/kern_oII/net/iucv/af_iucv.c

http://omnia2droid.googlecode.com/ · C · 1785 lines · 1343 code · 287 blank · 155 comment · 242 complexity · b577fffbdf029b6c59c670d1727c5581 MD5 · raw file

  1. /*
  2. * IUCV protocol stack for Linux on zSeries
  3. *
  4. * Copyright IBM Corp. 2006, 2009
  5. *
  6. * Author(s): Jennifer Hunt <jenhunt@us.ibm.com>
  7. * Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
  8. * PM functions:
  9. * Ursula Braun <ursula.braun@de.ibm.com>
  10. */
  11. #define KMSG_COMPONENT "af_iucv"
  12. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  13. #include <linux/module.h>
  14. #include <linux/types.h>
  15. #include <linux/list.h>
  16. #include <linux/errno.h>
  17. #include <linux/kernel.h>
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/init.h>
  22. #include <linux/poll.h>
  23. #include <net/sock.h>
  24. #include <asm/ebcdic.h>
  25. #include <asm/cpcmd.h>
  26. #include <linux/kmod.h>
  27. #include <net/iucv/iucv.h>
  28. #include <net/iucv/af_iucv.h>
  29. #define VERSION "1.1"
  30. static char iucv_userid[80];
  31. static struct proto_ops iucv_sock_ops;
  32. static struct proto iucv_proto = {
  33. .name = "AF_IUCV",
  34. .owner = THIS_MODULE,
  35. .obj_size = sizeof(struct iucv_sock),
  36. };
  37. /* special AF_IUCV IPRM messages */
  38. static const u8 iprm_shutdown[8] =
  39. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
  40. #define TRGCLS_SIZE (sizeof(((struct iucv_message *)0)->class))
  41. /* macros to set/get socket control buffer at correct offset */
  42. #define CB_TAG(skb) ((skb)->cb) /* iucv message tag */
  43. #define CB_TAG_LEN (sizeof(((struct iucv_message *) 0)->tag))
  44. #define CB_TRGCLS(skb) ((skb)->cb + CB_TAG_LEN) /* iucv msg target class */
  45. #define CB_TRGCLS_LEN (TRGCLS_SIZE)
  46. #define __iucv_sock_wait(sk, condition, timeo, ret) \
  47. do { \
  48. DEFINE_WAIT(__wait); \
  49. long __timeo = timeo; \
  50. ret = 0; \
  51. while (!(condition)) { \
  52. prepare_to_wait(sk->sk_sleep, &__wait, TASK_INTERRUPTIBLE); \
  53. if (!__timeo) { \
  54. ret = -EAGAIN; \
  55. break; \
  56. } \
  57. if (signal_pending(current)) { \
  58. ret = sock_intr_errno(__timeo); \
  59. break; \
  60. } \
  61. release_sock(sk); \
  62. __timeo = schedule_timeout(__timeo); \
  63. lock_sock(sk); \
  64. ret = sock_error(sk); \
  65. if (ret) \
  66. break; \
  67. } \
  68. finish_wait(sk->sk_sleep, &__wait); \
  69. } while (0)
  70. #define iucv_sock_wait(sk, condition, timeo) \
  71. ({ \
  72. int __ret = 0; \
  73. if (!(condition)) \
  74. __iucv_sock_wait(sk, condition, timeo, __ret); \
  75. __ret; \
  76. })
  77. static void iucv_sock_kill(struct sock *sk);
  78. static void iucv_sock_close(struct sock *sk);
  79. /* Call Back functions */
  80. static void iucv_callback_rx(struct iucv_path *, struct iucv_message *);
  81. static void iucv_callback_txdone(struct iucv_path *, struct iucv_message *);
  82. static void iucv_callback_connack(struct iucv_path *, u8 ipuser[16]);
  83. static int iucv_callback_connreq(struct iucv_path *, u8 ipvmid[8],
  84. u8 ipuser[16]);
  85. static void iucv_callback_connrej(struct iucv_path *, u8 ipuser[16]);
  86. static void iucv_callback_shutdown(struct iucv_path *, u8 ipuser[16]);
  87. static struct iucv_sock_list iucv_sk_list = {
  88. .lock = __RW_LOCK_UNLOCKED(iucv_sk_list.lock),
  89. .autobind_name = ATOMIC_INIT(0)
  90. };
  91. static struct iucv_handler af_iucv_handler = {
  92. .path_pending = iucv_callback_connreq,
  93. .path_complete = iucv_callback_connack,
  94. .path_severed = iucv_callback_connrej,
  95. .message_pending = iucv_callback_rx,
  96. .message_complete = iucv_callback_txdone,
  97. .path_quiesced = iucv_callback_shutdown,
  98. };
  99. static inline void high_nmcpy(unsigned char *dst, char *src)
  100. {
  101. memcpy(dst, src, 8);
  102. }
  103. static inline void low_nmcpy(unsigned char *dst, char *src)
  104. {
  105. memcpy(&dst[8], src, 8);
  106. }
  107. static int afiucv_pm_prepare(struct device *dev)
  108. {
  109. #ifdef CONFIG_PM_DEBUG
  110. printk(KERN_WARNING "afiucv_pm_prepare\n");
  111. #endif
  112. return 0;
  113. }
  114. static void afiucv_pm_complete(struct device *dev)
  115. {
  116. #ifdef CONFIG_PM_DEBUG
  117. printk(KERN_WARNING "afiucv_pm_complete\n");
  118. #endif
  119. return;
  120. }
  121. /**
  122. * afiucv_pm_freeze() - Freeze PM callback
  123. * @dev: AFIUCV dummy device
  124. *
  125. * Sever all established IUCV communication pathes
  126. */
  127. static int afiucv_pm_freeze(struct device *dev)
  128. {
  129. struct iucv_sock *iucv;
  130. struct sock *sk;
  131. struct hlist_node *node;
  132. int err = 0;
  133. #ifdef CONFIG_PM_DEBUG
  134. printk(KERN_WARNING "afiucv_pm_freeze\n");
  135. #endif
  136. read_lock(&iucv_sk_list.lock);
  137. sk_for_each(sk, node, &iucv_sk_list.head) {
  138. iucv = iucv_sk(sk);
  139. skb_queue_purge(&iucv->send_skb_q);
  140. skb_queue_purge(&iucv->backlog_skb_q);
  141. switch (sk->sk_state) {
  142. case IUCV_SEVERED:
  143. case IUCV_DISCONN:
  144. case IUCV_CLOSING:
  145. case IUCV_CONNECTED:
  146. if (iucv->path) {
  147. err = iucv_path_sever(iucv->path, NULL);
  148. iucv_path_free(iucv->path);
  149. iucv->path = NULL;
  150. }
  151. break;
  152. case IUCV_OPEN:
  153. case IUCV_BOUND:
  154. case IUCV_LISTEN:
  155. case IUCV_CLOSED:
  156. default:
  157. break;
  158. }
  159. }
  160. read_unlock(&iucv_sk_list.lock);
  161. return err;
  162. }
  163. /**
  164. * afiucv_pm_restore_thaw() - Thaw and restore PM callback
  165. * @dev: AFIUCV dummy device
  166. *
  167. * socket clean up after freeze
  168. */
  169. static int afiucv_pm_restore_thaw(struct device *dev)
  170. {
  171. struct iucv_sock *iucv;
  172. struct sock *sk;
  173. struct hlist_node *node;
  174. #ifdef CONFIG_PM_DEBUG
  175. printk(KERN_WARNING "afiucv_pm_restore_thaw\n");
  176. #endif
  177. read_lock(&iucv_sk_list.lock);
  178. sk_for_each(sk, node, &iucv_sk_list.head) {
  179. iucv = iucv_sk(sk);
  180. switch (sk->sk_state) {
  181. case IUCV_CONNECTED:
  182. sk->sk_err = EPIPE;
  183. sk->sk_state = IUCV_DISCONN;
  184. sk->sk_state_change(sk);
  185. break;
  186. case IUCV_DISCONN:
  187. case IUCV_SEVERED:
  188. case IUCV_CLOSING:
  189. case IUCV_LISTEN:
  190. case IUCV_BOUND:
  191. case IUCV_OPEN:
  192. default:
  193. break;
  194. }
  195. }
  196. read_unlock(&iucv_sk_list.lock);
  197. return 0;
  198. }
  199. static struct dev_pm_ops afiucv_pm_ops = {
  200. .prepare = afiucv_pm_prepare,
  201. .complete = afiucv_pm_complete,
  202. .freeze = afiucv_pm_freeze,
  203. .thaw = afiucv_pm_restore_thaw,
  204. .restore = afiucv_pm_restore_thaw,
  205. };
  206. static struct device_driver af_iucv_driver = {
  207. .owner = THIS_MODULE,
  208. .name = "afiucv",
  209. .bus = &iucv_bus,
  210. .pm = &afiucv_pm_ops,
  211. };
  212. /* dummy device used as trigger for PM functions */
  213. static struct device *af_iucv_dev;
  214. /**
  215. * iucv_msg_length() - Returns the length of an iucv message.
