/kern_2.6.32/net/key/af_key.c

http://omnia2droid.googlecode.com/ · C · 3844 lines · 3137 code · 569 blank · 138 comment · 556 complexity · e7176d7ac017064f1da9a6a372635cd8 MD5 · raw file

Large files are truncated click here to view the full file

  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <net/net_namespace.h>
  29. #include <net/netns/generic.h>
  30. #include <net/xfrm.h>
  31. #include <net/sock.h>
  32. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  33. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  34. static int pfkey_net_id;
  35. struct netns_pfkey {
  36. /* List of all pfkey sockets. */
  37. struct hlist_head table;
  38. atomic_t socks_nr;
  39. };
  40. static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
  41. static DEFINE_RWLOCK(pfkey_table_lock);
  42. static atomic_t pfkey_table_users = ATOMIC_INIT(0);
  43. struct pfkey_sock {
  44. /* struct sock must be the first member of struct pfkey_sock */
  45. struct sock sk;
  46. int registered;
  47. int promisc;
  48. struct {
  49. uint8_t msg_version;
  50. uint32_t msg_pid;
  51. int (*dump)(struct pfkey_sock *sk);
  52. void (*done)(struct pfkey_sock *sk);
  53. union {
  54. struct xfrm_policy_walk policy;
  55. struct xfrm_state_walk state;
  56. } u;
  57. struct sk_buff *skb;
  58. } dump;
  59. };
  60. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  61. {
  62. return (struct pfkey_sock *)sk;
  63. }
  64. static int pfkey_can_dump(struct sock *sk)
  65. {
  66. if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
  67. return 1;
  68. return 0;
  69. }
  70. static void pfkey_terminate_dump(struct pfkey_sock *pfk)
  71. {
  72. if (pfk->dump.dump) {
  73. if (pfk->dump.skb) {
  74. kfree_skb(pfk->dump.skb);
  75. pfk->dump.skb = NULL;
  76. }
  77. pfk->dump.done(pfk);
  78. pfk->dump.dump = NULL;
  79. pfk->dump.done = NULL;
  80. }
  81. }
  82. static void pfkey_sock_destruct(struct sock *sk)
  83. {
  84. struct net *net = sock_net(sk);
  85. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  86. pfkey_terminate_dump(pfkey_sk(sk));
  87. skb_queue_purge(&sk->sk_receive_queue);
  88. if (!sock_flag(sk, SOCK_DEAD)) {
  89. printk("Attempt to release alive pfkey socket: %p\n", sk);
  90. return;
  91. }
  92. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  93. WARN_ON(atomic_read(&sk->sk_wmem_alloc));
  94. atomic_dec(&net_pfkey->socks_nr);
  95. }
  96. static void pfkey_table_grab(void)
  97. {
  98. write_lock_bh(&pfkey_table_lock);
  99. if (atomic_read(&pfkey_table_users)) {
  100. DECLARE_WAITQUEUE(wait, current);
  101. add_wait_queue_exclusive(&pfkey_table_wait, &wait);
  102. for(;;) {
  103. set_current_state(TASK_UNINTERRUPTIBLE);
  104. if (atomic_read(&pfkey_table_users) == 0)
  105. break;
  106. write_unlock_bh(&pfkey_table_lock);
  107. schedule();
  108. write_lock_bh(&pfkey_table_lock);
  109. }
  110. __set_current_state(TASK_RUNNING);
  111. remove_wait_queue(&pfkey_table_wait, &wait);
  112. }
  113. }
  114. static __inline__ void pfkey_table_ungrab(void)
  115. {
  116. write_unlock_bh(&pfkey_table_lock);
  117. wake_up(&pfkey_table_wait);
  118. }
  119. static __inline__ void pfkey_lock_table(void)
  120. {
  121. /* read_lock() synchronizes us to pfkey_table_grab */
  122. read_lock(&pfkey_table_lock);
  123. atomic_inc(&pfkey_table_users);
  124. read_unlock(&pfkey_table_lock);
  125. }
  126. static __inline__ void pfkey_unlock_table(void)
  127. {
  128. if (atomic_dec_and_test(&pfkey_table_users))
  129. wake_up(&pfkey_table_wait);
  130. }
  131. static const struct proto_ops pfkey_ops;
  132. static void pfkey_insert(struct sock *sk)
  133. {
  134. struct net *net = sock_net(sk);
  135. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  136. pfkey_table_grab();
  137. sk_add_node(sk, &net_pfkey->table);
  138. pfkey_table_ungrab();
  139. }
  140. static void pfkey_remove(struct sock *sk)
  141. {
  142. pfkey_table_grab();
  143. sk_del_node_init(sk);
  144. pfkey_table_ungrab();
  145. }
  146. static struct proto key_proto = {
  147. .name = "KEY",
  148. .owner = THIS_MODULE,
  149. .obj_size = sizeof(struct pfkey_sock),
  150. };
  151. static int pfkey_create(struct net *net, struct socket *sock, int protocol)
  152. {
  153. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  154. struct sock *sk;
  155. int err;
  156. if (!capable(CAP_NET_ADMIN))
  157. return -EPERM;
  158. if (sock->type != SOCK_RAW)
  159. return -ESOCKTNOSUPPORT;
  160. if (protocol != PF_KEY_V2)
  161. return -EPROTONOSUPPORT;
  162. err = -ENOMEM;
  163. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto);
  164. if (sk == NULL)
  165. goto out;
  166. sock->ops = &pfkey_ops;
  167. sock_init_data(sock, sk);
  168. sk->sk_family = PF_KEY;
  169. sk->sk_destruct = pfkey_sock_destruct;
  170. atomic_inc(&net_pfkey->socks_nr);
  171. pfkey_insert(sk);
  172. return 0;
  173. out:
  174. return err;
  175. }
  176. static int pfkey_release(struct socket *sock)
  177. {
  178. struct sock *sk = sock->sk;
  179. if (!sk)
  180. return 0;
  181. pfkey_remove(sk);
  182. sock_orphan(sk);
  183. sock->sk = NULL;
  184. skb_queue_purge(&sk->sk_write_queue);
  185. sock_put(sk);
  186. return 0;
  187. }
  188. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  189. gfp_t allocation, struct sock *sk)
  190. {
  191. int err = -ENOBUFS;
  192. sock_hold(sk);
  193. if (*skb2 == NULL) {
  194. if (atomic_read(&skb->users) != 1) {
  195. *skb2 = skb_clone(skb, allocation);
  196. } else {
  197. *skb2 = skb;
  198. atomic_inc(&skb->users);
  199. }
  200. }
  201. if (*skb2 != NULL) {
  202. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  203. skb_orphan(*skb2);
  204. skb_set_owner_r(*skb2, sk);
  205. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  206. sk->sk_data_ready(sk, (*skb2)->len);
  207. *skb2 = NULL;
  208. err = 0;
  209. }
  210. }
  211. sock_put(sk);
  212. return err;
  213. }
  214. /* Send SKB to all pfkey sockets matching selected criteria. */
  215. #define BROADCAST_ALL 0
  216. #define BROADCAST_ONE 1
  217. #define BROADCAST_REGISTERED 2
  218. #define BROADCAST_PROMISC_ONLY 4
  219. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  220. int broadcast_flags, struct sock *one_sk,
  221. struct net *net)
  222. {
  223. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  224. struct sock *sk;
  225. struct hlist_node *node;
  226. struct sk_buff *skb2 = NULL;
  227. int err = -ESRCH;
  228. /* XXX Do we need something like netlink_overrun? I think
  229. * XXX PF_KEY socket apps will not mind current behavior.
