flags & dxBodyNoGravity) == 0)
- {
- body->facc[0] = saveFacc[b * 4 + 0] + body->mass.mass * world->gravity[0];
- body->facc[1] = saveFacc[b * 4 + 1] + body->mass.mass * world->gravity[1];
- body->facc[2] = saveFacc[b * 4 + 2] + body->mass.mass * world->gravity[2];
- body->facc[3] = 0;
- } else {
- body->facc[0] = saveFacc[b * 4 + 0];
- body->facc[1] = saveFacc[b * 4 + 1];
- body->facc[2] = saveFacc[b * 4 + 2];
- body->facc[3] = 0;
- }
-
- }
-
- #ifdef RANDOM_JOINT_ORDER
- #ifdef TIMING
- dTimerNow ("randomizing joint order");
- #endif
- //randomize the order of the joints by looping through the array
- //and swapping the current joint pointer with a random one before it.
- for (j = 0; j < nj; j++)
- {
- joint = joints[j];
- dxJoint::Info1 i1 = info[j];
- dxJoint::Info2 i2 = Jinfo[j];
- const int r = dRandInt(j+1);
- dIASSERT (r < nj);
- joints[j] = joints[r];
- info[j] = info[r];
- Jinfo[j] = Jinfo[r];
- joints[r] = joint;
- info[r] = i1;
- Jinfo[r] = i2;
- }
- #endif
-
- //now iterate through the random ordered joint array we created.
- for (j = 0; j < nj; j++)
- {
- #ifdef TIMING
- dTimerNow ("setting up joint");
- #endif
- joint = joints[j];
- bodyPair[0] = joint->node[0].body;
- bodyPair[1] = joint->node[1].body;
-
- if (bodyPair[0] && (bodyPair[0]->flags & dxBodyDisabled))
- bodyPair[0] = 0;
- if (bodyPair[1] && (bodyPair[1]->flags & dxBodyDisabled))
- bodyPair[1] = 0;
-
- //if this joint is not connected to any enabled bodies, skip it.
- if (!bodyPair[0] && !bodyPair[1])
- continue;
-
- if (bodyPair[0])
- {
- GIPair[0] = globalI + bodyPair[0]->tag * 12;
- GinvIPair[0] = globalInvI + bodyPair[0]->tag * 12;
- }
- if (bodyPair[1])
- {
- GIPair[1] = globalI + bodyPair[1]->tag * 12;
- GinvIPair[1] = globalInvI + bodyPair[1]->tag * 12;
- }
-
- joints[j]->getInfo2 (Jinfo + j);
-
- //dInternalStepIslandFast is an exact copy of the old routine with one
- //modification: the calculated forces are added back to the facc and tacc
- //vectors instead of applying them to the bodies and moving them.
- if (info[j].m > 0)
- {
- dInternalStepFast (world, bodyPair, GIPair, GinvIPair, joint, info[j], Jinfo[j], ministep);
- }
- }
- // }
- # ifdef TIMING
- dTimerNow ("moving bodies");
- # endif
- //Now we can simulate all the free floating bodies, and move them.
- for (b = 0; b < nb; b++)
- {
- body = bodies[b];
-
- for (i = 0; i < 4; i++)
- {
- body->facc[i] *= ministep;
- body->tacc[i] *= ministep;
- }
-
- //apply torque
- dMULTIPLYADD0_331 (body->avel, globalInvI + b * 12, body->tacc);
-
- //apply force
- for (i = 0; i < 3; i++)
- body->lvel[i] += body->invMass * body->facc[i];
-
- //move It!
- dxStepBody (body, ministep);
- }
- }
- for (b = 0; b < nb; b++)
- for (j = 0; j < 4; j++)
- bodies[b]->facc[j] = bodies[b]->tacc[j] = 0;
- }
-
-
- #ifdef NO_ISLANDS
-
- // Since the iterative algorithm doesn't care about islands of bodies, this is a
- // faster algorithm that just sends it all the joints and bodies in one array.
- // It's downfall is it's inability to handle disabled bodies as well as the old one.
- static void
- processIslandsFast (dxWorld * world, dReal stepsize, int maxiterations)
- {
- // nothing to do if no bodies
- if (world->nb <= 0)
- return;
-
- dInternalHandleAutoDisabling (world,stepsize);
-
- # ifdef TIMING
- dTimerStart ("creating joint and body arrays");
- # endif
- dxBody **bodies, *body;
- dxJoint **joints, *joint;
- joints = (dxJoint **) ALLOCA (world->nj * sizeof (dxJoint *));
- bodies = (dxBody **) ALLOCA (world->nb * sizeof (dxBody *));
-
- int nj = 0;
- for (joint = world->firstjoint; joint; joint = (dxJoint *) joint->next)
- joints[nj++] = joint;
-
- int nb = 0;
- for (body = world->firstbody; body; body = (dxBody *) body->next)
- bodies[nb++] = body;
-
- dInternalStepIslandFast (world, bodies, nb, joints, nj, stepsize, maxiterations);
- # ifdef TIMING
- dTimerEnd ();
- dTimerReport (stdout, 1);
- # endif
- }
-
- #else
-
- //****************************************************************************
- // island processing
-
- // this groups all joints and bodies in a world into islands. all objects
- // in an island are reachable by going through connected bodies and joints.
- // each island can be simulated separately.
- // note that joints that are not attached to anything will not be included
- // in any island, an so they do not affect the simulation.