  216. * @msg: Pointer to struct iucv_message, MUST NOT be NULL
  217. *
  218. * The function returns the length of the specified iucv message @msg of data
  219. * stored in a buffer and of data stored in the parameter list (PRMDATA).
  220. *
  221. * For IUCV_IPRMDATA, AF_IUCV uses the following convention to transport socket
  222. * data:
  223. * PRMDATA[0..6] socket data (max 7 bytes);
  224. * PRMDATA[7] socket data length value (len is 0xff - PRMDATA[7])
  225. *
  226. * The socket data length is computed by substracting the socket data length
  227. * value from 0xFF.
  228. * If the socket data len is greater 7, then PRMDATA can be used for special
  229. * notifications (see iucv_sock_shutdown); and further,
  230. * if the socket data len is > 7, the function returns 8.
  231. *
  232. * Use this function to allocate socket buffers to store iucv message data.
  233. */
  234. static inline size_t iucv_msg_length(struct iucv_message *msg)
  235. {
  236. size_t datalen;
  237. if (msg->flags & IUCV_IPRMDATA) {
  238. datalen = 0xff - msg->rmmsg[7];
  239. return (datalen < 8) ? datalen : 8;
  240. }
  241. return msg->length;
  242. }
  243. /**
  244. * iucv_sock_in_state() - check for specific states
  245. * @sk: sock structure
  246. * @state: first iucv sk state
  247. * @state: second iucv sk state
  248. *
  249. * Returns true if the socket in either in the first or second state.
  250. */
  251. static int iucv_sock_in_state(struct sock *sk, int state, int state2)
  252. {
  253. return (sk->sk_state == state || sk->sk_state == state2);
  254. }
  255. /**
  256. * iucv_below_msglim() - function to check if messages can be sent
  257. * @sk: sock structure
  258. *
  259. * Returns true if the send queue length is lower than the message limit.
  260. * Always returns true if the socket is not connected (no iucv path for
  261. * checking the message limit).
  262. */
  263. static inline int iucv_below_msglim(struct sock *sk)
  264. {
  265. struct iucv_sock *iucv = iucv_sk(sk);
  266. if (sk->sk_state != IUCV_CONNECTED)
  267. return 1;
  268. return (skb_queue_len(&iucv->send_skb_q) < iucv->path->msglim);
  269. }
  270. /**
  271. * iucv_sock_wake_msglim() - Wake up thread waiting on msg limit
  272. */
  273. static void iucv_sock_wake_msglim(struct sock *sk)
  274. {
  275. read_lock(&sk->sk_callback_lock);
  276. if (sk_has_sleeper(sk))
  277. wake_up_interruptible_all(sk->sk_sleep);
  278. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  279. read_unlock(&sk->sk_callback_lock);
  280. }
  281. /* Timers */
  282. static void iucv_sock_timeout(unsigned long arg)
  283. {
  284. struct sock *sk = (struct sock *)arg;
  285. bh_lock_sock(sk);
  286. sk->sk_err = ETIMEDOUT;
  287. sk->sk_state_change(sk);
  288. bh_unlock_sock(sk);
  289. iucv_sock_kill(sk);
  290. sock_put(sk);
  291. }
  292. static void iucv_sock_clear_timer(struct sock *sk)
  293. {
  294. sk_stop_timer(sk, &sk->sk_timer);
  295. }
  296. static struct sock *__iucv_get_sock_by_name(char *nm)
  297. {
  298. struct sock *sk;
  299. struct hlist_node *node;
  300. sk_for_each(sk, node, &iucv_sk_list.head)
  301. if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
  302. return sk;
  303. return NULL;
  304. }
  305. static void iucv_sock_destruct(struct sock *sk)
  306. {
  307. skb_queue_purge(&sk->sk_receive_queue);
  308. skb_queue_purge(&sk->sk_write_queue);
  309. }
  310. /* Cleanup Listen */
  311. static void iucv_sock_cleanup_listen(struct sock *parent)
  312. {
  313. struct sock *sk;
  314. /* Close non-accepted connections */
  315. while ((sk = iucv_accept_dequeue(parent, NULL))) {
  316. iucv_sock_close(sk);
  317. iucv_sock_kill(sk);
  318. }
  319. parent->sk_state = IUCV_CLOSED;
  320. sock_set_flag(parent, SOCK_ZAPPED);
  321. }
  322. /* Kill socket */
  323. static void iucv_sock_kill(struct sock *sk)
  324. {
  325. if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
  326. return;
  327. iucv_sock_unlink(&iucv_sk_list, sk);
  328. sock_set_flag(sk, SOCK_DEAD);
  329. sock_put(sk);
  330. }
  331. /* Close an IUCV socket */
  332. static void iucv_sock_close(struct sock *sk)
  333. {
  334. unsigned char user_data[16];
  335. struct iucv_sock *iucv = iucv_sk(sk);
  336. int err;
  337. unsigned long timeo;
  338. iucv_sock_clear_timer(sk);
  339. lock_sock(sk);
  340. switch (sk->sk_state) {
  341. case IUCV_LISTEN:
  342. iucv_sock_cleanup_listen(sk);
  343. break;
  344. case IUCV_CONNECTED:
  345. case IUCV_DISCONN:
  346. err = 0;
  347. sk->sk_state = IUCV_CLOSING;
  348. sk->sk_state_change(sk);
  349. if (!skb_queue_empty(&iucv->send_skb_q)) {
  350. if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
  351. timeo = sk->sk_lingertime;
  352. else
  353. timeo = IUCV_DISCONN_TIMEOUT;
  354. err = iucv_sock_wait(sk,
  355. iucv_sock_in_state(sk, IUCV_CLOSED, 0),
  356. timeo);
  357. }
  358. case IUCV_CLOSING: /* fall through */
  359. sk->sk_state = IUCV_CLOSED;
  360. sk->sk_state_change(sk);
  361. if (iucv->path) {
  362. low_nmcpy(user_data, iucv->src_name);
  363. high_nmcpy(user_data, iucv->dst_name);
  364. ASCEBC(user_data, sizeof(user_data));
  365. err = iucv_path_sever(iucv->path, user_data);
  366. iucv_path_free(iucv->path);
  367. iucv->path = NULL;
  368. }
  369. sk->sk_err = ECONNRESET;
  370. sk->sk_state_change(sk);
  371. skb_queue_purge(&iucv->send_skb_q);
  372. skb_queue_purge(&iucv->backlog_skb_q);
  373. sock_set_flag(sk, SOCK_ZAPPED);
  374. break;
  375. default:
  376. sock_set_flag(sk, SOCK_ZAPPED);
  377. break;
  378. }
  379. release_sock(sk);
  380. iucv_sock_kill(sk);
  381. }
  382. static void iucv_sock_init(struct sock *sk, struct sock *parent)
  383. {
