picorec /ghc-7.0.4/compiler/nativeGen/RegAlloc/Liveness.hs

Language Haskell Lines 946
MD5 Hash d547498854940bb6280acee9b9dfa1a4 Estimated Cost $15,995 (why?)
Repository http://picorec.googlecode.com/svn/trunk/ View Raw File
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
-----------------------------------------------------------------------------
--
-- The register liveness determinator
--
-- (c) The University of Glasgow 2004
--
-----------------------------------------------------------------------------
{-# OPTIONS -Wall -fno-warn-name-shadowing #-}

module RegAlloc.Liveness (
	RegSet,
	RegMap, emptyRegMap,
	BlockMap, emptyBlockMap,
	LiveCmmTop,
	InstrSR	  (..),
	LiveInstr (..),
	Liveness (..),
	LiveInfo (..),
	LiveBasicBlock,

	mapBlockTop, 	mapBlockTopM, 	mapSCCM,
	mapGenBlockTop,	mapGenBlockTopM,
	stripLive,
	stripLiveBlock,
	slurpConflicts,
	slurpReloadCoalesce,
	eraseDeltasLive,
	patchEraseLive,
	patchRegsLiveInstr,
	reverseBlocksInTops,
	regLiveness,
	natCmmTopToLive
  ) where
import Reg
import Instruction

import BlockId
import Cmm hiding (RegSet)
import PprCmm()

import Digraph
import Outputable
import Unique
import UniqSet
import UniqFM
import UniqSupply
import Bag
import State
import FastString

import Data.List
import Data.Maybe
import Data.Map			(Map)
import Data.Set			(Set)
import qualified Data.Map	as Map

-----------------------------------------------------------------------------
type RegSet = UniqSet Reg

type RegMap a = UniqFM a

emptyRegMap :: UniqFM a
emptyRegMap = emptyUFM

type BlockMap a = BlockEnv a

emptyBlockMap :: BlockEnv a
emptyBlockMap = emptyBlockEnv


-- | A top level thing which carries liveness information.
type LiveCmmTop instr
	= GenCmmTop
		CmmStatic
		LiveInfo
		[SCC (LiveBasicBlock instr)]


-- | The register allocator also wants to use SPILL/RELOAD meta instructions,
--	so we'll keep those here.
data InstrSR instr
	-- | A real machine instruction
	= Instr  instr

	-- | spill this reg to a stack slot
	| SPILL  Reg Int

	-- | reload this reg from a stack slot
	| RELOAD Int Reg

instance Instruction instr => Instruction (InstrSR instr) where
	regUsageOfInstr i
	 = case i of
		Instr  instr	-> regUsageOfInstr instr
		SPILL  reg _	-> RU [reg] []
		RELOAD _ reg	-> RU [] [reg]

	patchRegsOfInstr i f
	 = case i of
		Instr instr	-> Instr (patchRegsOfInstr instr f)
		SPILL  reg slot	-> SPILL (f reg) slot
		RELOAD slot reg	-> RELOAD slot (f reg)

	isJumpishInstr i
	 = case i of
		Instr instr	-> isJumpishInstr instr
		_		-> False

	jumpDestsOfInstr i
	 = case i of
		Instr instr	-> jumpDestsOfInstr instr 
		_		-> []

	patchJumpInstr i f
	 = case i of
		Instr instr	-> Instr (patchJumpInstr instr f)
		_		-> i

	mkSpillInstr		= error "mkSpillInstr[InstrSR]: Not making SPILL meta-instr"
	mkLoadInstr		= error "mkLoadInstr[InstrSR]: Not making LOAD meta-instr"

	takeDeltaInstr i
	 = case i of
		Instr instr	-> takeDeltaInstr instr
		_		-> Nothing

	isMetaInstr i
	 = case i of
		Instr instr	-> isMetaInstr instr
		_		-> False

	mkRegRegMoveInstr r1 r2	= Instr (mkRegRegMoveInstr r1 r2)

	takeRegRegMoveInstr i
	 = case i of
		Instr instr	-> takeRegRegMoveInstr instr
		_		-> Nothing

	mkJumpInstr target	= map Instr (mkJumpInstr target)
		


-- | An instruction with liveness information.
data LiveInstr instr
	= LiveInstr (InstrSR instr) (Maybe Liveness)

-- | Liveness information.
-- 	The regs which die are ones which are no longer live in the *next* instruction
-- 	in this sequence.
-- 	(NB. if the instruction is a jump, these registers might still be live
-- 	at the jump target(s) - you have to check the liveness at the destination
-- 	block to find out).

data Liveness
	= Liveness
	{ liveBorn	:: RegSet	-- ^ registers born in this instruction (written to for first time).
	, liveDieRead	:: RegSet	-- ^ registers that died because they were read for the last time.
	, liveDieWrite	:: RegSet }	-- ^ registers that died because they were clobbered by something.


