PageRenderTime 49ms CodeModel.GetById 18ms RepoModel.GetById 0ms app.codeStats 0ms

/lib/project_points2.m

http://calib.googlecode.com/
MATLAB | 321 lines | 228 code | 40 blank | 53 comment | 7 complexity | 8fbb50618e624e9060843994f2b95c24 MD5 | raw file
Possible License(s): GPL-3.0, BSD-3-Clause
  1. function [xp,dxpdom,dxpdT,dxpdf,dxpdc,dxpdk,dxpdalpha] = project_points2(X,om,T,f,c,k,alpha)
  2. %project_points2.m
  3. %
  4. %[xp,dxpdom,dxpdT,dxpdf,dxpdc,dxpdk] = project_points2(X,om,T,f,c,k,alpha)
  5. %
  6. %Projects a 3D structure onto the image plane.
  7. %
  8. %INPUT: X: 3D structure in the world coordinate frame (3xN matrix for N points)
  9. % (om,T): Rigid motion parameters between world coordinate frame and camera reference frame
  10. % om: rotation vector (3x1 vector); T: translation vector (3x1 vector)
  11. % f: camera focal length in units of horizontal and vertical pixel units (2x1 vector)
  12. % c: principal point location in pixel units (2x1 vector)
  13. % k: Distortion coefficients (radial and tangential) (4x1 vector)
  14. % alpha: Skew coefficient between x and y pixel (alpha = 0 <=> square pixels)
  15. %
  16. %OUTPUT: xp: Projected pixel coordinates (2xN matrix for N points)
  17. % dxpdom: Derivative of xp with respect to om ((2N)x3 matrix)
  18. % dxpdT: Derivative of xp with respect to T ((2N)x3 matrix)
  19. % dxpdf: Derivative of xp with respect to f ((2N)x2 matrix if f is 2x1, or (2N)x1 matrix is f is a scalar)
  20. % dxpdc: Derivative of xp with respect to c ((2N)x2 matrix)
  21. % dxpdk: Derivative of xp with respect to k ((2N)x4 matrix)
  22. %
  23. %Definitions:
  24. %Let P be a point in 3D of coordinates X in the world reference frame (stored in the matrix X)
  25. %The coordinate vector of P in the camera reference frame is: Xc = R*X + T
  26. %where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om);
  27. %call x, y and z the 3 coordinates of Xc: x = Xc(1); y = Xc(2); z = Xc(3);
  28. %The pinehole projection coordinates of P is [a;b] where a=x/z and b=y/z.
  29. %call r^2 = a^2 + b^2.
  30. %The distorted point coordinates are: xd = [xx;yy] where:
  31. %
  32. %xx = a * (1 + kc(1)*r^2 + kc(2)*r^4 + kc(5)*r^6) + 2*kc(3)*a*b + kc(4)*(r^2 + 2*a^2);
  33. %yy = b * (1 + kc(1)*r^2 + kc(2)*r^4 + kc(5)*r^6) + kc(3)*(r^2 + 2*b^2) + 2*kc(4)*a*b;
  34. %
  35. %The left terms correspond to radial distortion (6th degree), the right terms correspond to tangential distortion
  36. %
  37. %Finally, convertion into pixel coordinates: The final pixel coordinates vector xp=[xxp;yyp] where:
  38. %
  39. %xxp = f(1)*(xx + alpha*yy) + c(1)
  40. %yyp = f(2)*yy + c(2)
  41. %
  42. %
  43. %NOTE: About 90 percent of the code takes care fo computing the Jacobian matrices
  44. %
  45. %
  46. %Important function called within that program:
  47. %
  48. %rodrigues.m: Computes the rotation matrix corresponding to a rotation vector
  49. %
  50. %rigid_motion.m: Computes the rigid motion transformation of a given structure
  51. if nargin < 7,
  52. alpha = 0;
  53. if nargin < 6,
  54. k = zeros(5,1);
  55. if nargin < 5,
  56. c = zeros(2,1);
  57. if nargin < 4,
  58. f = ones(2,1);
  59. if nargin < 3,