  384. if (parent)
  385. sk->sk_type = parent->sk_type;
  386. }
  387. static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio)
  388. {
  389. struct sock *sk;
  390. sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto);
  391. if (!sk)
  392. return NULL;
  393. sock_init_data(sock, sk);
  394. INIT_LIST_HEAD(&iucv_sk(sk)->accept_q);
  395. spin_lock_init(&iucv_sk(sk)->accept_q_lock);
  396. skb_queue_head_init(&iucv_sk(sk)->send_skb_q);
  397. INIT_LIST_HEAD(&iucv_sk(sk)->message_q.list);
  398. spin_lock_init(&iucv_sk(sk)->message_q.lock);
  399. skb_queue_head_init(&iucv_sk(sk)->backlog_skb_q);
  400. iucv_sk(sk)->send_tag = 0;
  401. iucv_sk(sk)->flags = 0;
  402. iucv_sk(sk)->msglimit = IUCV_QUEUELEN_DEFAULT;
  403. iucv_sk(sk)->path = NULL;
  404. memset(&iucv_sk(sk)->src_user_id , 0, 32);
  405. sk->sk_destruct = iucv_sock_destruct;
  406. sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
  407. sk->sk_allocation = GFP_DMA;
  408. sock_reset_flag(sk, SOCK_ZAPPED);
  409. sk->sk_protocol = proto;
  410. sk->sk_state = IUCV_OPEN;
  411. setup_timer(&sk->sk_timer, iucv_sock_timeout, (unsigned long)sk);
  412. iucv_sock_link(&iucv_sk_list, sk);
  413. return sk;
  414. }
  415. /* Create an IUCV socket */
  416. static int iucv_sock_create(struct net *net, struct socket *sock, int protocol)
  417. {
  418. struct sock *sk;
  419. if (protocol && protocol != PF_IUCV)
  420. return -EPROTONOSUPPORT;
  421. sock->state = SS_UNCONNECTED;
  422. switch (sock->type) {
  423. case SOCK_STREAM:
  424. sock->ops = &iucv_sock_ops;
  425. break;
  426. case SOCK_SEQPACKET:
  427. /* currently, proto ops can handle both sk types */
  428. sock->ops = &iucv_sock_ops;
  429. break;
  430. default:
  431. return -ESOCKTNOSUPPORT;
  432. }
  433. sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL);
  434. if (!sk)
  435. return -ENOMEM;
  436. iucv_sock_init(sk, NULL);
  437. return 0;
  438. }
  439. void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
  440. {
  441. write_lock_bh(&l->lock);
  442. sk_add_node(sk, &l->head);
  443. write_unlock_bh(&l->lock);
  444. }
  445. void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
  446. {
  447. write_lock_bh(&l->lock);
  448. sk_del_node_init(sk);
  449. write_unlock_bh(&l->lock);
  450. }
  451. void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
  452. {
  453. unsigned long flags;
  454. struct iucv_sock *par = iucv_sk(parent);
  455. sock_hold(sk);
  456. spin_lock_irqsave(&par->accept_q_lock, flags);
  457. list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q);
  458. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  459. iucv_sk(sk)->parent = parent;
  460. parent->sk_ack_backlog++;
  461. }
  462. void iucv_accept_unlink(struct sock *sk)
  463. {
  464. unsigned long flags;
  465. struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent);
  466. spin_lock_irqsave(&par->accept_q_lock, flags);
  467. list_del_init(&iucv_sk(sk)->accept_q);
  468. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  469. iucv_sk(sk)->parent->sk_ack_backlog--;
  470. iucv_sk(sk)->parent = NULL;
  471. sock_put(sk);
  472. }
  473. struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock)
  474. {
  475. struct iucv_sock *isk, *n;
  476. struct sock *sk;
  477. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  478. sk = (struct sock *) isk;
  479. lock_sock(sk);
  480. if (sk->sk_state == IUCV_CLOSED) {
  481. iucv_accept_unlink(sk);
  482. release_sock(sk);
  483. continue;
  484. }
  485. if (sk->sk_state == IUCV_CONNECTED ||
  486. sk->sk_state == IUCV_SEVERED ||
  487. !newsock) {
  488. iucv_accept_unlink(sk);
  489. if (newsock)
  490. sock_graft(sk, newsock);
  491. if (sk->sk_state == IUCV_SEVERED)
  492. sk->sk_state = IUCV_DISCONN;
  493. release_sock(sk);
  494. return sk;
  495. }
  496. release_sock(sk);
  497. }
  498. return NULL;
  499. }
  500. /* Bind an unbound socket */
  501. static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
  502. int addr_len)
  503. {
  504. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  505. struct sock *sk = sock->sk;
  506. struct iucv_sock *iucv;
  507. int err;
  508. /* Verify the input sockaddr */
  509. if (!addr || addr->sa_family != AF_IUCV)
  510. return -EINVAL;
  511. lock_sock(sk);
  512. if (sk->sk_state != IUCV_OPEN) {
  513. err = -EBADFD;
  514. goto done;
  515. }
  516. write_lock_bh(&iucv_sk_list.lock);
  517. iucv = iucv_sk(sk);
  518. if (__iucv_get_sock_by_name(sa->siucv_name)) {
  519. err = -EADDRINUSE;
  520. goto done_unlock;
  521. }
  522. if (iucv->path) {
  523. err = 0;
  524. goto done_unlock;
  525. }
  526. /* Bind the socket */
  527. memcpy(iucv->src_name, sa->siucv_name, 8);
  528. /* Copy the user id */
  529. memcpy(iucv->src_user_id, iucv_userid, 8);
  530. sk->sk_state = IUCV_BOUND;
  531. err = 0;
  532. done_unlock:
  533. /* Release the socket list lock */
  534. write_unlock_bh(&iucv_sk_list.lock);
  535. done:
  536. release_sock(sk);
  537. return err;
  538. }
  539. /* Automatically bind an unbound socket */
  540. static int iucv_sock_autobind(struct sock *sk)
  541. {
  542. struct iucv_sock *iucv = iucv_sk(sk);
  543. char query_buffer[80];
  544. char name[12];
  545. int err = 0;
  546. /* Set the userid and name */
  547. cpcmd("QUERY USERID", query_buffer, sizeof(query_buffer), &err);
  548. if (unlikely(err))
  549. return -EPROTO;
  550. memcpy(iucv->src_user_id, query_buffer, 8);
  551. write_lock_bh(&iucv_sk_list.lock);
  552. sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
  553. while (__iucv_get_sock_by_name(name)) {
  554. sprintf(name, "%08x",
  555. atomic_inc_return(&iucv_sk_list.autobind_name));
  556. }
