/plugins/FTP/tags/release-0-9-5/com/jcraft/jzlib/Deflate.java
# · Java · 1623 lines · 1008 code · 257 blank · 358 comment · 290 complexity · 6a749da96ce8dcfca9ee902b11e347e6 MD5 · raw file
Large files are truncated click here to view the full file
- /* -*-mode:java; c-basic-offset:2; -*- */
- /*
- Copyright (c) 2000,2001,2002,2003 ymnk, JCraft,Inc. All rights reserved.
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are met:
- 1. Redistributions of source code must retain the above copyright notice,
- this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in
- the documentation and/or other materials provided with the distribution.
- 3. The names of the authors may not be used to endorse or promote products
- derived from this software without specific prior written permission.
- THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
- INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
- FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT,
- INC. OR ANY CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT,
- INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
- OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
- EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- /*
- * This program is based on zlib-1.1.3, so all credit should go authors
- * Jean-loup Gailly(jloup@gzip.org) and Mark Adler(madler@alumni.caltech.edu)
- * and contributors of zlib.
- */
- package com.jcraft.jzlib;
- public
- final class Deflate{
- static final private int MAX_MEM_LEVEL=9;
- static final private int Z_DEFAULT_COMPRESSION=-1;
- static final private int MAX_WBITS=15; // 32K LZ77 window
- static final private int DEF_MEM_LEVEL=8;
- static class Config{
- int good_length; // reduce lazy search above this match length
- int max_lazy; // do not perform lazy search above this match length
- int nice_length; // quit search above this match length
- int max_chain;
- int func;
- Config(int good_length, int max_lazy,
- int nice_length, int max_chain, int func){
- this.good_length=good_length;
- this.max_lazy=max_lazy;
- this.nice_length=nice_length;
- this.max_chain=max_chain;
- this.func=func;
- }
- }
-
- static final private int STORED=0;
- static final private int FAST=1;
- static final private int SLOW=2;
- static final private Config[] config_table;
- static{
- config_table=new Config[10];
- // good lazy nice chain
- config_table[0]=new Config(0, 0, 0, 0, STORED);
- config_table[1]=new Config(4, 4, 8, 4, FAST);
- config_table[2]=new Config(4, 5, 16, 8, FAST);
- config_table[3]=new Config(4, 6, 32, 32, FAST);
- config_table[4]=new Config(4, 4, 16, 16, SLOW);
- config_table[5]=new Config(8, 16, 32, 32, SLOW);
- config_table[6]=new Config(8, 16, 128, 128, SLOW);
- config_table[7]=new Config(8, 32, 128, 256, SLOW);
- config_table[8]=new Config(32, 128, 258, 1024, SLOW);
- config_table[9]=new Config(32, 258, 258, 4096, SLOW);
- }
- static final private String[] z_errmsg = {
- "need dictionary", // Z_NEED_DICT 2
- "stream end", // Z_STREAM_END 1
- "", // Z_OK 0
- "file error", // Z_ERRNO (-1)
- "stream error", // Z_STREAM_ERROR (-2)
- "data error", // Z_DATA_ERROR (-3)
- "insufficient memory", // Z_MEM_ERROR (-4)
- "buffer error", // Z_BUF_ERROR (-5)
- "incompatible version",// Z_VERSION_ERROR (-6)
- ""
- };
- // block not completed, need more input or more output
- static final private int NeedMore=0;
- // block flush performed
- static final private int BlockDone=1;
- // finish started, need only more output at next deflate
- static final private int FinishStarted=2;
- // finish done, accept no more input or output
- static final private int FinishDone=3;
- // preset dictionary flag in zlib header
- static final private int PRESET_DICT=0x20;
- static final private int Z_FILTERED=1;
- static final private int Z_HUFFMAN_ONLY=2;
- static final private int Z_DEFAULT_STRATEGY=0;
- static final private int Z_NO_FLUSH=0;
- static final private int Z_PARTIAL_FLUSH=1;
- static final private int Z_SYNC_FLUSH=2;
- static final private int Z_FULL_FLUSH=3;
- static final private int Z_FINISH=4;
- static final private int Z_OK=0;
- static final private int Z_STREAM_END=1;
- static final private int Z_NEED_DICT=2;
- static final private int Z_ERRNO=-1;
- static final private int Z_STREAM_ERROR=-2;
- static final private int Z_DATA_ERROR=-3;
- static final private int Z_MEM_ERROR=-4;
- static final private int Z_BUF_ERROR=-5;
- static final private int Z_VERSION_ERROR=-6;
- static final private int INIT_STATE=42;
- static final private int BUSY_STATE=113;
- static final private int FINISH_STATE=666;
- // The deflate compression method
- static final private int Z_DEFLATED=8;
- static final private int STORED_BLOCK=0;
- static final private int STATIC_TREES=1;
- static final private int DYN_TREES=2;
- // The three kinds of block type
- static final private int Z_BINARY=0;
- static final private int Z_ASCII=1;
- static final private int Z_UNKNOWN=2;
- static final private int Buf_size=8*2;
- // repeat previous bit length 3-6 times (2 bits of repeat count)