  230. */
  231. if (!skb)
  232. return -ENOMEM;
  233. pfkey_lock_table();
  234. sk_for_each(sk, node, &net_pfkey->table) {
  235. struct pfkey_sock *pfk = pfkey_sk(sk);
  236. int err2;
  237. /* Yes, it means that if you are meant to receive this
  238. * pfkey message you receive it twice as promiscuous
  239. * socket.
  240. */
  241. if (pfk->promisc)
  242. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  243. /* the exact target will be processed later */
  244. if (sk == one_sk)
  245. continue;
  246. if (broadcast_flags != BROADCAST_ALL) {
  247. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  248. continue;
  249. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  250. !pfk->registered)
  251. continue;
  252. if (broadcast_flags & BROADCAST_ONE)
  253. continue;
  254. }
  255. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  256. /* Error is cleare after succecful sending to at least one
  257. * registered KM */
  258. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  259. err = err2;
  260. }
  261. pfkey_unlock_table();
  262. if (one_sk != NULL)
  263. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  264. kfree_skb(skb2);
  265. kfree_skb(skb);
  266. return err;
  267. }
  268. static int pfkey_do_dump(struct pfkey_sock *pfk)
  269. {
  270. struct sadb_msg *hdr;
  271. int rc;
  272. rc = pfk->dump.dump(pfk);
  273. if (rc == -ENOBUFS)
  274. return 0;
  275. if (pfk->dump.skb) {
  276. if (!pfkey_can_dump(&pfk->sk))
  277. return 0;
  278. hdr = (struct sadb_msg *) pfk->dump.skb->data;
  279. hdr->sadb_msg_seq = 0;
  280. hdr->sadb_msg_errno = rc;
  281. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  282. &pfk->sk, sock_net(&pfk->sk));
  283. pfk->dump.skb = NULL;
  284. }
  285. pfkey_terminate_dump(pfk);
  286. return rc;
  287. }
  288. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  289. {
  290. *new = *orig;
  291. }
  292. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  293. {
  294. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  295. struct sadb_msg *hdr;
  296. if (!skb)
  297. return -ENOBUFS;
  298. /* Woe be to the platform trying to support PFKEY yet
  299. * having normal errnos outside the 1-255 range, inclusive.
  300. */
  301. err = -err;
  302. if (err == ERESTARTSYS ||
  303. err == ERESTARTNOHAND ||
  304. err == ERESTARTNOINTR)
  305. err = EINTR;
  306. if (err >= 512)
  307. err = EINVAL;
  308. BUG_ON(err <= 0 || err >= 256);
  309. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  310. pfkey_hdr_dup(hdr, orig);
  311. hdr->sadb_msg_errno = (uint8_t) err;
  312. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  313. sizeof(uint64_t));
  314. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk, sock_net(sk));
  315. return 0;
  316. }
  317. static u8 sadb_ext_min_len[] = {
  318. [SADB_EXT_RESERVED] = (u8) 0,
  319. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  320. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  321. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  322. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  323. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  324. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  325. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  326. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  327. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  328. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  329. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  330. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  331. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  332. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  333. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  334. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  335. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  336. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  337. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  338. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  339. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  340. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  341. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  342. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  343. [SADB_X_EXT_KMADDRESS] = (u8) sizeof(struct sadb_x_kmaddress),
  344. };
  345. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  346. static int verify_address_len(void *p)
  347. {
  348. struct sadb_address *sp = p;
  349. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  350. struct sockaddr_in *sin;
  351. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  352. struct sockaddr_in6 *sin6;
  353. #endif
  354. int len;
  355. switch (addr->sa_family) {
  356. case AF_INET:
  357. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  358. if (sp->sadb_address_len != len ||
  359. sp->sadb_address_prefixlen > 32)
  360. return -EINVAL;
  361. break;
  362. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  363. case AF_INET6:
  364. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  365. if (sp->sadb_address_len != len ||
  366. sp->sadb_address_prefixlen > 128)
  367. return -EINVAL;
  368. break;
  369. #endif
  370. default:
  371. /* It is user using kernel to keep track of security
  372. * associations for another protocol, such as
  373. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  374. * lengths.
  375. *
  376. * XXX Actually, association/policy database is not yet
  377. * XXX able to cope with arbitrary sockaddr families.