  557. write_unlock_bh(&iucv_sk_list.lock);
  558. memcpy(&iucv->src_name, name, 8);
  559. return err;
  560. }
  561. /* Connect an unconnected socket */
  562. static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
  563. int alen, int flags)
  564. {
  565. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  566. struct sock *sk = sock->sk;
  567. struct iucv_sock *iucv;
  568. unsigned char user_data[16];
  569. int err;
  570. if (addr->sa_family != AF_IUCV || alen < sizeof(struct sockaddr_iucv))
  571. return -EINVAL;
  572. if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
  573. return -EBADFD;
  574. if (sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_SEQPACKET)
  575. return -EINVAL;
  576. if (sk->sk_state == IUCV_OPEN) {
  577. err = iucv_sock_autobind(sk);
  578. if (unlikely(err))
  579. return err;
  580. }
  581. lock_sock(sk);
  582. /* Set the destination information */
  583. memcpy(iucv_sk(sk)->dst_user_id, sa->siucv_user_id, 8);
  584. memcpy(iucv_sk(sk)->dst_name, sa->siucv_name, 8);
  585. high_nmcpy(user_data, sa->siucv_name);
  586. low_nmcpy(user_data, iucv_sk(sk)->src_name);
  587. ASCEBC(user_data, sizeof(user_data));
  588. iucv = iucv_sk(sk);
  589. /* Create path. */
  590. iucv->path = iucv_path_alloc(iucv->msglimit,
  591. IUCV_IPRMDATA, GFP_KERNEL);
  592. if (!iucv->path) {
  593. err = -ENOMEM;
  594. goto done;
  595. }
  596. err = iucv_path_connect(iucv->path, &af_iucv_handler,
  597. sa->siucv_user_id, NULL, user_data, sk);
  598. if (err) {
  599. iucv_path_free(iucv->path);
  600. iucv->path = NULL;
  601. switch (err) {
  602. case 0x0b: /* Target communicator is not logged on */
  603. err = -ENETUNREACH;
  604. break;
  605. case 0x0d: /* Max connections for this guest exceeded */
  606. case 0x0e: /* Max connections for target guest exceeded */
  607. err = -EAGAIN;
  608. break;
  609. case 0x0f: /* Missing IUCV authorization */
  610. err = -EACCES;
  611. break;
  612. default:
  613. err = -ECONNREFUSED;
  614. break;
  615. }
  616. goto done;
  617. }
  618. if (sk->sk_state != IUCV_CONNECTED) {
  619. err = iucv_sock_wait(sk, iucv_sock_in_state(sk, IUCV_CONNECTED,
  620. IUCV_DISCONN),
  621. sock_sndtimeo(sk, flags & O_NONBLOCK));
  622. }
  623. if (sk->sk_state == IUCV_DISCONN) {
  624. err = -ECONNREFUSED;
  625. }
  626. if (err) {
  627. iucv_path_sever(iucv->path, NULL);
  628. iucv_path_free(iucv->path);
  629. iucv->path = NULL;
  630. }
  631. done:
  632. release_sock(sk);
  633. return err;
  634. }
  635. /* Move a socket into listening state. */
  636. static int iucv_sock_listen(struct socket *sock, int backlog)
  637. {
  638. struct sock *sk = sock->sk;
  639. int err;
  640. lock_sock(sk);
  641. err = -EINVAL;
  642. if (sk->sk_state != IUCV_BOUND)
  643. goto done;
  644. if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
  645. goto done;
  646. sk->sk_max_ack_backlog = backlog;
  647. sk->sk_ack_backlog = 0;
  648. sk->sk_state = IUCV_LISTEN;
  649. err = 0;
  650. done:
  651. release_sock(sk);
  652. return err;
  653. }
  654. /* Accept a pending connection */
  655. static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
  656. int flags)
  657. {
  658. DECLARE_WAITQUEUE(wait, current);
  659. struct sock *sk = sock->sk, *nsk;
  660. long timeo;
  661. int err = 0;
  662. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  663. if (sk->sk_state != IUCV_LISTEN) {
  664. err = -EBADFD;
  665. goto done;
  666. }
  667. timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
  668. /* Wait for an incoming connection */
  669. add_wait_queue_exclusive(sk->sk_sleep, &wait);
  670. while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
  671. set_current_state(TASK_INTERRUPTIBLE);
  672. if (!timeo) {
  673. err = -EAGAIN;
  674. break;
  675. }
  676. release_sock(sk);
  677. timeo = schedule_timeout(timeo);
  678. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  679. if (sk->sk_state != IUCV_LISTEN) {
  680. err = -EBADFD;
  681. break;
  682. }
  683. if (signal_pending(current)) {
  684. err = sock_intr_errno(timeo);
  685. break;
  686. }
  687. }
  688. set_current_state(TASK_RUNNING);
  689. remove_wait_queue(sk->sk_sleep, &wait);
  690. if (err)
  691. goto done;
  692. newsock->state = SS_CONNECTED;
  693. done:
  694. release_sock(sk);
  695. return err;
  696. }
  697. static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
  698. int *len, int peer)
  699. {
  700. struct sockaddr_iucv *siucv = (struct sockaddr_iucv *) addr;
  701. struct sock *sk = sock->sk;
  702. addr->sa_family = AF_IUCV;
  703. *len = sizeof(struct sockaddr_iucv);
  704. if (peer) {
  705. memcpy(siucv->siucv_user_id, iucv_sk(sk)->dst_user_id, 8);
  706. memcpy(siucv->siucv_name, &iucv_sk(sk)->dst_name, 8);
  707. } else {
  708. memcpy(siucv->siucv_user_id, iucv_sk(sk)->src_user_id, 8);
  709. memcpy(siucv->siucv_name, iucv_sk(sk)->src_name, 8);
  710. }
  711. memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
  712. memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
  713. memset(siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
  714. return 0;
  715. }
  716. /**
  717. * iucv_send_iprm() - Send socket data in parameter list of an iucv message.
  718. * @path: IUCV path
  719. * @msg: Pointer to a struct iucv_message
  720. * @skb: The socket data to send, skb->len MUST BE <= 7
  721. *
  722. * Send the socket data in the parameter list in the iucv message
  723. * (IUCV_IPRMDATA). The socket data is stored at index 0 to 6 in the parameter
  724. * list and the socket data len at index 7 (last byte).
  725. * See also iucv_msg_length().
  726. *
  727. * Returns the error code from the iucv_message_send() call.