-- | Stash regs live on entry to each basic block in the info part of the cmm code.
data LiveInfo
	= LiveInfo
		[CmmStatic]				-- cmm static stuff
		(Maybe BlockId)				-- id of the first block
		(Maybe (BlockMap RegSet))		-- argument locals live on entry to this block
		(Map BlockId (Set Int))			-- stack slots live on entry to this block


-- | A basic block with liveness information.
type LiveBasicBlock instr
	= GenBasicBlock (LiveInstr instr)


instance Outputable instr
      => Outputable (InstrSR instr) where

	ppr (Instr realInstr)
	   = ppr realInstr

	ppr (SPILL reg slot)
	   = hcat [
	   	ptext (sLit "\tSPILL"),
		char ' ',
		ppr reg,
		comma,
		ptext (sLit "SLOT") <> parens (int slot)]

	ppr (RELOAD slot reg)
	   = hcat [
	   	ptext (sLit "\tRELOAD"),
		char ' ',
		ptext (sLit "SLOT") <> parens (int slot),
		comma,
		ppr reg]

instance Outputable instr 
      => Outputable (LiveInstr instr) where

	ppr (LiveInstr instr Nothing)
	 = ppr instr

	ppr (LiveInstr instr (Just live))
	 =  ppr instr
		$$ (nest 8
			$ vcat
			[ pprRegs (ptext (sLit "# born:    ")) (liveBorn live)
			, pprRegs (ptext (sLit "# r_dying: ")) (liveDieRead live)
			, pprRegs (ptext (sLit "# w_dying: ")) (liveDieWrite live) ]
		    $+$ space)

	 where 	pprRegs :: SDoc -> RegSet -> SDoc
	 	pprRegs name regs
		 | isEmptyUniqSet regs	= empty
		 | otherwise		= name <> (hcat $ punctuate space $ map ppr $ uniqSetToList regs)

instance Outputable LiveInfo where
	ppr (LiveInfo static firstId liveVRegsOnEntry liveSlotsOnEntry)
		=  (vcat $ map ppr static)
		$$ text "# firstId          = " <> ppr firstId
		$$ text "# liveVRegsOnEntry = " <> ppr liveVRegsOnEntry
		$$ text "# liveSlotsOnEntry = " <> text (show liveSlotsOnEntry)



-- | map a function across all the basic blocks in this code
--
mapBlockTop
	:: (LiveBasicBlock instr -> LiveBasicBlock instr)
	-> LiveCmmTop instr -> LiveCmmTop instr

mapBlockTop f cmm
	= evalState (mapBlockTopM (\x -> return $ f x) cmm) ()


-- | map a function across all the basic blocks in this code (monadic version)
--
mapBlockTopM
	:: Monad m
	=> (LiveBasicBlock instr -> m (LiveBasicBlock instr))
	-> LiveCmmTop instr -> m (LiveCmmTop instr)

mapBlockTopM _ cmm@(CmmData{})
	= return cmm

mapBlockTopM f (CmmProc header label params sccs)
 = do	sccs'	<- mapM (mapSCCM f) sccs
 	return	$ CmmProc header label params sccs'

mapSCCM :: Monad m => (a -> m b) -> SCC a -> m (SCC b)
mapSCCM	f (AcyclicSCC x)	
 = do	x'	<- f x
	return	$ AcyclicSCC x'

mapSCCM f (CyclicSCC xs)
 = do	xs'	<- mapM f xs
	return	$ CyclicSCC xs'


-- map a function across all the basic blocks in this code
mapGenBlockTop
	:: (GenBasicBlock             i -> GenBasicBlock            i)
	-> (GenCmmTop d h (ListGraph i) -> GenCmmTop d h (ListGraph i))

mapGenBlockTop f cmm
	= evalState (mapGenBlockTopM (\x -> return $ f x) cmm) ()