  378. * XXX When it can, remove this -EINVAL. -DaveM
  379. */
  380. return -EINVAL;
  381. break;
  382. }
  383. return 0;
  384. }
  385. static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
  386. {
  387. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  388. sec_ctx->sadb_x_ctx_len,
  389. sizeof(uint64_t));
  390. }
  391. static inline int verify_sec_ctx_len(void *p)
  392. {
  393. struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
  394. int len = sec_ctx->sadb_x_ctx_len;
  395. if (len > PAGE_SIZE)
  396. return -EINVAL;
  397. len = pfkey_sec_ctx_len(sec_ctx);
  398. if (sec_ctx->sadb_x_sec_len != len)
  399. return -EINVAL;
  400. return 0;
  401. }
  402. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
  403. {
  404. struct xfrm_user_sec_ctx *uctx = NULL;
  405. int ctx_size = sec_ctx->sadb_x_ctx_len;
  406. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  407. if (!uctx)
  408. return NULL;
  409. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  410. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  411. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  412. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  413. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  414. memcpy(uctx + 1, sec_ctx + 1,
  415. uctx->ctx_len);
  416. return uctx;
  417. }
  418. static int present_and_same_family(struct sadb_address *src,
  419. struct sadb_address *dst)
  420. {
  421. struct sockaddr *s_addr, *d_addr;
  422. if (!src || !dst)
  423. return 0;
  424. s_addr = (struct sockaddr *)(src + 1);
  425. d_addr = (struct sockaddr *)(dst + 1);
  426. if (s_addr->sa_family != d_addr->sa_family)
  427. return 0;
  428. if (s_addr->sa_family != AF_INET
  429. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  430. && s_addr->sa_family != AF_INET6
  431. #endif
  432. )
  433. return 0;
  434. return 1;
  435. }
  436. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  437. {
  438. char *p = (char *) hdr;
  439. int len = skb->len;
  440. len -= sizeof(*hdr);
  441. p += sizeof(*hdr);
  442. while (len > 0) {
  443. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  444. uint16_t ext_type;
  445. int ext_len;
  446. ext_len = ehdr->sadb_ext_len;
  447. ext_len *= sizeof(uint64_t);
  448. ext_type = ehdr->sadb_ext_type;
  449. if (ext_len < sizeof(uint64_t) ||
  450. ext_len > len ||
  451. ext_type == SADB_EXT_RESERVED)
  452. return -EINVAL;
  453. if (ext_type <= SADB_EXT_MAX) {
  454. int min = (int) sadb_ext_min_len[ext_type];
  455. if (ext_len < min)
  456. return -EINVAL;
  457. if (ext_hdrs[ext_type-1] != NULL)
  458. return -EINVAL;
  459. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  460. ext_type == SADB_EXT_ADDRESS_DST ||
  461. ext_type == SADB_EXT_ADDRESS_PROXY ||
  462. ext_type == SADB_X_EXT_NAT_T_OA) {
  463. if (verify_address_len(p))
  464. return -EINVAL;
  465. }
  466. if (ext_type == SADB_X_EXT_SEC_CTX) {
  467. if (verify_sec_ctx_len(p))
  468. return -EINVAL;
  469. }
  470. ext_hdrs[ext_type-1] = p;
  471. }
  472. p += ext_len;
  473. len -= ext_len;
  474. }
  475. return 0;
  476. }
  477. static uint16_t
  478. pfkey_satype2proto(uint8_t satype)
  479. {
  480. switch (satype) {
  481. case SADB_SATYPE_UNSPEC:
  482. return IPSEC_PROTO_ANY;
  483. case SADB_SATYPE_AH:
  484. return IPPROTO_AH;
  485. case SADB_SATYPE_ESP:
  486. return IPPROTO_ESP;
  487. case SADB_X_SATYPE_IPCOMP:
  488. return IPPROTO_COMP;
  489. break;
  490. default:
  491. return 0;
  492. }
  493. /* NOTREACHED */
  494. }
  495. static uint8_t
  496. pfkey_proto2satype(uint16_t proto)
  497. {
  498. switch (proto) {
  499. case IPPROTO_AH:
  500. return SADB_SATYPE_AH;
  501. case IPPROTO_ESP:
  502. return SADB_SATYPE_ESP;
  503. case IPPROTO_COMP:
  504. return SADB_X_SATYPE_IPCOMP;
  505. break;
  506. default:
  507. return 0;
  508. }
  509. /* NOTREACHED */
  510. }
  511. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  512. * say specifically 'just raw sockets' as we encode them as 255.
  513. */
  514. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  515. {
  516. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  517. }
  518. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  519. {
  520. return (proto ? proto : IPSEC_PROTO_ANY);
  521. }
  522. static inline int pfkey_sockaddr_len(sa_family_t family)
  523. {
  524. switch (family) {
  525. case AF_INET:
  526. return sizeof(struct sockaddr_in);
  527. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  528. case AF_INET6:
  529. return sizeof(struct sockaddr_in6);
  530. #endif
  531. }
  532. return 0;
  533. }
  534. static
  535. int pfkey_sockaddr_extract(const struct sockaddr *sa, xfrm_address_t *xaddr)
  536. {
  537. switch (sa->sa_family) {
  538. case AF_INET:
  539. xaddr->a4 =
  540. ((struct sockaddr_in *)sa)->sin_addr.s_addr;
  541. return AF_INET;
  542. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  543. case AF_INET6:
  544. memcpy(xaddr->a6,
  545. &((struct sockaddr_in6 *)sa)->sin6_addr,
  546. sizeof(struct in6_addr));
  547. return AF_INET6;
  548. #endif
  549. }
  550. return 0;
  551. }
  552. static
  553. int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr, xfrm_address_t *xaddr)
  554. {
  555. return pfkey_sockaddr_extract((struct sockaddr *)(addr + 1),
  556. xaddr);
  557. }
  558. static struct xfrm_state *pfkey_xfrm_state_lookup(struct net *net, struct sadb_msg *hdr, void **ext_hdrs)
  559. {
  560. struct sadb_sa *sa;
  561. struct sadb_address *addr;
  562. uint16_t proto;
  563. unsigned short family;
  564. xfrm_address_t *xaddr;
  565. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  566. if (sa == NULL)
  567. return NULL;
  568. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  569. if (proto == 0)
  570. return NULL;
  571. /* sadb_address_len should be checked by caller */
  572. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  573. if (addr == NULL)
  574. return NULL;
  575. family = ((struct sockaddr *)(addr + 1))->sa_family;
  576. switch (family) {
  577. case AF_INET:
  578. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  579. break;
  580. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  581. case AF_INET6:
  582. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  583. break;
  584. #endif
  585. default:
  586. xaddr = NULL;
  587. }
  588. if (!xaddr)
  589. return NULL;
  590. return xfrm_state_lookup(net, xaddr, sa->sadb_sa_spi, proto, family);
  591. }
  592. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  593. static int
  594. pfkey_sockaddr_size(sa_family_t family)
  595. {
  596. return PFKEY_ALIGN8(pfkey_sockaddr_len(family));
  597. }
  598. static inline int pfkey_mode_from_xfrm(int mode)
  599. {
  600. switch(mode) {
  601. case XFRM_MODE_TRANSPORT:
  602. return IPSEC_MODE_TRANSPORT;
  603. case XFRM_MODE_TUNNEL:
  604. return IPSEC_MODE_TUNNEL;
  605. case XFRM_MODE_BEET:
  606. return IPSEC_MODE_BEET;
  607. default:
  608. return -1;
  609. }