  60. T = zeros(3,1);
  61. if nargin < 2,
  62. om = zeros(3,1);
  63. if nargin < 1,
  64. error('Need at least a 3D structure to project (in project_points.m)');
  65. return;
  66. end;
  67. end;
  68. end;
  69. end;
  70. end;
  71. end;
  72. end;
  73. [m,n] = size(X);
  74. [Y,dYdom,dYdT] = rigid_motion(X,om,T);
  75. inv_Z = 1./Y(3,:);
  76. x = (Y(1:2,:) .* (ones(2,1) * inv_Z)) ;
  77. bb = (-x(1,:) .* inv_Z)'*ones(1,3);
  78. cc = (-x(2,:) .* inv_Z)'*ones(1,3);
  79. dxdom = zeros(2*n,3);
  80. dxdom(1:2:end,:) = ((inv_Z')*ones(1,3)) .* dYdom(1:3:end,:) + bb .* dYdom(3:3:end,:);
  81. dxdom(2:2:end,:) = ((inv_Z')*ones(1,3)) .* dYdom(2:3:end,:) + cc .* dYdom(3:3:end,:);
  82. dxdT = zeros(2*n,3);
  83. dxdT(1:2:end,:) = ((inv_Z')*ones(1,3)) .* dYdT(1:3:end,:) + bb .* dYdT(3:3:end,:);
  84. dxdT(2:2:end,:) = ((inv_Z')*ones(1,3)) .* dYdT(2:3:end,:) + cc .* dYdT(3:3:end,:);
  85. % Add distortion:
  86. r2 = x(1,:).^2 + x(2,:).^2;
  87. dr2dom = 2*((x(1,:)')*ones(1,3)) .* dxdom(1:2:end,:) + 2*((x(2,:)')*ones(1,3)) .* dxdom(2:2:end,:);
  88. dr2dT = 2*((x(1,:)')*ones(1,3)) .* dxdT(1:2:end,:) + 2*((x(2,:)')*ones(1,3)) .* dxdT(2:2:end,:);
  89. r4 = r2.^2;
  90. dr4dom = 2*((r2')*ones(1,3)) .* dr2dom;
  91. dr4dT = 2*((r2')*ones(1,3)) .* dr2dT;
  92. r6 = r2.^3;
  93. dr6dom = 3*((r2'.^2)*ones(1,3)) .* dr2dom;
  94. dr6dT = 3*((r2'.^2)*ones(1,3)) .* dr2dT;
  95. % Radial distortion:
  96. cdist = 1 + k(1) * r2 + k(2) * r4 + k(5) * r6;
  97. dcdistdom = k(1) * dr2dom + k(2) * dr4dom + k(5) * dr6dom;
  98. dcdistdT = k(1) * dr2dT + k(2) * dr4dT + k(5) * dr6dT;
  99. dcdistdk = [ r2' r4' zeros(n,2) r6'];
  100. xd1 = x .* (ones(2,1)*cdist);
  101. dxd1dom = zeros(2*n,3);
  102. dxd1dom(1:2:end,:) = (x(1,:)'*ones(1,3)) .* dcdistdom;
  103. dxd1dom(2:2:end,:) = (x(2,:)'*ones(1,3)) .* dcdistdom;
  104. coeff = (reshape([cdist;cdist],2*n,1)*ones(1,3));
  105. dxd1dom = dxd1dom + coeff.* dxdom;
  106. dxd1dT = zeros(2*n,3);
  107. dxd1dT(1:2:end,:) = (x(1,:)'*ones(1,3)) .* dcdistdT;
  108. dxd1dT(2:2:end,:) = (x(2,:)'*ones(1,3)) .* dcdistdT;
  109. dxd1dT = dxd1dT + coeff.* dxdT;
  110. dxd1dk = zeros(2*n,5);
  111. dxd1dk(1:2:end,:) = (x(1,:)'*ones(1,5)) .* dcdistdk;
  112. dxd1dk(2:2:end,:) = (x(2,:)'*ones(1,5)) .* dcdistdk;
  113. % tangential distortion:
  114. a1 = 2.*x(1,:).*x(2,:);
  115. a2 = r2 + 2*x(1,:).^2;
  116. a3 = r2 + 2*x(2,:).^2;
  117. delta_x = [k(3)*a1 + k(4)*a2 ;
  118. k(3) * a3 + k(4)*a1];
  119. %ddelta_xdx = zeros(2*n,2*n);
  120. aa = (2*k(3)*x(2,:)+6*k(4)*x(1,:))'*ones(1,3);
  121. bb = (2*k(3)*x(1,:)+2*k(4)*x(2,:))'*ones(1,3);
  122. cc = (6*k(3)*x(2,:)+2*k(4)*x(1,:))'*ones(1,3);
  123. ddelta_xdom = zeros(2*n,3);
  124. ddelta_xdom(1:2:end,:) = aa .* dxdom(1:2:end,:) + bb .* dxdom(2:2:end,:);
  125. ddelta_xdom(2:2:end,:) = bb .* dxdom(1:2:end,:) + cc .* dxdom(2:2:end,:);
  126. ddelta_xdT = zeros(2*n,3);
  127. ddelta_xdT(1:2:end,:) = aa .* dxdT(1:2:end,:) + bb .* dxdT(2:2:end,:);
  128. ddelta_xdT(2:2:end,:) = bb .* dxdT(1:2:end,:) + cc .* dxdT(2:2:end,:);
  129. ddelta_xdk = zeros(2*n,5);
  130. ddelta_xdk(1:2:end,3) = a1';
  131. ddelta_xdk(1:2:end,4) = a2';
  132. ddelta_xdk(2:2:end,3) = a3';
  133. ddelta_xdk(2:2:end,4) = a1';