-- | map a function across all the basic blocks in this code (monadic version)
mapGenBlockTopM
	:: Monad m
	=> (GenBasicBlock            i  -> m (GenBasicBlock            i))
	-> (GenCmmTop d h (ListGraph i) -> m (GenCmmTop d h (ListGraph i)))

mapGenBlockTopM _ cmm@(CmmData{})
	= return cmm

mapGenBlockTopM f (CmmProc header label params (ListGraph blocks))
 = do	blocks'	<- mapM f blocks
 	return	$ CmmProc header label params (ListGraph blocks')


-- | Slurp out the list of register conflicts and reg-reg moves from this top level thing.
--	Slurping of conflicts and moves is wrapped up together so we don't have
--	to make two passes over the same code when we want to build the graph.
--
slurpConflicts 
	:: Instruction instr
	=> LiveCmmTop instr 
	-> (Bag (UniqSet Reg), Bag (Reg, Reg))

slurpConflicts live
	= slurpCmm (emptyBag, emptyBag) live

 where	slurpCmm   rs  CmmData{}		= rs
 	slurpCmm   rs (CmmProc info _ _ sccs)
		= foldl' (slurpSCC info) rs sccs

	slurpSCC  info rs (AcyclicSCC b)	
		= slurpBlock info rs b

	slurpSCC  info rs (CyclicSCC bs)
		= foldl'  (slurpBlock info) rs bs

	slurpBlock info rs (BasicBlock blockId instrs)	
		| LiveInfo _ _ (Just blockLive)	_ <- info
		, Just rsLiveEntry		  <- lookupBlockEnv blockLive blockId
		, (conflicts, moves)		  <- slurpLIs rsLiveEntry rs instrs
		= (consBag rsLiveEntry conflicts, moves)

		| otherwise
		= panic "Liveness.slurpConflicts: bad block"

	slurpLIs rsLive (conflicts, moves) []
		= (consBag rsLive conflicts, moves)

	slurpLIs rsLive rs (LiveInstr _ Nothing     : lis)	
		= slurpLIs rsLive rs lis
		
	slurpLIs rsLiveEntry (conflicts, moves) (LiveInstr instr (Just live) : lis)
	 = let
		-- regs that die because they are read for the last time at the start of an instruction
		--	are not live across it.
	 	rsLiveAcross	= rsLiveEntry `minusUniqSet` (liveDieRead live)

		-- regs live on entry to the next instruction.
		--	be careful of orphans, make sure to delete dying regs _after_ unioning
		--	in the ones that are born here.
	 	rsLiveNext 	= (rsLiveAcross `unionUniqSets` (liveBorn     live))
					        `minusUniqSet`  (liveDieWrite live)

		-- orphan vregs are the ones that die in the same instruction they are born in.
		--	these are likely to be results that are never used, but we still
		--	need to assign a hreg to them..
		rsOrphans	= intersectUniqSets
					(liveBorn live)
					(unionUniqSets (liveDieWrite live) (liveDieRead live))

		--
		rsConflicts	= unionUniqSets rsLiveNext rsOrphans

	  in	case takeRegRegMoveInstr instr of
	  	 Just rr	-> slurpLIs rsLiveNext
		 			( consBag rsConflicts conflicts
					, consBag rr moves) lis

	  	 Nothing	-> slurpLIs rsLiveNext
		 			( consBag rsConflicts conflicts
					, moves) lis


-- | For spill\/reloads
--
--	SPILL  v1, slot1
--	...
--	RELOAD slot1, v2
--
--	If we can arrange that v1 and v2 are allocated to the same hreg it's more likely
--	the spill\/reload instrs can be cleaned and replaced by a nop reg-reg move.
--
--
slurpReloadCoalesce 
	:: forall instr. Instruction instr
	=> LiveCmmTop instr
	-> Bag (Reg, Reg)

slurpReloadCoalesce live
	= slurpCmm emptyBag live

 where	
        slurpCmm :: Bag (Reg, Reg)
                 -> GenCmmTop t t1 [SCC (LiveBasicBlock instr)]
                 -> Bag (Reg, Reg)
        slurpCmm cs CmmData{}	= cs
 	slurpCmm cs (CmmProc _ _ _ sccs)
		= slurpComp cs (flattenSCCs sccs)