- //
- // this function starts new island from unvisited bodies. however, it will
- // never start a new islands from a disabled body. thus islands of disabled
- // bodies will not be included in the simulation. disabled bodies are
- // re-enabled if they are found to be part of an active island.
-
- static void
- processIslandsFast (dxWorld * world, dReal stepsize, int maxiterations)
- {
- #ifdef TIMING
- dTimerStart ("Island Setup");
- #endif
- dxBody *b, *bb, **body;
- dxJoint *j, **joint;
-
- // nothing to do if no bodies
- if (world->nb <= 0)
- return;
-
- dInternalHandleAutoDisabling (world,stepsize);
-
- // make arrays for body and joint lists (for a single island) to go into
- body = (dxBody **) ALLOCA (world->nb * sizeof (dxBody *));
- joint = (dxJoint **) ALLOCA (world->nj * sizeof (dxJoint *));
- int bcount = 0; // number of bodies in `body'
- int jcount = 0; // number of joints in `joint'
- int tbcount = 0;
- int tjcount = 0;
-
- // set all body/joint tags to 0
- for (b = world->firstbody; b; b = (dxBody *) b->next)
- b->tag = 0;
- for (j = world->firstjoint; j; j = (dxJoint *) j->next)
- j->tag = 0;
-
- // allocate a stack of unvisited bodies in the island. the maximum size of
- // the stack can be the lesser of the number of bodies or joints, because
- // new bodies are only ever added to the stack by going through untagged
- // joints. all the bodies in the stack must be tagged!
- int stackalloc = (world->nj < world->nb) ? world->nj : world->nb;
- dxBody **stack = (dxBody **) ALLOCA (stackalloc * sizeof (dxBody *));
- int *autostack = (int *) ALLOCA (stackalloc * sizeof (int));
-
- for (bb = world->firstbody; bb; bb = (dxBody *) bb->next)
- {
- #ifdef TIMING
- dTimerNow ("Island Processing");
- #endif
- // get bb = the next enabled, untagged body, and tag it
- if (bb->tag || (bb->flags & dxBodyDisabled) || (bb->invMass == 0))
- continue;
- bb->tag = 1;
-
- // tag all bodies and joints starting from bb.
- int stacksize = 0;
- int autoDepth = autoEnableDepth;
- b = bb;
- body[0] = bb;
- bcount = 1;
- jcount = 0;
- goto quickstart;
- while (stacksize > 0)
- {
- b = stack[--stacksize]; // pop body off stack
- autoDepth = autostack[stacksize];
- body[bcount++] = b; // put body on body list
- quickstart:
-
- // traverse and tag all body's joints, add untagged connected bodies
- // to stack
- for (dxJointNode * n = b->firstjoint; n; n = n->next)
- {
- if (!n->joint->tag)
- {
- int thisDepth = autoEnableDepth;
- n->joint->tag = 1;
- joint[jcount++] = n->joint;
- if (n->body && !n->body->tag)
- {
- if (n->body->flags & dxBodyDisabled)
- thisDepth = autoDepth - 1;
- if (thisDepth < 0)
- continue;
- n->body->flags &= ~dxBodyDisabled;
- n->body->tag = 1;
- autostack[stacksize] = thisDepth;
- stack[stacksize++] = n->body;
- }
- }
- }
- dIASSERT (stacksize <= world->nb);
- dIASSERT (stacksize <= world->nj);
- }
-
- // now do something with body and joint lists
- dInternalStepIslandFast (world, body, bcount, joint, jcount, stepsize, maxiterations);
-
- // what we've just done may have altered the body/joint tag values.
- // we must make sure that these tags are nonzero.
- // also make sure all bodies are in the enabled state.
- int i;
- for (i = 0; i < bcount; i++)
- {
- body[i]->tag = 1;
- body[i]->flags &= ~dxBodyDisabled;
- }
- for (i = 0; i < jcount; i++)
- joint[i]->tag = 1;
-
- tbcount += bcount;
- tjcount += jcount;
- }
-
- #ifdef TIMING
- dMessage(0, "Total joints processed: %i, bodies: %i", tjcount, tbcount);
- #endif
-
- // if debugging, check that all objects (except for disabled bodies,
- // unconnected joints, and joints that are connected to disabled bodies)
- // were tagged.
- # ifndef dNODEBUG
- for (b = world->firstbody; b; b = (dxBody *) b->next)
- {
- if (b->flags & dxBodyDisabled)
- {
- if (b->tag)
- dDebug (0, "disabled body tagged");
- }
- else
- {
- if (!b->tag)
- dDebug (0, "enabled body not tagged");
- }
- }
- for (j = world->firstjoint; j; j = (dxJoint *) j->next)
- {
- if ((j->node[0].body && (j->node[0].body->flags & dxBodyDisabled) == 0) || (j->node[1].body && (j->node[1].body->flags & dxBodyDisabled) == 0))
- {
- if (!j->tag)
- dDebug (0, "attached enabled joint not tagged");
- }
- else
- {
- if (j->tag)
- dDebug (0, "unattached or disabled joint tagged");
- }
- }
- # endif
-
- # ifdef TIMING
- dTimerEnd ();
- dTimerReport (stdout, 1);
- # endif
- }
-
- #endif
-
-
- void dWorldStepFast1 (dWorldID w, dReal stepsize, int maxiterations)
- {
- dUASSERT (w, "bad world argument");
- dUASSERT (stepsize > 0, "stepsize must be > 0");
- processIslandsFast (w, stepsize, maxiterations);
- }