  610. }
  611. static inline int pfkey_mode_to_xfrm(int mode)
  612. {
  613. switch(mode) {
  614. case IPSEC_MODE_ANY: /*XXX*/
  615. case IPSEC_MODE_TRANSPORT:
  616. return XFRM_MODE_TRANSPORT;
  617. case IPSEC_MODE_TUNNEL:
  618. return XFRM_MODE_TUNNEL;
  619. case IPSEC_MODE_BEET:
  620. return XFRM_MODE_BEET;
  621. default:
  622. return -1;
  623. }
  624. }
  625. static unsigned int pfkey_sockaddr_fill(xfrm_address_t *xaddr, __be16 port,
  626. struct sockaddr *sa,
  627. unsigned short family)
  628. {
  629. switch (family) {
  630. case AF_INET:
  631. {
  632. struct sockaddr_in *sin = (struct sockaddr_in *)sa;
  633. sin->sin_family = AF_INET;
  634. sin->sin_port = port;
  635. sin->sin_addr.s_addr = xaddr->a4;
  636. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  637. return 32;
  638. }
  639. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  640. case AF_INET6:
  641. {
  642. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
  643. sin6->sin6_family = AF_INET6;
  644. sin6->sin6_port = port;
  645. sin6->sin6_flowinfo = 0;
  646. ipv6_addr_copy(&sin6->sin6_addr, (struct in6_addr *)xaddr->a6);
  647. sin6->sin6_scope_id = 0;
  648. return 128;
  649. }
  650. #endif
  651. }
  652. return 0;
  653. }
  654. static struct sk_buff *__pfkey_xfrm_state2msg(struct xfrm_state *x,
  655. int add_keys, int hsc)
  656. {
  657. struct sk_buff *skb;
  658. struct sadb_msg *hdr;
  659. struct sadb_sa *sa;
  660. struct sadb_lifetime *lifetime;
  661. struct sadb_address *addr;
  662. struct sadb_key *key;
  663. struct sadb_x_sa2 *sa2;
  664. struct sadb_x_sec_ctx *sec_ctx;
  665. struct xfrm_sec_ctx *xfrm_ctx;
  666. int ctx_size = 0;
  667. int size;
  668. int auth_key_size = 0;
  669. int encrypt_key_size = 0;
  670. int sockaddr_size;
  671. struct xfrm_encap_tmpl *natt = NULL;
  672. int mode;
  673. /* address family check */
  674. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  675. if (!sockaddr_size)
  676. return ERR_PTR(-EINVAL);
  677. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  678. key(AE), (identity(SD),) (sensitivity)> */
  679. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  680. sizeof(struct sadb_lifetime) +
  681. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  682. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  683. sizeof(struct sadb_address)*2 +
  684. sockaddr_size*2 +
  685. sizeof(struct sadb_x_sa2);
  686. if ((xfrm_ctx = x->security)) {
  687. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  688. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  689. }
  690. /* identity & sensitivity */
  691. if (xfrm_addr_cmp(&x->sel.saddr, &x->props.saddr, x->props.family))
  692. size += sizeof(struct sadb_address) + sockaddr_size;
  693. if (add_keys) {
  694. if (x->aalg && x->aalg->alg_key_len) {
  695. auth_key_size =
  696. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  697. size += sizeof(struct sadb_key) + auth_key_size;
  698. }
  699. if (x->ealg && x->ealg->alg_key_len) {
  700. encrypt_key_size =
  701. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  702. size += sizeof(struct sadb_key) + encrypt_key_size;
  703. }
  704. }
  705. if (x->encap)
  706. natt = x->encap;
  707. if (natt && natt->encap_type) {
  708. size += sizeof(struct sadb_x_nat_t_type);
  709. size += sizeof(struct sadb_x_nat_t_port);
  710. size += sizeof(struct sadb_x_nat_t_port);
  711. }
  712. skb = alloc_skb(size + 16, GFP_ATOMIC);
  713. if (skb == NULL)
  714. return ERR_PTR(-ENOBUFS);
  715. /* call should fill header later */
  716. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  717. memset(hdr, 0, size); /* XXX do we need this ? */
  718. hdr->sadb_msg_len = size / sizeof(uint64_t);
  719. /* sa */
  720. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  721. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  722. sa->sadb_sa_exttype = SADB_EXT_SA;
  723. sa->sadb_sa_spi = x->id.spi;
  724. sa->sadb_sa_replay = x->props.replay_window;
  725. switch (x->km.state) {
  726. case XFRM_STATE_VALID:
  727. sa->sadb_sa_state = x->km.dying ?
  728. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  729. break;
  730. case XFRM_STATE_ACQ:
  731. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  732. break;
  733. default:
  734. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  735. break;
  736. }
  737. sa->sadb_sa_auth = 0;
  738. if (x->aalg) {
  739. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  740. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  741. }
  742. sa->sadb_sa_encrypt = 0;
  743. BUG_ON(x->ealg && x->calg);
  744. if (x->ealg) {
  745. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  746. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  747. }
  748. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  749. if (x->calg) {
  750. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  751. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  752. }
  753. sa->sadb_sa_flags = 0;
  754. if (x->props.flags & XFRM_STATE_NOECN)
  755. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  756. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  757. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  758. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  759. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  760. /* hard time */
  761. if (hsc & 2) {
  762. lifetime = (struct sadb_lifetime *) skb_put(skb,
  763. sizeof(struct sadb_lifetime));
  764. lifetime->sadb_lifetime_len =
  765. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  766. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  767. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  768. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  769. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  770. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  771. }
  772. /* soft time */
  773. if (hsc & 1) {
  774. lifetime = (struct sadb_lifetime *) skb_put(skb,
  775. sizeof(struct sadb_lifetime));
  776. lifetime->sadb_lifetime_len =
  777. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  778. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  779. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  780. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  781. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  782. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  783. }
  784. /* current time */
  785. lifetime = (struct sadb_lifetime *) skb_put(skb,
  786. sizeof(struct sadb_lifetime));
  787. lifetime->sadb_lifetime_len =
  788. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  789. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  790. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  791. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  792. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  793. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  794. /* src address */
  795. addr = (struct sadb_address*) skb_put(skb,