        slurpComp :: Bag (Reg, Reg)
                     -> [LiveBasicBlock instr]
                     -> Bag (Reg, Reg)
	slurpComp  cs blocks
	 = let	(moveBags, _)	= runState (slurpCompM blocks) emptyUFM
	   in	unionManyBags (cs : moveBags)

        slurpCompM :: [LiveBasicBlock instr]
                   -> State (UniqFM [UniqFM Reg]) [Bag (Reg, Reg)]
	slurpCompM blocks
	 = do	-- run the analysis once to record the mapping across jumps.
	 	mapM_	(slurpBlock False) blocks

		-- run it a second time while using the information from the last pass.
		--	We /could/ run this many more times to deal with graphical control
		--	flow and propagating info across multiple jumps, but it's probably
		--	not worth the trouble.
		mapM	(slurpBlock True) blocks

        slurpBlock :: Bool -> LiveBasicBlock instr
                   -> State (UniqFM [UniqFM Reg]) (Bag (Reg, Reg))
	slurpBlock propagate (BasicBlock blockId instrs)
	 = do	-- grab the slot map for entry to this block
	 	slotMap		<- if propagate
					then getSlotMap blockId
					else return emptyUFM

	 	(_, mMoves)	<- mapAccumLM slurpLI slotMap instrs
	   	return $ listToBag $ catMaybes mMoves

	slurpLI :: UniqFM Reg 				-- current slotMap
		-> LiveInstr instr
		-> State (UniqFM [UniqFM Reg]) 		-- blockId -> [slot -> reg]
							-- 	for tracking slotMaps across jumps

			 ( UniqFM Reg			-- new slotMap
			 , Maybe (Reg, Reg))		-- maybe a new coalesce edge

	slurpLI slotMap li

		-- remember what reg was stored into the slot
		| LiveInstr (SPILL reg slot) _	<- li
		, slotMap'			<- addToUFM slotMap slot reg
		= return (slotMap', Nothing)

		-- add an edge betwen the this reg and the last one stored into the slot
		| LiveInstr (RELOAD slot reg) _	<- li
		= case lookupUFM slotMap slot of
			Just reg2
			 | reg /= reg2	-> return (slotMap, Just (reg, reg2))
			 | otherwise	-> return (slotMap, Nothing)

			Nothing		-> return (slotMap, Nothing)

		-- if we hit a jump, remember the current slotMap
		| LiveInstr (Instr instr) _	<- li
		, targets			<- jumpDestsOfInstr instr
		, not $ null targets
		= do	mapM_	(accSlotMap slotMap) targets
			return	(slotMap, Nothing)

		| otherwise
		= return (slotMap, Nothing)

	-- record a slotmap for an in edge to this block
	accSlotMap slotMap blockId
		= modify (\s -> addToUFM_C (++) s blockId [slotMap])

	-- work out the slot map on entry to this block
	--	if we have slot maps for multiple in-edges then we need to merge them.
	getSlotMap blockId
	 = do	map		<- get
	 	let slotMaps	= fromMaybe [] (lookupUFM map blockId)
		return		$ foldr mergeSlotMaps emptyUFM slotMaps

	mergeSlotMaps :: UniqFM Reg -> UniqFM Reg -> UniqFM Reg
	mergeSlotMaps map1 map2
		= listToUFM
		$ [ (k, r1)	| (k, r1)	<- ufmToList map1
				, case lookupUFM map2 k of
					Nothing	-> False
					Just r2	-> r1 == r2 ]


-- | Strip away liveness information, yielding NatCmmTop
stripLive 
	:: (Outputable instr, Instruction instr)
	=> LiveCmmTop instr 
	-> NatCmmTop instr

stripLive live
	= stripCmm live

 where	stripCmm (CmmData sec ds)	= CmmData sec ds

 	stripCmm (CmmProc (LiveInfo info (Just first_id) _ _) label params sccs)
	 = let	final_blocks	= flattenSCCs sccs
		
		-- make sure the block that was first in the input list
		--	stays at the front of the output. This is the entry point
		--	of the proc, and it needs to come first.
		((first':_), rest')
				= partition ((== first_id) . blockId) final_blocks

	   in	CmmProc info label params
                          (ListGraph $ map stripLiveBlock $ first' : rest')