  728. */
  729. static int iucv_send_iprm(struct iucv_path *path, struct iucv_message *msg,
  730. struct sk_buff *skb)
  731. {
  732. u8 prmdata[8];
  733. memcpy(prmdata, (void *) skb->data, skb->len);
  734. prmdata[7] = 0xff - (u8) skb->len;
  735. return iucv_message_send(path, msg, IUCV_IPRMDATA, 0,
  736. (void *) prmdata, 8);
  737. }
  738. static int iucv_sock_sendmsg(struct kiocb *iocb, struct socket *sock,
  739. struct msghdr *msg, size_t len)
  740. {
  741. struct sock *sk = sock->sk;
  742. struct iucv_sock *iucv = iucv_sk(sk);
  743. struct sk_buff *skb;
  744. struct iucv_message txmsg;
  745. struct cmsghdr *cmsg;
  746. int cmsg_done;
  747. long timeo;
  748. char user_id[9];
  749. char appl_id[9];
  750. int err;
  751. int noblock = msg->msg_flags & MSG_DONTWAIT;
  752. err = sock_error(sk);
  753. if (err)
  754. return err;
  755. if (msg->msg_flags & MSG_OOB)
  756. return -EOPNOTSUPP;
  757. /* SOCK_SEQPACKET: we do not support segmented records */
  758. if (sk->sk_type == SOCK_SEQPACKET && !(msg->msg_flags & MSG_EOR))
  759. return -EOPNOTSUPP;
  760. lock_sock(sk);
  761. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  762. err = -EPIPE;
  763. goto out;
  764. }
  765. /* Return if the socket is not in connected state */
  766. if (sk->sk_state != IUCV_CONNECTED) {
  767. err = -ENOTCONN;
  768. goto out;
  769. }
  770. /* initialize defaults */
  771. cmsg_done = 0; /* check for duplicate headers */
  772. txmsg.class = 0;
  773. /* iterate over control messages */
  774. for (cmsg = CMSG_FIRSTHDR(msg); cmsg;
  775. cmsg = CMSG_NXTHDR(msg, cmsg)) {
  776. if (!CMSG_OK(msg, cmsg)) {
  777. err = -EINVAL;
  778. goto out;
  779. }
  780. if (cmsg->cmsg_level != SOL_IUCV)
  781. continue;
  782. if (cmsg->cmsg_type & cmsg_done) {
  783. err = -EINVAL;
  784. goto out;
  785. }
  786. cmsg_done |= cmsg->cmsg_type;
  787. switch (cmsg->cmsg_type) {
  788. case SCM_IUCV_TRGCLS:
  789. if (cmsg->cmsg_len != CMSG_LEN(TRGCLS_SIZE)) {
  790. err = -EINVAL;
  791. goto out;
  792. }
  793. /* set iucv message target class */
  794. memcpy(&txmsg.class,
  795. (void *) CMSG_DATA(cmsg), TRGCLS_SIZE);
  796. break;
  797. default:
  798. err = -EINVAL;
  799. goto out;
  800. break;
  801. }
  802. }
  803. /* allocate one skb for each iucv message:
  804. * this is fine for SOCK_SEQPACKET (unless we want to support
  805. * segmented records using the MSG_EOR flag), but
  806. * for SOCK_STREAM we might want to improve it in future */
  807. skb = sock_alloc_send_skb(sk, len, noblock, &err);
  808. if (!skb)
  809. goto out;
  810. if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
  811. err = -EFAULT;
  812. goto fail;
  813. }
  814. /* wait if outstanding messages for iucv path has reached */
  815. timeo = sock_sndtimeo(sk, noblock);
  816. err = iucv_sock_wait(sk, iucv_below_msglim(sk), timeo);
  817. if (err)
  818. goto fail;
  819. /* return -ECONNRESET if the socket is no longer connected */
  820. if (sk->sk_state != IUCV_CONNECTED) {
  821. err = -ECONNRESET;
  822. goto fail;
  823. }
  824. /* increment and save iucv message tag for msg_completion cbk */
  825. txmsg.tag = iucv->send_tag++;
  826. memcpy(CB_TAG(skb), &txmsg.tag, CB_TAG_LEN);
  827. skb_queue_tail(&iucv->send_skb_q, skb);
  828. if (((iucv->path->flags & IUCV_IPRMDATA) & iucv->flags)
  829. && skb->len <= 7) {
  830. err = iucv_send_iprm(iucv->path, &txmsg, skb);
  831. /* on success: there is no message_complete callback
  832. * for an IPRMDATA msg; remove skb from send queue */
  833. if (err == 0) {
  834. skb_unlink(skb, &iucv->send_skb_q);
  835. kfree_skb(skb);
  836. }
  837. /* this error should never happen since the
  838. * IUCV_IPRMDATA path flag is set... sever path */
  839. if (err == 0x15) {
  840. iucv_path_sever(iucv->path, NULL);
  841. skb_unlink(skb, &iucv->send_skb_q);
  842. err = -EPIPE;
  843. goto fail;
  844. }
  845. } else
  846. err = iucv_message_send(iucv->path, &txmsg, 0, 0,
  847. (void *) skb->data, skb->len);
  848. if (err) {
  849. if (err == 3) {
  850. user_id[8] = 0;
  851. memcpy(user_id, iucv->dst_user_id, 8);
  852. appl_id[8] = 0;
  853. memcpy(appl_id, iucv->dst_name, 8);
  854. pr_err("Application %s on z/VM guest %s"
  855. " exceeds message limit\n",
  856. appl_id, user_id);
  857. err = -EAGAIN;
  858. } else
  859. err = -EPIPE;
  860. skb_unlink(skb, &iucv->send_skb_q);
  861. goto fail;
  862. }
  863. release_sock(sk);
  864. return len;
  865. fail:
  866. kfree_skb(skb);
  867. out:
  868. release_sock(sk);
  869. return err;
  870. }
  871. static int iucv_fragment_skb(struct sock *sk, struct sk_buff *skb, int len)
  872. {
  873. int dataleft, size, copied = 0;
  874. struct sk_buff *nskb;
  875. dataleft = len;
  876. while (dataleft) {
  877. if (dataleft >= sk->sk_rcvbuf / 4)
  878. size = sk->sk_rcvbuf / 4;
  879. else
  880. size = dataleft;
  881. nskb = alloc_skb(size, GFP_ATOMIC | GFP_DMA);
  882. if (!nskb)
  883. return -ENOMEM;
  884. /* copy target class to control buffer of new skb */
  885. memcpy(CB_TRGCLS(nskb), CB_TRGCLS(skb), CB_TRGCLS_LEN);
  886. /* copy data fragment */
  887. memcpy(nskb->data, skb->data + copied, size);
  888. copied += size;
  889. dataleft -= size;
  890. skb_reset_transport_header(nskb);
  891. skb_reset_network_header(nskb);
  892. nskb->len = size;
  893. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, nskb);
  894. }
  895. return 0;
  896. }
  897. static void iucv_process_message(struct sock *sk, struct sk_buff *skb,
  898. struct iucv_path *path,
  899. struct iucv_message *msg)
  900. {
  901. int rc;
  902. unsigned int len;
  903. len = iucv_msg_length(msg);
  904. /* store msg target class in the second 4 bytes of skb ctrl buffer */
  905. /* Note: the first 4 bytes are reserved for msg tag */
  906. memcpy(CB_TRGCLS(skb), &msg->class, CB_TRGCLS_LEN);
  907. /* check for special IPRM messages (e.g. iucv_sock_shutdown) */
  908. if ((msg->flags & IUCV_IPRMDATA) && len > 7) {
  909. if (memcmp(msg->rmmsg, iprm_shutdown, 8) == 0) {
  910. skb->data = NULL;
  911. skb->len = 0;
  912. }
  913. } else {
  914. rc = iucv_message_receive(path, msg, msg->flags & IUCV_IPRMDATA,
  915. skb->data, len, NULL);
  916. if (rc) {
  917. kfree_skb(skb);
  918. return;
  919. }