  134. xd2 = xd1 + delta_x;
  135. dxd2dom = dxd1dom + ddelta_xdom ;
  136. dxd2dT = dxd1dT + ddelta_xdT;
  137. dxd2dk = dxd1dk + ddelta_xdk ;
  138. % Add Skew:
  139. xd3 = [xd2(1,:) + alpha*xd2(2,:);xd2(2,:)];
  140. % Compute: dxd3dom, dxd3dT, dxd3dk, dxd3dalpha
  141. dxd3dom = zeros(2*n,3);
  142. dxd3dom(1:2:2*n,:) = dxd2dom(1:2:2*n,:) + alpha*dxd2dom(2:2:2*n,:);
  143. dxd3dom(2:2:2*n,:) = dxd2dom(2:2:2*n,:);
  144. dxd3dT = zeros(2*n,3);
  145. dxd3dT(1:2:2*n,:) = dxd2dT(1:2:2*n,:) + alpha*dxd2dT(2:2:2*n,:);
  146. dxd3dT(2:2:2*n,:) = dxd2dT(2:2:2*n,:);
  147. dxd3dk = zeros(2*n,5);
  148. dxd3dk(1:2:2*n,:) = dxd2dk(1:2:2*n,:) + alpha*dxd2dk(2:2:2*n,:);
  149. dxd3dk(2:2:2*n,:) = dxd2dk(2:2:2*n,:);
  150. dxd3dalpha = zeros(2*n,1);
  151. dxd3dalpha(1:2:2*n,:) = xd2(2,:)';
  152. % Pixel coordinates:
  153. if length(f)>1,
  154. xp = xd3 .* (f * ones(1,n)) + c*ones(1,n);
  155. coeff = reshape(f*ones(1,n),2*n,1);
  156. dxpdom = (coeff*ones(1,3)) .* dxd3dom;
  157. dxpdT = (coeff*ones(1,3)) .* dxd3dT;
  158. dxpdk = (coeff*ones(1,5)) .* dxd3dk;
  159. dxpdalpha = (coeff) .* dxd3dalpha;
  160. dxpdf = zeros(2*n,2);
  161. dxpdf(1:2:end,1) = xd3(1,:)';
  162. dxpdf(2:2:end,2) = xd3(2,:)';
  163. else
  164. xp = f * xd3 + c*ones(1,n);
  165. dxpdom = f * dxd3dom;
  166. dxpdT = f * dxd3dT;
  167. dxpdk = f * dxd3dk;
  168. dxpdalpha = f .* dxd3dalpha;
  169. dxpdf = xd3(:);
  170. end;
  171. dxpdc = zeros(2*n,2);
  172. dxpdc(1:2:end,1) = ones(n,1);
  173. dxpdc(2:2:end,2) = ones(n,1);
  174. return;
  175. % Test of the Jacobians:
  176. n = 10;
  177. X = 10*randn(3,n);
  178. om = randn(3,1);
  179. T = [10*randn(2,1);40];
  180. f = 1000*rand(2,1);
  181. c = 1000*randn(2,1);
  182. k = 0.5*randn(5,1);
  183. alpha = 0.01*randn(1,1);
  184. [x,dxdom,dxdT,dxdf,dxdc,dxdk,dxdalpha] = project_points2(X,om,T,f,c,k,alpha);
  185. % Test on om: OK
  186. dom = 0.000000001 * norm(om)*randn(3,1);
  187. om2 = om + dom;
  188. [x2] = project_points2(X,om2,T,f,c,k,alpha);
  189. x_pred = x + reshape(dxdom * dom,2,n);
  190. norm(x2-x)/norm(x2 - x_pred)
  191. % Test on T: OK!!
  192. dT = 0.0001 * norm(T)*randn(3,1);
  193. T2 = T + dT;
  194. [x2] = project_points2(X,om,T2,f,c,k,alpha);
  195. x_pred = x + reshape(dxdT * dT,2,n);
  196. norm(x2-x)/norm(x2 - x_pred)
  197. % Test on f: OK!!
  198. df = 0.001 * norm(f)*randn(2,1);
  199. f2 = f + df;
  200. [x2] = project_points2(X,om,T,f2,c,k,alpha);
  201. x_pred = x + reshape(dxdf * df,2,n);
  202. norm(x2-x)/norm(x2 - x_pred)
  203. % Test on c: OK!!
  204. dc = 0.01 * norm(c)*randn(2,1);
  205. c2 = c + dc;
  206. [x2] = project_points2(X,om,T,f,c2,k,alpha);
  207. x_pred = x + reshape(dxdc * dc,2,n);
  208. norm(x2-x)/norm(x2 - x_pred)
  209. % Test on k: OK!!
  210. dk = 0.001 * norm(k)*randn(5,1);
  211. k2 = k + dk;
  212. [x2] = project_points2(X,om,T,f,c,k2,alpha);
  213. x_pred = x + reshape(dxdk * dk,2,n);
  214. norm(x2-x)/norm(x2 - x_pred)
  215. % Test on alpha: OK!!
  216. dalpha = 0.001 * norm(k)*randn(1,1);
  217. alpha2 = alpha + dalpha;
  218. [x2] = project_points2(X,om,T,f,c,k,alpha2);
  219. x_pred = x + reshape(dxdalpha * dalpha,2,n);
  220. norm(x2-x)/norm(x2 - x_pred)