	-- procs used for stg_split_markers don't contain any blocks, and have no first_id.
	stripCmm (CmmProc (LiveInfo info Nothing _ _) label params [])
	 =	CmmProc info label params (ListGraph [])

	-- If the proc has blocks but we don't know what the first one was, then we're dead.
	stripCmm proc
		 = pprPanic "RegAlloc.Liveness.stripLive: no first_id on proc" (ppr proc)
			

-- | Strip away liveness information from a basic block,
--	and make real spill instructions out of SPILL, RELOAD pseudos along the way.

stripLiveBlock
	:: Instruction instr
	=> LiveBasicBlock instr
	-> NatBasicBlock instr

stripLiveBlock (BasicBlock i lis)
 = 	BasicBlock i instrs'

 where 	(instrs', _)
 		= runState (spillNat [] lis) 0

	spillNat acc []
	 = 	return (reverse acc)

	spillNat acc (LiveInstr (SPILL reg slot) _ : instrs)
	 = do	delta	<- get
	 	spillNat (mkSpillInstr reg delta slot : acc) instrs

	spillNat acc (LiveInstr (RELOAD slot reg) _ : instrs)
	 = do	delta	<- get
	 	spillNat (mkLoadInstr reg delta slot : acc) instrs

	spillNat acc (LiveInstr (Instr instr) _ : instrs)
	 | Just i <- takeDeltaInstr instr
	 = do	put i
	 	spillNat acc instrs

	spillNat acc (LiveInstr (Instr instr) _ : instrs)
	 =	spillNat (instr : acc) instrs


-- | Erase Delta instructions.

eraseDeltasLive 
	:: Instruction instr
	=> LiveCmmTop instr
	-> LiveCmmTop instr

eraseDeltasLive cmm
	= mapBlockTop eraseBlock cmm
 where
 	eraseBlock (BasicBlock id lis)
		= BasicBlock id
		$ filter (\(LiveInstr i _) -> not $ isJust $ takeDeltaInstr i)
		$ lis


-- | Patch the registers in this code according to this register mapping.
--	also erase reg -> reg moves when the reg is the same.
--	also erase reg -> reg moves when the destination dies in this instr.
patchEraseLive
	:: Instruction instr
	=> (Reg -> Reg)
	-> LiveCmmTop instr -> LiveCmmTop instr

patchEraseLive patchF cmm
	= patchCmm cmm
 where
	patchCmm cmm@CmmData{}	= cmm

	patchCmm (CmmProc info label params sccs)
	 | LiveInfo static id (Just blockMap) mLiveSlots <- info
	 = let 	
	 	patchRegSet set	= mkUniqSet $ map patchF $ uniqSetToList set
		blockMap'	= mapBlockEnv patchRegSet blockMap

		info'		= LiveInfo static id (Just blockMap') mLiveSlots
	   in	CmmProc info' label params $ map patchSCC sccs

	 | otherwise
	 = panic "RegAlloc.Liveness.patchEraseLive: no blockMap"

	patchSCC (AcyclicSCC b)	 = AcyclicSCC (patchBlock b)
	patchSCC (CyclicSCC  bs) = CyclicSCC  (map patchBlock bs)

 	patchBlock (BasicBlock id lis)
		= BasicBlock id $ patchInstrs lis

	patchInstrs []		= []
	patchInstrs (li : lis)

		| LiveInstr i (Just live)	<- li'
		, Just (r1, r2)	<- takeRegRegMoveInstr i
		, eatMe r1 r2 live
		= patchInstrs lis

		| otherwise
		= li' : patchInstrs lis

		where	li'	= patchRegsLiveInstr patchF li

	eatMe	r1 r2 live
		-- source and destination regs are the same
		| r1 == r2	= True

		-- desination reg is never used
		| elementOfUniqSet r2 (liveBorn live)
		, elementOfUniqSet r2 (liveDieRead live) || elementOfUniqSet r2 (liveDieWrite live)
		= True

		| otherwise	= False


-- | Patch registers in this LiveInstr, including the liveness information.
--
patchRegsLiveInstr
	:: Instruction instr
	=> (Reg -> Reg)
	-> LiveInstr instr -> LiveInstr instr

patchRegsLiveInstr patchF li
 = case li of
	LiveInstr instr Nothing
	 -> LiveInstr (patchRegsOfInstr instr patchF) Nothing