  920. /* we need to fragment iucv messages for SOCK_STREAM only;
  921. * for SOCK_SEQPACKET, it is only relevant if we support
  922. * record segmentation using MSG_EOR (see also recvmsg()) */
  923. if (sk->sk_type == SOCK_STREAM &&
  924. skb->truesize >= sk->sk_rcvbuf / 4) {
  925. rc = iucv_fragment_skb(sk, skb, len);
  926. kfree_skb(skb);
  927. skb = NULL;
  928. if (rc) {
  929. iucv_path_sever(path, NULL);
  930. return;
  931. }
  932. skb = skb_dequeue(&iucv_sk(sk)->backlog_skb_q);
  933. } else {
  934. skb_reset_transport_header(skb);
  935. skb_reset_network_header(skb);
  936. skb->len = len;
  937. }
  938. }
  939. if (sock_queue_rcv_skb(sk, skb))
  940. skb_queue_head(&iucv_sk(sk)->backlog_skb_q, skb);
  941. }
  942. static void iucv_process_message_q(struct sock *sk)
  943. {
  944. struct iucv_sock *iucv = iucv_sk(sk);
  945. struct sk_buff *skb;
  946. struct sock_msg_q *p, *n;
  947. list_for_each_entry_safe(p, n, &iucv->message_q.list, list) {
  948. skb = alloc_skb(iucv_msg_length(&p->msg), GFP_ATOMIC | GFP_DMA);
  949. if (!skb)
  950. break;
  951. iucv_process_message(sk, skb, p->path, &p->msg);
  952. list_del(&p->list);
  953. kfree(p);
  954. if (!skb_queue_empty(&iucv->backlog_skb_q))
  955. break;
  956. }
  957. }
  958. static int iucv_sock_recvmsg(struct kiocb *iocb, struct socket *sock,
  959. struct msghdr *msg, size_t len, int flags)
  960. {
  961. int noblock = flags & MSG_DONTWAIT;
  962. struct sock *sk = sock->sk;
  963. struct iucv_sock *iucv = iucv_sk(sk);
  964. unsigned int copied, rlen;
  965. struct sk_buff *skb, *rskb, *cskb;
  966. int err = 0;
  967. if ((sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED) &&
  968. skb_queue_empty(&iucv->backlog_skb_q) &&
  969. skb_queue_empty(&sk->sk_receive_queue) &&
  970. list_empty(&iucv->message_q.list))
  971. return 0;
  972. if (flags & (MSG_OOB))
  973. return -EOPNOTSUPP;
  974. /* receive/dequeue next skb:
  975. * the function understands MSG_PEEK and, thus, does not dequeue skb */
  976. skb = skb_recv_datagram(sk, flags, noblock, &err);
  977. if (!skb) {
  978. if (sk->sk_shutdown & RCV_SHUTDOWN)
  979. return 0;
  980. return err;
  981. }
  982. rlen = skb->len; /* real length of skb */
  983. copied = min_t(unsigned int, rlen, len);
  984. cskb = skb;
  985. if (memcpy_toiovec(msg->msg_iov, cskb->data, copied)) {
  986. if (!(flags & MSG_PEEK))
  987. skb_queue_head(&sk->sk_receive_queue, skb);
  988. return -EFAULT;
  989. }
  990. /* SOCK_SEQPACKET: set MSG_TRUNC if recv buf size is too small */
  991. if (sk->sk_type == SOCK_SEQPACKET) {
  992. if (copied < rlen)
  993. msg->msg_flags |= MSG_TRUNC;
  994. /* each iucv message contains a complete record */
  995. msg->msg_flags |= MSG_EOR;
  996. }
  997. /* create control message to store iucv msg target class:
  998. * get the trgcls from the control buffer of the skb due to
  999. * fragmentation of original iucv message. */
  1000. err = put_cmsg(msg, SOL_IUCV, SCM_IUCV_TRGCLS,
  1001. CB_TRGCLS_LEN, CB_TRGCLS(skb));
  1002. if (err) {
  1003. if (!(flags & MSG_PEEK))
  1004. skb_queue_head(&sk->sk_receive_queue, skb);
  1005. return err;
  1006. }
  1007. /* Mark read part of skb as used */
  1008. if (!(flags & MSG_PEEK)) {
  1009. /* SOCK_STREAM: re-queue skb if it contains unreceived data */
  1010. if (sk->sk_type == SOCK_STREAM) {
  1011. skb_pull(skb, copied);
  1012. if (skb->len) {
  1013. skb_queue_head(&sk->sk_receive_queue, skb);
  1014. goto done;
  1015. }
  1016. }
  1017. kfree_skb(skb);
  1018. /* Queue backlog skbs */
  1019. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1020. while (rskb) {
  1021. if (sock_queue_rcv_skb(sk, rskb)) {
  1022. skb_queue_head(&iucv->backlog_skb_q,
  1023. rskb);
  1024. break;
  1025. } else {
  1026. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1027. }
  1028. }
  1029. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1030. spin_lock_bh(&iucv->message_q.lock);
  1031. if (!list_empty(&iucv->message_q.list))
  1032. iucv_process_message_q(sk);
  1033. spin_unlock_bh(&iucv->message_q.lock);
  1034. }
  1035. }
  1036. done:
  1037. /* SOCK_SEQPACKET: return real length if MSG_TRUNC is set */
  1038. if (sk->sk_type == SOCK_SEQPACKET && (flags & MSG_TRUNC))
  1039. copied = rlen;
  1040. return copied;
  1041. }
  1042. static inline unsigned int iucv_accept_poll(struct sock *parent)
  1043. {
  1044. struct iucv_sock *isk, *n;
  1045. struct sock *sk;
  1046. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  1047. sk = (struct sock *) isk;
  1048. if (sk->sk_state == IUCV_CONNECTED)
  1049. return POLLIN | POLLRDNORM;
  1050. }
  1051. return 0;
  1052. }
  1053. unsigned int iucv_sock_poll(struct file *file, struct socket *sock,
  1054. poll_table *wait)
  1055. {
  1056. struct sock *sk = sock->sk;
  1057. unsigned int mask = 0;
  1058. sock_poll_wait(file, sk->sk_sleep, wait);
  1059. if (sk->sk_state == IUCV_LISTEN)
  1060. return iucv_accept_poll(sk);
  1061. if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
  1062. mask |= POLLERR;
  1063. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1064. mask |= POLLRDHUP;
  1065. if (sk->sk_shutdown == SHUTDOWN_MASK)
  1066. mask |= POLLHUP;
  1067. if (!skb_queue_empty(&sk->sk_receive_queue) ||
  1068. (sk->sk_shutdown & RCV_SHUTDOWN))
  1069. mask |= POLLIN | POLLRDNORM;
  1070. if (sk->sk_state == IUCV_CLOSED)
  1071. mask |= POLLHUP;
  1072. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED)
  1073. mask |= POLLIN;
  1074. if (sock_writeable(sk))
  1075. mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
  1076. else
  1077. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1078. return mask;
  1079. }
  1080. static int iucv_sock_shutdown(struct socket *sock, int how)
  1081. {
  1082. struct sock *sk = sock->sk;
  1083. struct iucv_sock *iucv = iucv_sk(sk);
  1084. struct iucv_message txmsg;
  1085. int err = 0;
  1086. how++;
  1087. if ((how & ~SHUTDOWN_MASK) || !how)
  1088. return -EINVAL;
  1089. lock_sock(sk);
  1090. switch (sk->sk_state) {
  1091. case IUCV_DISCONN:
  1092. case IUCV_CLOSING:
  1093. case IUCV_SEVERED:
  1094. case IUCV_CLOSED:
  1095. err = -ENOTCONN;
  1096. goto fail;
  1097. default:
  1098. sk->sk_shutdown |= how;
  1099. break;
  1100. }
  1101. if (how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) {