  796. sizeof(struct sadb_address)+sockaddr_size);
  797. addr->sadb_address_len =
  798. (sizeof(struct sadb_address)+sockaddr_size)/
  799. sizeof(uint64_t);
  800. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  801. /* "if the ports are non-zero, then the sadb_address_proto field,
  802. normally zero, MUST be filled in with the transport
  803. protocol's number." - RFC2367 */
  804. addr->sadb_address_proto = 0;
  805. addr->sadb_address_reserved = 0;
  806. addr->sadb_address_prefixlen =
  807. pfkey_sockaddr_fill(&x->props.saddr, 0,
  808. (struct sockaddr *) (addr + 1),
  809. x->props.family);
  810. if (!addr->sadb_address_prefixlen)
  811. BUG();
  812. /* dst address */
  813. addr = (struct sadb_address*) skb_put(skb,
  814. sizeof(struct sadb_address)+sockaddr_size);
  815. addr->sadb_address_len =
  816. (sizeof(struct sadb_address)+sockaddr_size)/
  817. sizeof(uint64_t);
  818. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  819. addr->sadb_address_proto = 0;
  820. addr->sadb_address_reserved = 0;
  821. addr->sadb_address_prefixlen =
  822. pfkey_sockaddr_fill(&x->id.daddr, 0,
  823. (struct sockaddr *) (addr + 1),
  824. x->props.family);
  825. if (!addr->sadb_address_prefixlen)
  826. BUG();
  827. if (xfrm_addr_cmp(&x->sel.saddr, &x->props.saddr,
  828. x->props.family)) {
  829. addr = (struct sadb_address*) skb_put(skb,
  830. sizeof(struct sadb_address)+sockaddr_size);
  831. addr->sadb_address_len =
  832. (sizeof(struct sadb_address)+sockaddr_size)/
  833. sizeof(uint64_t);
  834. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  835. addr->sadb_address_proto =
  836. pfkey_proto_from_xfrm(x->sel.proto);
  837. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  838. addr->sadb_address_reserved = 0;
  839. pfkey_sockaddr_fill(&x->sel.saddr, x->sel.sport,
  840. (struct sockaddr *) (addr + 1),
  841. x->props.family);
  842. }
  843. /* auth key */
  844. if (add_keys && auth_key_size) {
  845. key = (struct sadb_key *) skb_put(skb,
  846. sizeof(struct sadb_key)+auth_key_size);
  847. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  848. sizeof(uint64_t);
  849. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  850. key->sadb_key_bits = x->aalg->alg_key_len;
  851. key->sadb_key_reserved = 0;
  852. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  853. }
  854. /* encrypt key */
  855. if (add_keys && encrypt_key_size) {
  856. key = (struct sadb_key *) skb_put(skb,
  857. sizeof(struct sadb_key)+encrypt_key_size);
  858. key->sadb_key_len = (sizeof(struct sadb_key) +
  859. encrypt_key_size) / sizeof(uint64_t);
  860. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  861. key->sadb_key_bits = x->ealg->alg_key_len;
  862. key->sadb_key_reserved = 0;
  863. memcpy(key + 1, x->ealg->alg_key,
  864. (x->ealg->alg_key_len+7)/8);
  865. }
  866. /* sa */
  867. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  868. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  869. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  870. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  871. kfree_skb(skb);
  872. return ERR_PTR(-EINVAL);
  873. }
  874. sa2->sadb_x_sa2_mode = mode;
  875. sa2->sadb_x_sa2_reserved1 = 0;
  876. sa2->sadb_x_sa2_reserved2 = 0;
  877. sa2->sadb_x_sa2_sequence = 0;
  878. sa2->sadb_x_sa2_reqid = x->props.reqid;
  879. if (natt && natt->encap_type) {
  880. struct sadb_x_nat_t_type *n_type;
  881. struct sadb_x_nat_t_port *n_port;
  882. /* type */
  883. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  884. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  885. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  886. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  887. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  888. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  889. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  890. /* source port */
  891. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  892. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  893. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  894. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  895. n_port->sadb_x_nat_t_port_reserved = 0;
  896. /* dest port */
  897. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  898. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  899. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  900. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  901. n_port->sadb_x_nat_t_port_reserved = 0;
  902. }
  903. /* security context */
  904. if (xfrm_ctx) {
  905. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  906. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  907. sec_ctx->sadb_x_sec_len =
  908. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  909. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  910. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  911. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  912. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  913. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  914. xfrm_ctx->ctx_len);
  915. }
  916. return skb;
  917. }
  918. static inline struct sk_buff *pfkey_xfrm_state2msg(struct xfrm_state *x)
  919. {
  920. struct sk_buff *skb;
  921. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  922. return skb;
  923. }
  924. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(struct xfrm_state *x,
  925. int hsc)
  926. {
  927. return __pfkey_xfrm_state2msg(x, 0, hsc);
  928. }
  929. static struct xfrm_state * pfkey_msg2xfrm_state(struct net *net,
  930. struct sadb_msg *hdr,
  931. void **ext_hdrs)
  932. {
  933. struct xfrm_state *x;
  934. struct sadb_lifetime *lifetime;
  935. struct sadb_sa *sa;
  936. struct sadb_key *key;
  937. struct sadb_x_sec_ctx *sec_ctx;
  938. uint16_t proto;
  939. int err;
  940. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  941. if (!sa ||
  942. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  943. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  944. return ERR_PTR(-EINVAL);
  945. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  946. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  947. return ERR_PTR(-EINVAL);
  948. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  949. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  950. return ERR_PTR(-EINVAL);
  951. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  952. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  953. return ERR_PTR(-EINVAL);
  954. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  955. if (proto == 0)
  956. return ERR_PTR(-EINVAL);
  957. /* default error is no buffer space */
  958. err = -ENOBUFS;
  959. /* RFC2367:
  960. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  961. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  962. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  963. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  964. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  965. not true.