	LiveInstr instr (Just live)
	 -> LiveInstr
	 	(patchRegsOfInstr instr patchF)
		(Just live
			{ -- WARNING: have to go via lists here because patchF changes the uniq in the Reg
			  liveBorn	= mkUniqSet $ map patchF $ uniqSetToList $ liveBorn live
			, liveDieRead	= mkUniqSet $ map patchF $ uniqSetToList $ liveDieRead live
			, liveDieWrite	= mkUniqSet $ map patchF $ uniqSetToList $ liveDieWrite live })


--------------------------------------------------------------------------------
-- | Convert a NatCmmTop to a LiveCmmTop, with empty liveness information

natCmmTopToLive 
	:: Instruction instr
	=> NatCmmTop instr
	-> LiveCmmTop instr

natCmmTopToLive (CmmData i d)
	= CmmData i d

natCmmTopToLive (CmmProc info lbl params (ListGraph []))
	= CmmProc (LiveInfo info Nothing Nothing Map.empty)
		  lbl params []

natCmmTopToLive (CmmProc info lbl params (ListGraph blocks@(first : _)))
 = let	first_id	= blockId first
	sccs		= sccBlocks blocks
	sccsLive	= map (fmap (\(BasicBlock l instrs) -> 
					BasicBlock l (map (\i -> LiveInstr (Instr i) Nothing) instrs)))
			$ sccs
				
   in	CmmProc (LiveInfo info (Just first_id) Nothing Map.empty)
		lbl params sccsLive


sccBlocks 
	:: Instruction instr
	=> [NatBasicBlock instr] 
	-> [SCC (NatBasicBlock instr)]

sccBlocks blocks = stronglyConnCompFromEdgedVertices graph
  where
	getOutEdges :: Instruction instr => [instr] -> [BlockId]
	getOutEdges instrs = concat $ map jumpDestsOfInstr instrs

	graph = [ (block, getUnique id, map getUnique (getOutEdges instrs))
		| block@(BasicBlock id instrs) <- blocks ]


---------------------------------------------------------------------------------
-- Annotate code with register liveness information
--
regLiveness
	:: (Outputable instr, Instruction instr)
	=> LiveCmmTop instr
	-> UniqSM (LiveCmmTop instr)

regLiveness (CmmData i d)
	= returnUs $ CmmData i d

regLiveness (CmmProc info lbl params [])
	| LiveInfo static mFirst _ _	<- info
	= returnUs $ CmmProc
			(LiveInfo static mFirst (Just emptyBlockEnv) Map.empty)
			lbl params []

regLiveness (CmmProc info lbl params sccs)
	| LiveInfo static mFirst _ liveSlotsOnEntry	<- info
	= let	(ann_sccs, block_live)	= computeLiveness sccs

   	  in	returnUs $ CmmProc (LiveInfo static mFirst (Just block_live) liveSlotsOnEntry)
			   lbl params ann_sccs


-- -----------------------------------------------------------------------------
-- | Check ordering of Blocks
--	The computeLiveness function requires SCCs to be in reverse dependent order.
--	If they're not the liveness information will be wrong, and we'll get a bad allocation.
--	Better to check for this precondition explicitly or some other poor sucker will
--	waste a day staring at bad assembly code..
--	
checkIsReverseDependent
	:: Instruction instr
	=> [SCC (LiveBasicBlock instr)]		-- ^ SCCs of blocks that we're about to run the liveness determinator on.
	-> Maybe BlockId			-- ^ BlockIds that fail the test (if any)
	
checkIsReverseDependent sccs'
 = go emptyUniqSet sccs'

 where 	go _ []
	 = Nothing
	
	go blocksSeen (AcyclicSCC block : sccs)
	 = let	dests		= slurpJumpDestsOfBlock block
		blocksSeen'	= unionUniqSets blocksSeen $ mkUniqSet [blockId block]
		badDests	= dests `minusUniqSet` blocksSeen'
	   in	case uniqSetToList badDests of
		 []		-> go blocksSeen' sccs
		 bad : _	-> Just bad
		
	go blocksSeen (CyclicSCC blocks : sccs)
	 = let	dests		= unionManyUniqSets $ map slurpJumpDestsOfBlock blocks
		blocksSeen'	= unionUniqSets blocksSeen $ mkUniqSet $ map blockId blocks
		badDests	= dests `minusUniqSet` blocksSeen'
	   in	case uniqSetToList badDests of
		 []		-> go blocksSeen' sccs
		 bad : _	-> Just bad
		
	slurpJumpDestsOfBlock (BasicBlock _ instrs)
	 	= unionManyUniqSets
		$ map (mkUniqSet . jumpDestsOfInstr) 
		 	[ i | LiveInstr i _ <- instrs]