  1102. txmsg.class = 0;
  1103. txmsg.tag = 0;
  1104. err = iucv_message_send(iucv->path, &txmsg, IUCV_IPRMDATA, 0,
  1105. (void *) iprm_shutdown, 8);
  1106. if (err) {
  1107. switch (err) {
  1108. case 1:
  1109. err = -ENOTCONN;
  1110. break;
  1111. case 2:
  1112. err = -ECONNRESET;
  1113. break;
  1114. default:
  1115. err = -ENOTCONN;
  1116. break;
  1117. }
  1118. }
  1119. }
  1120. if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
  1121. err = iucv_path_quiesce(iucv_sk(sk)->path, NULL);
  1122. if (err)
  1123. err = -ENOTCONN;
  1124. skb_queue_purge(&sk->sk_receive_queue);
  1125. }
  1126. /* Wake up anyone sleeping in poll */
  1127. sk->sk_state_change(sk);
  1128. fail:
  1129. release_sock(sk);
  1130. return err;
  1131. }
  1132. static int iucv_sock_release(struct socket *sock)
  1133. {
  1134. struct sock *sk = sock->sk;
  1135. int err = 0;
  1136. if (!sk)
  1137. return 0;
  1138. iucv_sock_close(sk);
  1139. /* Unregister with IUCV base support */
  1140. if (iucv_sk(sk)->path) {
  1141. iucv_path_sever(iucv_sk(sk)->path, NULL);
  1142. iucv_path_free(iucv_sk(sk)->path);
  1143. iucv_sk(sk)->path = NULL;
  1144. }
  1145. sock_orphan(sk);
  1146. iucv_sock_kill(sk);
  1147. return err;
  1148. }
  1149. /* getsockopt and setsockopt */
  1150. static int iucv_sock_setsockopt(struct socket *sock, int level, int optname,
  1151. char __user *optval, int optlen)
  1152. {
  1153. struct sock *sk = sock->sk;
  1154. struct iucv_sock *iucv = iucv_sk(sk);
  1155. int val;
  1156. int rc;
  1157. if (level != SOL_IUCV)
  1158. return -ENOPROTOOPT;
  1159. if (optlen < sizeof(int))
  1160. return -EINVAL;
  1161. if (get_user(val, (int __user *) optval))
  1162. return -EFAULT;
  1163. rc = 0;
  1164. lock_sock(sk);
  1165. switch (optname) {
  1166. case SO_IPRMDATA_MSG:
  1167. if (val)
  1168. iucv->flags |= IUCV_IPRMDATA;
  1169. else
  1170. iucv->flags &= ~IUCV_IPRMDATA;
  1171. break;
  1172. case SO_MSGLIMIT:
  1173. switch (sk->sk_state) {
  1174. case IUCV_OPEN:
  1175. case IUCV_BOUND:
  1176. if (val < 1 || val > (u16)(~0))
  1177. rc = -EINVAL;
  1178. else
  1179. iucv->msglimit = val;
  1180. break;
  1181. default:
  1182. rc = -EINVAL;
  1183. break;
  1184. }
  1185. break;
  1186. default:
  1187. rc = -ENOPROTOOPT;
  1188. break;
  1189. }
  1190. release_sock(sk);
  1191. return rc;
  1192. }
  1193. static int iucv_sock_getsockopt(struct socket *sock, int level, int optname,
  1194. char __user *optval, int __user *optlen)
  1195. {
  1196. struct sock *sk = sock->sk;
  1197. struct iucv_sock *iucv = iucv_sk(sk);
  1198. int val, len;
  1199. if (level != SOL_IUCV)
  1200. return -ENOPROTOOPT;
  1201. if (get_user(len, optlen))
  1202. return -EFAULT;
  1203. if (len < 0)
  1204. return -EINVAL;
  1205. len = min_t(unsigned int, len, sizeof(int));
  1206. switch (optname) {
  1207. case SO_IPRMDATA_MSG:
  1208. val = (iucv->flags & IUCV_IPRMDATA) ? 1 : 0;
  1209. break;
  1210. case SO_MSGLIMIT:
  1211. lock_sock(sk);
  1212. val = (iucv->path != NULL) ? iucv->path->msglim /* connected */
  1213. : iucv->msglimit; /* default */
  1214. release_sock(sk);
  1215. break;
  1216. default:
  1217. return -ENOPROTOOPT;
  1218. }
  1219. if (put_user(len, optlen))
  1220. return -EFAULT;
  1221. if (copy_to_user(optval, &val, len))
  1222. return -EFAULT;
  1223. return 0;
  1224. }
  1225. /* Callback wrappers - called from iucv base support */
  1226. static int iucv_callback_connreq(struct iucv_path *path,
  1227. u8 ipvmid[8], u8 ipuser[16])
  1228. {
  1229. unsigned char user_data[16];
  1230. unsigned char nuser_data[16];
  1231. unsigned char src_name[8];
  1232. struct hlist_node *node;
  1233. struct sock *sk, *nsk;
  1234. struct iucv_sock *iucv, *niucv;
  1235. int err;
  1236. memcpy(src_name, ipuser, 8);
  1237. EBCASC(src_name, 8);
  1238. /* Find out if this path belongs to af_iucv. */
  1239. read_lock(&iucv_sk_list.lock);
  1240. iucv = NULL;
  1241. sk = NULL;
  1242. sk_for_each(sk, node, &iucv_sk_list.head)
  1243. if (sk->sk_state == IUCV_LISTEN &&
  1244. !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
  1245. /*
  1246. * Found a listening socket with
  1247. * src_name == ipuser[0-7].
  1248. */
  1249. iucv = iucv_sk(sk);
  1250. break;
  1251. }
  1252. read_unlock(&iucv_sk_list.lock);
  1253. if (!iucv)
  1254. /* No socket found, not one of our paths. */
  1255. return -EINVAL;
  1256. bh_lock_sock(sk);
  1257. /* Check if parent socket is listening */
  1258. low_nmcpy(user_data, iucv->src_name);
  1259. high_nmcpy(user_data, iucv->dst_name);
  1260. ASCEBC(user_data, sizeof(user_data));
  1261. if (sk->sk_state != IUCV_LISTEN) {
  1262. err = iucv_path_sever(path, user_data);
  1263. iucv_path_free(path);
  1264. goto fail;
  1265. }
  1266. /* Check for backlog size */
  1267. if (sk_acceptq_is_full(sk)) {
  1268. err = iucv_path_sever(path, user_data);
  1269. iucv_path_free(path);
  1270. goto fail;
  1271. }
  1272. /* Create the new socket */
  1273. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC);
  1274. if (!nsk) {
  1275. err = iucv_path_sever(path, user_data);
  1276. iucv_path_free(path);
  1277. goto fail;
  1278. }
  1279. niucv = iucv_sk(nsk);
  1280. iucv_sock_init(nsk, sk);
  1281. /* Set the new iucv_sock */
  1282. memcpy(niucv->dst_name, ipuser + 8, 8);
  1283. EBCASC(niucv->dst_name, 8);
  1284. memcpy(niucv->dst_user_id, ipvmid, 8);
  1285. memcpy(niucv->src_name, iucv->src_name, 8);
  1286. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1287. niucv->path = path;
  1288. /* Call iucv_accept */
  1289. high_nmcpy(nuser_data, ipuser + 8);
  1290. memcpy(nuser_data + 8, niucv->src_name, 8);
  1291. ASCEBC(nuser_data + 8, 8);
  1292. /* set message limit for path based on msglimit of accepting socket */
  1293. niucv->msglimit = iucv->msglimit;
  1294. path->msglim = iucv->msglimit;
  1295. err = iucv_path_accept(path, &af_iucv_handler, nuser_data, nsk);
  1296. if (err) {
  1297. err = iucv_path_sever(path, user_data);
  1298. iucv_path_free(path);
  1299. iucv_sock_kill(nsk);
  1300. goto fail;
  1301. }
  1302. iucv_accept_enqueue(sk, nsk);
  1303. /* Wake up accept */
  1304. nsk->sk_state = IUCV_CONNECTED;
  1305. sk->sk_data_ready(sk, 1);
  1306. err = 0;
  1307. fail:
  1308. bh_unlock_sock(sk);