  966. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  967. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  968. */
  969. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  970. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  971. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  972. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  973. return ERR_PTR(-EINVAL);
  974. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  975. if (key != NULL &&
  976. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  977. ((key->sadb_key_bits+7) / 8 == 0 ||
  978. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  979. return ERR_PTR(-EINVAL);
  980. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  981. if (key != NULL &&
  982. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  983. ((key->sadb_key_bits+7) / 8 == 0 ||
  984. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  985. return ERR_PTR(-EINVAL);
  986. x = xfrm_state_alloc(net);
  987. if (x == NULL)
  988. return ERR_PTR(-ENOBUFS);
  989. x->id.proto = proto;
  990. x->id.spi = sa->sadb_sa_spi;
  991. x->props.replay_window = sa->sadb_sa_replay;
  992. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  993. x->props.flags |= XFRM_STATE_NOECN;
  994. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  995. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  996. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  997. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  998. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  999. if (lifetime != NULL) {
  1000. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1001. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1002. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1003. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1004. }
  1005. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  1006. if (lifetime != NULL) {
  1007. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1008. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1009. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1010. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1011. }
  1012. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1013. if (sec_ctx != NULL) {
  1014. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1015. if (!uctx)
  1016. goto out;
  1017. err = security_xfrm_state_alloc(x, uctx);
  1018. kfree(uctx);
  1019. if (err)
  1020. goto out;
  1021. }
  1022. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  1023. if (sa->sadb_sa_auth) {
  1024. int keysize = 0;
  1025. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  1026. if (!a) {
  1027. err = -ENOSYS;
  1028. goto out;
  1029. }
  1030. if (key)
  1031. keysize = (key->sadb_key_bits + 7) / 8;
  1032. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1033. if (!x->aalg)
  1034. goto out;
  1035. strcpy(x->aalg->alg_name, a->name);
  1036. x->aalg->alg_key_len = 0;
  1037. if (key) {
  1038. x->aalg->alg_key_len = key->sadb_key_bits;
  1039. memcpy(x->aalg->alg_key, key+1, keysize);
  1040. }
  1041. x->props.aalgo = sa->sadb_sa_auth;
  1042. /* x->algo.flags = sa->sadb_sa_flags; */
  1043. }
  1044. if (sa->sadb_sa_encrypt) {
  1045. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1046. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1047. if (!a) {
  1048. err = -ENOSYS;
  1049. goto out;
  1050. }
  1051. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1052. if (!x->calg)
  1053. goto out;
  1054. strcpy(x->calg->alg_name, a->name);
  1055. x->props.calgo = sa->sadb_sa_encrypt;
  1056. } else {
  1057. int keysize = 0;
  1058. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1059. if (!a) {
  1060. err = -ENOSYS;
  1061. goto out;
  1062. }
  1063. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1064. if (key)
  1065. keysize = (key->sadb_key_bits + 7) / 8;
  1066. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1067. if (!x->ealg)
  1068. goto out;
  1069. strcpy(x->ealg->alg_name, a->name);
  1070. x->ealg->alg_key_len = 0;
  1071. if (key) {
  1072. x->ealg->alg_key_len = key->sadb_key_bits;
  1073. memcpy(x->ealg->alg_key, key+1, keysize);
  1074. }
  1075. x->props.ealgo = sa->sadb_sa_encrypt;
  1076. }
  1077. }
  1078. /* x->algo.flags = sa->sadb_sa_flags; */
  1079. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1080. &x->props.saddr);
  1081. if (!x->props.family) {
  1082. err = -EAFNOSUPPORT;
  1083. goto out;
  1084. }
  1085. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1086. &x->id.daddr);
  1087. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1088. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  1089. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1090. if (mode < 0) {
  1091. err = -EINVAL;
  1092. goto out;
  1093. }
  1094. x->props.mode = mode;
  1095. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1096. }
  1097. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1098. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1099. /* Nobody uses this, but we try. */
  1100. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1101. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1102. }
  1103. if (!x->sel.family)
  1104. x->sel.family = x->props.family;
  1105. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1106. struct sadb_x_nat_t_type* n_type;
  1107. struct xfrm_encap_tmpl *natt;
  1108. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1109. if (!x->encap)
  1110. goto out;
  1111. natt = x->encap;
  1112. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1113. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1114. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1115. struct sadb_x_nat_t_port* n_port =
  1116. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1117. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1118. }
  1119. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1120. struct sadb_x_nat_t_port* n_port =
  1121. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1122. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1123. }
  1124. memset(&natt->encap_oa, 0, sizeof(natt->encap_oa));
  1125. }
  1126. err = xfrm_init_state(x);
  1127. if (err)
  1128. goto out;
  1129. x->km.seq = hdr->sadb_msg_seq;
  1130. return x;
  1131. out:
  1132. x->km.state = XFRM_STATE_DEAD;
  1133. xfrm_state_put(x);
  1134. return ERR_PTR(err);
  1135. }
  1136. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1137. {
  1138. return -EOPNOTSUPP;
  1139. }
  1140. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1141. {
  1142. struct net *net = sock_net(sk);
  1143. struct sk_buff *resp_skb;
  1144. struct sadb_x_sa2 *sa2;
  1145. struct sadb_address *saddr, *daddr;
  1146. struct sadb_msg *out_hdr;
  1147. struct sadb_spirange *range;
  1148. struct xfrm_state *x = NULL;
  1149. int mode;
  1150. int err;
  1151. u32 min_spi, max_spi;
  1152. u32 reqid;
  1153. u8 proto;
  1154. unsigned short family;
  1155. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1156. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1157. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1158. return -EINVAL;
  1159. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1160. if (proto == 0)
  1161. return -EINVAL;
  1162. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1163. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1164. if (mode < 0)
  1165. return -EINVAL;
  1166. reqid = sa2->sadb_x_sa2_reqid;
  1167. } else {
  1168. mode = 0;
  1169. reqid = 0;
  1170. }
  1171. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1172. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1173. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1174. switch (family) {