-- | If we've compute liveness info for this code already we have to reverse
--   the SCCs in each top to get them back to the right order so we can do it again.
reverseBlocksInTops :: LiveCmmTop instr -> LiveCmmTop instr
reverseBlocksInTops top
 = case top of
	CmmData{}			-> top
	CmmProc info lbl params sccs	-> CmmProc info lbl params (reverse sccs)

	
-- | Computing liveness
-- 	
--  On entry, the SCCs must be in "reverse" order: later blocks may transfer
--  control to earlier ones only, else `panic`.
-- 
--  The SCCs returned are in the *opposite* order, which is exactly what we
--  want for the next pass.
--
computeLiveness
	:: (Outputable instr, Instruction instr)
	=> [SCC (LiveBasicBlock instr)]
	-> ([SCC (LiveBasicBlock instr)],	-- instructions annotated with list of registers
						-- which are "dead after this instruction".
	       BlockMap RegSet)			-- blocks annontated with set of live registers
						-- on entry to the block.

computeLiveness sccs
 = case checkIsReverseDependent sccs of
	Nothing		-> livenessSCCs emptyBlockMap [] sccs
	Just bad	-> pprPanic "RegAlloc.Liveness.computeLivenss"
	 			(vcat 	[ text "SCCs aren't in reverse dependent order"
					, text "bad blockId" <+> ppr bad 
					, ppr sccs])

livenessSCCs
       :: Instruction instr
       => BlockMap RegSet
       -> [SCC (LiveBasicBlock instr)]		-- accum
       -> [SCC (LiveBasicBlock instr)]
       -> ( [SCC (LiveBasicBlock instr)]
       	  , BlockMap RegSet)

livenessSCCs blockmap done [] 
	= (done, blockmap)

livenessSCCs blockmap done (AcyclicSCC block : sccs)
 = let	(blockmap', block')	= livenessBlock blockmap block
   in	livenessSCCs blockmap' (AcyclicSCC block' : done) sccs

livenessSCCs blockmap done
	(CyclicSCC blocks : sccs) =
	livenessSCCs blockmap' (CyclicSCC blocks':done) sccs
 where      (blockmap', blocks')
	        = iterateUntilUnchanged linearLiveness equalBlockMaps
	                              blockmap blocks

            iterateUntilUnchanged
                :: (a -> b -> (a,c)) -> (a -> a -> Bool)
                -> a -> b
                -> (a,c)

	    iterateUntilUnchanged f eq a b
	        = head $
	          concatMap tail $
	          groupBy (\(a1, _) (a2, _) -> eq a1 a2) $
	          iterate (\(a, _) -> f a b) $
	          (a, panic "RegLiveness.livenessSCCs")


            linearLiveness 
	    	:: Instruction instr
		=> BlockMap RegSet -> [LiveBasicBlock instr]
            	-> (BlockMap RegSet, [LiveBasicBlock instr])

            linearLiveness = mapAccumL livenessBlock

                -- probably the least efficient way to compare two
                -- BlockMaps for equality.
	    equalBlockMaps a b
	        = a' == b'
	      where a' = map f $ blockEnvToList a
	            b' = map f $ blockEnvToList b
	            f (key,elt) = (key, uniqSetToList elt)



-- | Annotate a basic block with register liveness information.
--
livenessBlock
	:: Instruction instr
	=> BlockMap RegSet
	-> LiveBasicBlock instr
	-> (BlockMap RegSet, LiveBasicBlock instr)

livenessBlock blockmap (BasicBlock block_id instrs)
 = let
 	(regsLiveOnEntry, instrs1)
 		= livenessBack emptyUniqSet blockmap [] (reverse instrs)
 	blockmap'	= extendBlockEnv blockmap block_id regsLiveOnEntry

	instrs2		= livenessForward regsLiveOnEntry instrs1

	output		= BasicBlock block_id instrs2

   in	( blockmap', output)