  1309. return 0;
  1310. }
  1311. static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
  1312. {
  1313. struct sock *sk = path->private;
  1314. sk->sk_state = IUCV_CONNECTED;
  1315. sk->sk_state_change(sk);
  1316. }
  1317. static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
  1318. {
  1319. struct sock *sk = path->private;
  1320. struct iucv_sock *iucv = iucv_sk(sk);
  1321. struct sk_buff *skb;
  1322. struct sock_msg_q *save_msg;
  1323. int len;
  1324. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1325. iucv_message_reject(path, msg);
  1326. return;
  1327. }
  1328. spin_lock(&iucv->message_q.lock);
  1329. if (!list_empty(&iucv->message_q.list) ||
  1330. !skb_queue_empty(&iucv->backlog_skb_q))
  1331. goto save_message;
  1332. len = atomic_read(&sk->sk_rmem_alloc);
  1333. len += iucv_msg_length(msg) + sizeof(struct sk_buff);
  1334. if (len > sk->sk_rcvbuf)
  1335. goto save_message;
  1336. skb = alloc_skb(iucv_msg_length(msg), GFP_ATOMIC | GFP_DMA);
  1337. if (!skb)
  1338. goto save_message;
  1339. iucv_process_message(sk, skb, path, msg);
  1340. goto out_unlock;
  1341. save_message:
  1342. save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA);
  1343. if (!save_msg)
  1344. return;
  1345. save_msg->path = path;
  1346. save_msg->msg = *msg;
  1347. list_add_tail(&save_msg->list, &iucv->message_q.list);
  1348. out_unlock:
  1349. spin_unlock(&iucv->message_q.lock);
  1350. }
  1351. static void iucv_callback_txdone(struct iucv_path *path,
  1352. struct iucv_message *msg)
  1353. {
  1354. struct sock *sk = path->private;
  1355. struct sk_buff *this = NULL;
  1356. struct sk_buff_head *list = &iucv_sk(sk)->send_skb_q;
  1357. struct sk_buff *list_skb = list->next;
  1358. unsigned long flags;
  1359. if (!skb_queue_empty(list)) {
  1360. spin_lock_irqsave(&list->lock, flags);
  1361. while (list_skb != (struct sk_buff *)list) {
  1362. if (!memcmp(&msg->tag, CB_TAG(list_skb), CB_TAG_LEN)) {
  1363. this = list_skb;
  1364. break;
  1365. }
  1366. list_skb = list_skb->next;
  1367. }
  1368. if (this)
  1369. __skb_unlink(this, list);
  1370. spin_unlock_irqrestore(&list->lock, flags);
  1371. if (this) {
  1372. kfree_skb(this);
  1373. /* wake up any process waiting for sending */
  1374. iucv_sock_wake_msglim(sk);
  1375. }
  1376. }
  1377. BUG_ON(!this);
  1378. if (sk->sk_state == IUCV_CLOSING) {
  1379. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1380. sk->sk_state = IUCV_CLOSED;
  1381. sk->sk_state_change(sk);
  1382. }
  1383. }
  1384. }
  1385. static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
  1386. {
  1387. struct sock *sk = path->private;
  1388. if (!list_empty(&iucv_sk(sk)->accept_q))
  1389. sk->sk_state = IUCV_SEVERED;
  1390. else
  1391. sk->sk_state = IUCV_DISCONN;
  1392. sk->sk_state_change(sk);
  1393. }
  1394. /* called if the other communication side shuts down its RECV direction;
  1395. * in turn, the callback sets SEND_SHUTDOWN to disable sending of data.
  1396. */
  1397. static void iucv_callback_shutdown(struct iucv_path *path, u8 ipuser[16])
  1398. {
  1399. struct sock *sk = path->private;
  1400. bh_lock_sock(sk);
  1401. if (sk->sk_state != IUCV_CLOSED) {
  1402. sk->sk_shutdown |= SEND_SHUTDOWN;
  1403. sk->sk_state_change(sk);
  1404. }
  1405. bh_unlock_sock(sk);
  1406. }
  1407. static struct proto_ops iucv_sock_ops = {
  1408. .family = PF_IUCV,
  1409. .owner = THIS_MODULE,
  1410. .release = iucv_sock_release,
  1411. .bind = iucv_sock_bind,
  1412. .connect = iucv_sock_connect,
  1413. .listen = iucv_sock_listen,
  1414. .accept = iucv_sock_accept,
  1415. .getname = iucv_sock_getname,
  1416. .sendmsg = iucv_sock_sendmsg,
  1417. .recvmsg = iucv_sock_recvmsg,
  1418. .poll = iucv_sock_poll,
  1419. .ioctl = sock_no_ioctl,
  1420. .mmap = sock_no_mmap,
  1421. .socketpair = sock_no_socketpair,
  1422. .shutdown = iucv_sock_shutdown,
  1423. .setsockopt = iucv_sock_setsockopt,
  1424. .getsockopt = iucv_sock_getsockopt,
  1425. };
  1426. static struct net_proto_family iucv_sock_family_ops = {
  1427. .family = AF_IUCV,
  1428. .owner = THIS_MODULE,
  1429. .create = iucv_sock_create,
  1430. };
  1431. static int __init afiucv_init(void)
  1432. {
  1433. int err;
  1434. if (!MACHINE_IS_VM) {
  1435. pr_err("The af_iucv module cannot be loaded"
  1436. " without z/VM\n");
  1437. err = -EPROTONOSUPPORT;
  1438. goto out;
  1439. }
  1440. cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
  1441. if (unlikely(err)) {
  1442. WARN_ON(err);
  1443. err = -EPROTONOSUPPORT;
  1444. goto out;
  1445. }
  1446. err = iucv_register(&af_iucv_handler, 0);
  1447. if (err)
  1448. goto out;
  1449. err = proto_register(&iucv_proto, 0);
  1450. if (err)
  1451. goto out_iucv;
  1452. err = sock_register(&iucv_sock_family_ops);
  1453. if (err)
  1454. goto out_proto;
  1455. /* establish dummy device */
  1456. err = driver_register(&af_iucv_driver);
  1457. if (err)
  1458. goto out_sock;
  1459. af_iucv_dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  1460. if (!af_iucv_dev) {
  1461. err = -ENOMEM;
  1462. goto out_driver;
  1463. }
  1464. dev_set_name(af_iucv_dev, "af_iucv");
  1465. af_iucv_dev->bus = &iucv_bus;
  1466. af_iucv_dev->parent = iucv_root;
  1467. af_iucv_dev->release = (void (*)(struct device *))kfree;
  1468. af_iucv_dev->driver = &af_iucv_driver;
  1469. err = device_register(af_iucv_dev);
  1470. if (err)
  1471. goto out_driver;
  1472. return 0;
  1473. out_driver:
  1474. driver_unregister(&af_iucv_driver);
  1475. out_sock:
  1476. sock_unregister(PF_IUCV);
  1477. out_proto:
  1478. proto_unregister(&iucv_proto);
  1479. out_iucv:
  1480. iucv_unregister(&af_iucv_handler, 0);
  1481. out:
  1482. return err;
  1483. }
  1484. static void __exit afiucv_exit(void)
  1485. {
  1486. device_unregister(af_iucv_dev);
  1487. driver_unregister(&af_iucv_driver);
  1488. sock_unregister(PF_IUCV);
  1489. proto_unregister(&iucv_proto);
  1490. iucv_unregister(&af_iucv_handler, 0);
  1491. }
  1492. module_init(afiucv_init);
  1493. module_exit(afiucv_exit);
  1494. MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>");
  1495. MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
  1496. MODULE_VERSION(VERSION);
  1497. MODULE_LICENSE("GPL");
  1498. MODULE_ALIAS_NETPROTO(PF_IUCV);