  1175. case AF_INET:
  1176. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1177. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1178. break;
  1179. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1180. case AF_INET6:
  1181. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1182. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1183. break;
  1184. #endif
  1185. }
  1186. if (hdr->sadb_msg_seq) {
  1187. x = xfrm_find_acq_byseq(net, hdr->sadb_msg_seq);
  1188. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1189. xfrm_state_put(x);
  1190. x = NULL;
  1191. }
  1192. }
  1193. if (!x)
  1194. x = xfrm_find_acq(net, mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1195. if (x == NULL)
  1196. return -ENOENT;
  1197. min_spi = 0x100;
  1198. max_spi = 0x0fffffff;
  1199. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1200. if (range) {
  1201. min_spi = range->sadb_spirange_min;
  1202. max_spi = range->sadb_spirange_max;
  1203. }
  1204. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1205. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1206. if (IS_ERR(resp_skb)) {
  1207. xfrm_state_put(x);
  1208. return PTR_ERR(resp_skb);
  1209. }
  1210. out_hdr = (struct sadb_msg *) resp_skb->data;
  1211. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1212. out_hdr->sadb_msg_type = SADB_GETSPI;
  1213. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1214. out_hdr->sadb_msg_errno = 0;
  1215. out_hdr->sadb_msg_reserved = 0;
  1216. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1217. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1218. xfrm_state_put(x);
  1219. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk, net);
  1220. return 0;
  1221. }
  1222. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1223. {
  1224. struct net *net = sock_net(sk);
  1225. struct xfrm_state *x;
  1226. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1227. return -EOPNOTSUPP;
  1228. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1229. return 0;
  1230. x = xfrm_find_acq_byseq(net, hdr->sadb_msg_seq);
  1231. if (x == NULL)
  1232. return 0;
  1233. spin_lock_bh(&x->lock);
  1234. if (x->km.state == XFRM_STATE_ACQ) {
  1235. x->km.state = XFRM_STATE_ERROR;
  1236. wake_up(&net->xfrm.km_waitq);
  1237. }
  1238. spin_unlock_bh(&x->lock);
  1239. xfrm_state_put(x);
  1240. return 0;
  1241. }
  1242. static inline int event2poltype(int event)
  1243. {
  1244. switch (event) {
  1245. case XFRM_MSG_DELPOLICY:
  1246. return SADB_X_SPDDELETE;
  1247. case XFRM_MSG_NEWPOLICY:
  1248. return SADB_X_SPDADD;
  1249. case XFRM_MSG_UPDPOLICY:
  1250. return SADB_X_SPDUPDATE;
  1251. case XFRM_MSG_POLEXPIRE:
  1252. // return SADB_X_SPDEXPIRE;
  1253. default:
  1254. printk("pfkey: Unknown policy event %d\n", event);
  1255. break;
  1256. }
  1257. return 0;
  1258. }
  1259. static inline int event2keytype(int event)
  1260. {
  1261. switch (event) {
  1262. case XFRM_MSG_DELSA:
  1263. return SADB_DELETE;
  1264. case XFRM_MSG_NEWSA:
  1265. return SADB_ADD;
  1266. case XFRM_MSG_UPDSA:
  1267. return SADB_UPDATE;
  1268. case XFRM_MSG_EXPIRE:
  1269. return SADB_EXPIRE;
  1270. default:
  1271. printk("pfkey: Unknown SA event %d\n", event);
  1272. break;
  1273. }
  1274. return 0;
  1275. }
  1276. /* ADD/UPD/DEL */
  1277. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1278. {
  1279. struct sk_buff *skb;
  1280. struct sadb_msg *hdr;
  1281. skb = pfkey_xfrm_state2msg(x);
  1282. if (IS_ERR(skb))
  1283. return PTR_ERR(skb);
  1284. hdr = (struct sadb_msg *) skb->data;
  1285. hdr->sadb_msg_version = PF_KEY_V2;
  1286. hdr->sadb_msg_type = event2keytype(c->event);
  1287. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1288. hdr->sadb_msg_errno = 0;
  1289. hdr->sadb_msg_reserved = 0;
  1290. hdr->sadb_msg_seq = c->seq;
  1291. hdr->sadb_msg_pid = c->pid;
  1292. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xs_net(x));
  1293. return 0;
  1294. }
  1295. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1296. {
  1297. struct net *net = sock_net(sk);
  1298. struct xfrm_state *x;
  1299. int err;
  1300. struct km_event c;
  1301. x = pfkey_msg2xfrm_state(net, hdr, ext_hdrs);
  1302. if (IS_ERR(x))
  1303. return PTR_ERR(x);
  1304. xfrm_state_hold(x);
  1305. if (hdr->sadb_msg_type == SADB_ADD)
  1306. err = xfrm_state_add(x);
  1307. else
  1308. err = xfrm_state_update(x);
  1309. xfrm_audit_state_add(x, err ? 0 : 1,
  1310. audit_get_loginuid(current),
  1311. audit_get_sessionid(current), 0);
  1312. if (err < 0) {
  1313. x->km.state = XFRM_STATE_DEAD;
  1314. __xfrm_state_put(x);
  1315. goto out;
  1316. }
  1317. if (hdr->sadb_msg_type == SADB_ADD)
  1318. c.event = XFRM_MSG_NEWSA;
  1319. else
  1320. c.event = XFRM_MSG_UPDSA;
  1321. c.seq = hdr->sadb_msg_seq;
  1322. c.pid = hdr->sadb_msg_pid;
  1323. km_state_notify(x, &c);
  1324. out:
  1325. xfrm_state_put(x);
  1326. return err;
  1327. }
  1328. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1329. {
  1330. struct net *net = sock_net(sk);
  1331. struct xfrm_state *x;
  1332. struct km_event c;
  1333. int err;
  1334. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1335. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1336. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1337. return -EINVAL;
  1338. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1339. if (x == NULL)
  1340. return -ESRCH;
  1341. if ((err = security_xfrm_state_delete(x)))
  1342. goto out;
  1343. if (xfrm_state_kern(x)) {
  1344. err = -EPERM;
  1345. goto out;
  1346. }
  1347. err = xfrm_state_delete(x);
  1348. if (err < 0)
  1349. goto out;
  1350. c.seq = hdr->sadb_msg_seq;
  1351. c.pid = hdr->sadb_msg_pid;
  1352. c.event = XFRM_MSG_DELSA;
  1353. km_state_notify(x, &c);
  1354. out:
  1355. xfrm_audit_state_delete(x, err ? 0 : 1,
  1356. audit_get_loginuid(current),
  1357. audit_get_sessionid(current), 0);
  1358. xfrm_state_put(x);
  1359. return err;
  1360. }
  1361. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1362. {
  1363. struct net *net = sock_net(sk);
  1364. __u8 proto;
  1365. struct sk_buff *out_skb;
  1366. struct sadb_msg *out_hdr;
  1367. struct xfrm_state *x;
  1368. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1369. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1370. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1371. return -EINVAL;
  1372. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1373. if (x == NULL)
  1374. return -ESRCH;
  1375. out_skb = pfkey_xfrm_state2msg(x);
  1376. proto = x->id.proto;
  1377. xfrm_state_put(x);
  1378. if (IS_ERR(out_skb))
  1379. return PTR_ERR(out_skb);
  1380. out_hdr = (struct sadb_msg *) out_skb->data;
  1381. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1382. out_hdr->sadb_msg_type = SADB_GET;
  1383. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1384. out_hdr->sadb_msg_errno = 0;
  1385. out_hdr->sadb_msg_reserved = 0;
  1386. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1387. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1388. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
  1389. return 0;
  1390. }
  1391. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
  1392. gfp_t allocation)
  1393. {
  1394. struct sk_buff *skb;
  1395. struct sadb_msg *hdr;
  1396. int len, auth_len, enc_len, i;
  1397. auth_len = xfrm_count_auth_supported();
  1398. if (auth_len) {
  1399. auth_len *= sizeof(struct sadb_alg);
  1400. auth_len += sizeof(struct sadb_supported);
  1401. }
  1402. enc_len = xfrm_count_enc_supported();
  1403. if (enc_len) {
  1404. enc_len *= sizeof(struct sadb_alg);