-- | Calculate liveness going forwards,
--	filling in when regs are born

livenessForward
	:: Instruction instr
	=> RegSet			-- regs live on this instr
	-> [LiveInstr instr] -> [LiveInstr instr]

livenessForward _           []	= []
livenessForward rsLiveEntry (li@(LiveInstr instr mLive) : lis)
	| Nothing		<- mLive
	= li : livenessForward rsLiveEntry lis

	| Just live	<- mLive
	, RU _ written	<- regUsageOfInstr instr
	= let
		-- Regs that are written to but weren't live on entry to this instruction
		--	are recorded as being born here.
		rsBorn		= mkUniqSet
				$ filter (\r -> not $ elementOfUniqSet r rsLiveEntry) written

		rsLiveNext	= (rsLiveEntry `unionUniqSets` rsBorn)
					`minusUniqSet` (liveDieRead live)
					`minusUniqSet` (liveDieWrite live)

	in LiveInstr instr (Just live { liveBorn = rsBorn })
		: livenessForward rsLiveNext lis

livenessForward _ _ 		= panic "RegLiveness.livenessForward: no match"


-- | Calculate liveness going backwards,
--	filling in when regs die, and what regs are live across each instruction

livenessBack
	:: Instruction instr 
	=> RegSet			-- regs live on this instr
	-> BlockMap RegSet   		-- regs live on entry to other BBs
	-> [LiveInstr instr]   		-- instructions (accum)
	-> [LiveInstr instr]		-- instructions
	-> (RegSet, [LiveInstr instr])

livenessBack liveregs _        done []  = (liveregs, done)

livenessBack liveregs blockmap acc (instr : instrs)
 = let	(liveregs', instr')	= liveness1 liveregs blockmap instr
   in	livenessBack liveregs' blockmap (instr' : acc) instrs


-- don't bother tagging comments or deltas with liveness
liveness1 
	:: Instruction instr
	=> RegSet 
	-> BlockMap RegSet 
	-> LiveInstr instr
	-> (RegSet, LiveInstr instr)

liveness1 liveregs _ (LiveInstr instr _)
	| isMetaInstr instr
	= (liveregs, LiveInstr instr Nothing)

liveness1 liveregs blockmap (LiveInstr instr _)

	| not_a_branch
	= (liveregs1, LiveInstr instr
			(Just $ Liveness
			{ liveBorn	= emptyUniqSet
			, liveDieRead	= mkUniqSet r_dying
			, liveDieWrite	= mkUniqSet w_dying }))

	| otherwise
	= (liveregs_br, LiveInstr instr
			(Just $ Liveness
			{ liveBorn	= emptyUniqSet
			, liveDieRead	= mkUniqSet r_dying_br
			, liveDieWrite	= mkUniqSet w_dying }))

	where
	    RU read written = regUsageOfInstr instr

	    -- registers that were written here are dead going backwards.
	    -- registers that were read here are live going backwards.
	    liveregs1   = (liveregs `delListFromUniqSet` written)
	                            `addListToUniqSet` read

	    -- registers that are not live beyond this point, are recorded
	    --  as dying here.
	    r_dying     = [ reg | reg <- read, reg `notElem` written,
	                      not (elementOfUniqSet reg liveregs) ]

	    w_dying     = [ reg | reg <- written,
	                     not (elementOfUniqSet reg liveregs) ]

	    -- union in the live regs from all the jump destinations of this
	    -- instruction.
	    targets      = jumpDestsOfInstr instr -- where we go from here
	    not_a_branch = null targets

	    targetLiveRegs target
                  = case lookupBlockEnv blockmap target of
                                Just ra -> ra
                                Nothing -> emptyRegMap

            live_from_branch = unionManyUniqSets (map targetLiveRegs targets)

	    liveregs_br = liveregs1 `unionUniqSets` live_from_branch

            -- registers that are live only in the branch targets should
            -- be listed as dying here.
            live_branch_only = live_from_branch `minusUniqSet` liveregs
            r_dying_br  = uniqSetToList (mkUniqSet r_dying `unionUniqSets`
                                        live_branch_only)
Back to Top