  1405. enc_len += sizeof(struct sadb_supported);
  1406. }
  1407. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1408. skb = alloc_skb(len + 16, allocation);
  1409. if (!skb)
  1410. goto out_put_algs;
  1411. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1412. pfkey_hdr_dup(hdr, orig);
  1413. hdr->sadb_msg_errno = 0;
  1414. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1415. if (auth_len) {
  1416. struct sadb_supported *sp;
  1417. struct sadb_alg *ap;
  1418. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1419. ap = (struct sadb_alg *) (sp + 1);
  1420. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1421. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1422. for (i = 0; ; i++) {
  1423. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1424. if (!aalg)
  1425. break;
  1426. if (aalg->available)
  1427. *ap++ = aalg->desc;
  1428. }
  1429. }
  1430. if (enc_len) {
  1431. struct sadb_supported *sp;
  1432. struct sadb_alg *ap;
  1433. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1434. ap = (struct sadb_alg *) (sp + 1);
  1435. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1436. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1437. for (i = 0; ; i++) {
  1438. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1439. if (!ealg)
  1440. break;
  1441. if (ealg->available)
  1442. *ap++ = ealg->desc;
  1443. }
  1444. }
  1445. out_put_algs:
  1446. return skb;
  1447. }
  1448. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1449. {
  1450. struct pfkey_sock *pfk = pfkey_sk(sk);
  1451. struct sk_buff *supp_skb;
  1452. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1453. return -EINVAL;
  1454. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1455. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1456. return -EEXIST;
  1457. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1458. }
  1459. xfrm_probe_algs();
  1460. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1461. if (!supp_skb) {
  1462. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1463. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1464. return -ENOBUFS;
  1465. }
  1466. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk, sock_net(sk));
  1467. return 0;
  1468. }
  1469. static int key_notify_sa_flush(struct km_event *c)
  1470. {
  1471. struct sk_buff *skb;
  1472. struct sadb_msg *hdr;
  1473. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1474. if (!skb)
  1475. return -ENOBUFS;
  1476. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1477. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1478. hdr->sadb_msg_type = SADB_FLUSH;
  1479. hdr->sadb_msg_seq = c->seq;
  1480. hdr->sadb_msg_pid = c->pid;
  1481. hdr->sadb_msg_version = PF_KEY_V2;
  1482. hdr->sadb_msg_errno = (uint8_t) 0;
  1483. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1484. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  1485. return 0;
  1486. }
  1487. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1488. {
  1489. struct net *net = sock_net(sk);
  1490. unsigned proto;
  1491. struct km_event c;
  1492. struct xfrm_audit audit_info;
  1493. int err;
  1494. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1495. if (proto == 0)
  1496. return -EINVAL;
  1497. audit_info.loginuid = audit_get_loginuid(current);
  1498. audit_info.sessionid = audit_get_sessionid(current);
  1499. audit_info.secid = 0;
  1500. err = xfrm_state_flush(net, proto, &audit_info);
  1501. if (err)
  1502. return err;
  1503. c.data.proto = proto;
  1504. c.seq = hdr->sadb_msg_seq;
  1505. c.pid = hdr->sadb_msg_pid;
  1506. c.event = XFRM_MSG_FLUSHSA;
  1507. c.net = net;
  1508. km_state_notify(NULL, &c);
  1509. return 0;
  1510. }
  1511. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1512. {
  1513. struct pfkey_sock *pfk = ptr;
  1514. struct sk_buff *out_skb;
  1515. struct sadb_msg *out_hdr;
  1516. if (!pfkey_can_dump(&pfk->sk))
  1517. return -ENOBUFS;
  1518. out_skb = pfkey_xfrm_state2msg(x);
  1519. if (IS_ERR(out_skb))
  1520. return PTR_ERR(out_skb);
  1521. out_hdr = (struct sadb_msg *) out_skb->data;
  1522. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  1523. out_hdr->sadb_msg_type = SADB_DUMP;
  1524. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1525. out_hdr->sadb_msg_errno = 0;
  1526. out_hdr->sadb_msg_reserved = 0;
  1527. out_hdr->sadb_msg_seq = count + 1;
  1528. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  1529. if (pfk->dump.skb)
  1530. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  1531. &pfk->sk, sock_net(&pfk->sk));
  1532. pfk->dump.skb = out_skb;
  1533. return 0;
  1534. }
  1535. static int pfkey_dump_sa(struct pfkey_sock *pfk)
  1536. {
  1537. struct net *net = sock_net(&pfk->sk);
  1538. return xfrm_state_walk(net, &pfk->dump.u.state, dump_sa, (void *) pfk);
  1539. }
  1540. static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
  1541. {
  1542. xfrm_state_walk_done(&pfk->dump.u.state);
  1543. }
  1544. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1545. {
  1546. u8 proto;
  1547. struct pfkey_sock *pfk = pfkey_sk(sk);
  1548. if (pfk->dump.dump != NULL)
  1549. return -EBUSY;
  1550. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1551. if (proto == 0)
  1552. return -EINVAL;
  1553. pfk->dump.msg_version = hdr->sadb_msg_version;
  1554. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  1555. pfk->dump.dump = pfkey_dump_sa;
  1556. pfk->dump.done = pfkey_dump_sa_done;
  1557. xfrm_state_walk_init(&pfk->dump.u.state, proto);
  1558. return pfkey_do_dump(pfk);
  1559. }
  1560. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1561. {
  1562. struct pfkey_sock *pfk = pfkey_sk(sk);
  1563. int satype = hdr->sadb_msg_satype;
  1564. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1565. /* XXX we mangle packet... */
  1566. hdr->sadb_msg_errno = 0;
  1567. if (satype != 0 && satype != 1)
  1568. return -EINVAL;
  1569. pfk->promisc = satype;
  1570. }
  1571. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL, sock_net(sk));
  1572. return 0;
  1573. }
  1574. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1575. {
  1576. int i;
  1577. u32 reqid = *(u32*)ptr;
  1578. for (i=0; i<xp->xfrm_nr; i++) {
  1579. if (xp->xfrm_vec[i].reqid == reqid)
  1580. return -EEXIST;
  1581. }
  1582. return 0;
  1583. }
  1584. static u32 gen_reqid(struct net *net)
  1585. {
  1586. struct xfrm_policy_walk walk;
  1587. u32 start;
  1588. int rc;
  1589. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1590. start = reqid;
  1591. do {
  1592. ++reqid;
  1593. if (reqid == 0)
  1594. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1595. xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
  1596. rc = xfrm_policy_walk(net, &walk, check_reqid, (void*)&reqid);
  1597. xfrm_policy_walk_done(&walk);
  1598. if (rc != -EEXIST)
  1599. return reqid;
  1600. } while (reqid != start);
  1601. return 0;
  1602. }
  1603. static int
  1604. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1605. {
  1606. struct net *net = xp_net(xp);
  1607. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1608. int mode;
  1609. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1610. return -ELOOP;
  1611. if (rq->sadb_x_ipsecrequest_mode == 0)
  1612. return -EINVAL;
  1613. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1614. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1615. return -EINVAL;
  1616. t->mode = mode;
  1617. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1618. t->optional = 1;
  1619. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1620. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1621. if (t->reqid > IPSEC_MANUAL_REQID_MAX)