- static final private int REP_3_6=16;
- // repeat a zero length 3-10 times (3 bits of repeat count)
- static final private int REPZ_3_10=17;
- // repeat a zero length 11-138 times (7 bits of repeat count)
- static final private int REPZ_11_138=18;
- static final private int MIN_MATCH=3;
- static final private int MAX_MATCH=258;
- static final private int MIN_LOOKAHEAD=(MAX_MATCH+MIN_MATCH+1);
- static final private int MAX_BITS=15;
- static final private int D_CODES=30;
- static final private int BL_CODES=19;
- static final private int LENGTH_CODES=29;
- static final private int LITERALS=256;
- static final private int L_CODES=(LITERALS+1+LENGTH_CODES);
- static final private int HEAP_SIZE=(2*L_CODES+1);
- static final private int END_BLOCK=256;
- ZStream strm; // pointer back to this zlib stream
- int status; // as the name implies
- byte[] pending_buf; // output still pending
- int pending_buf_size; // size of pending_buf
- int pending_out; // next pending byte to output to the stream
- int pending; // nb of bytes in the pending buffer
- int noheader; // suppress zlib header and adler32
- byte data_type; // UNKNOWN, BINARY or ASCII
- byte method; // STORED (for zip only) or DEFLATED
- int last_flush; // value of flush param for previous deflate call
- int w_size; // LZ77 window size (32K by default)
- int w_bits; // log2(w_size) (8..16)
- int w_mask; // w_size - 1
- byte[] window;
- // Sliding window. Input bytes are read into the second half of the window,
- // and move to the first half later to keep a dictionary of at least wSize
- // bytes. With this organization, matches are limited to a distance of
- // wSize-MAX_MATCH bytes, but this ensures that IO is always
- // performed with a length multiple of the block size. Also, it limits
- // the window size to 64K, which is quite useful on MSDOS.
- // To do: use the user input buffer as sliding window.
- int window_size;
- // Actual size of window: 2*wSize, except when the user input buffer
- // is directly used as sliding window.
- short[] prev;
- // Link to older string with same hash index. To limit the size of this
- // array to 64K, this link is maintained only for the last 32K strings.
- // An index in this array is thus a window index modulo 32K.
- short[] head; // Heads of the hash chains or NIL.
- int ins_h; // hash index of string to be inserted
- int hash_size; // number of elements in hash table
- int hash_bits; // log2(hash_size)
- int hash_mask; // hash_size-1
- // Number of bits by which ins_h must be shifted at each input
- // step. It must be such that after MIN_MATCH steps, the oldest
- // byte no longer takes part in the hash key, that is:
- // hash_shift * MIN_MATCH >= hash_bits
- int hash_shift;
- // Window position at the beginning of the current output block. Gets
- // negative when the window is moved backwards.
- int block_start;
- int match_length; // length of best match
- int prev_match; // previous match
- int match_available; // set if previous match exists
- int strstart; // start of string to insert
- int match_start; // start of matching string
- int lookahead; // number of valid bytes ahead in window
- // Length of the best match at previous step. Matches not greater than this
- // are discarded. This is used in the lazy match evaluation.
- int prev_length;
- // To speed up deflation, hash chains are never searched beyond this
- // length. A higher limit improves compression ratio but degrades the speed.
- int max_chain_length;
- // Attempt to find a better match only when the current match is strictly
- // smaller than this value. This mechanism is used only for compression
- // levels >= 4.
- int max_lazy_match;
- // Insert new strings in the hash table only if the match length is not
- // greater than this length. This saves time but degrades compression.
- // max_insert_length is used only for compression levels <= 3.
- int level; // compression level (1..9)
- int strategy; // favor or force Huffman coding
- // Use a faster search when the previous match is longer than this
- int good_match;
- // Stop searching when current match exceeds this
- int nice_match;
- short[] dyn_ltree; // literal and length tree
- short[] dyn_dtree; // distance tree
- short[] bl_tree; // Huffman tree for bit lengths
- Tree l_desc=new Tree(); // desc for literal tree
- Tree d_desc=new Tree(); // desc for distance tree
- Tree bl_desc=new Tree(); // desc for bit length tree
- // number of codes at each bit length for an optimal tree
- short[] bl_count=new short[MAX_BITS+1];
- // heap used to build the Huffman trees
- int[] heap=new int[2*L_CODES+1];
- int heap_len; // number of elements in the heap
- int heap_max; // element of largest frequency
- // The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
- // The same heap array is used to build all trees.
- // Depth of each subtree used as tie breaker for trees of equal frequency
- byte[] depth=new byte[2*L_CODES+1];
- int l_buf; // index for literals or lengths */
- // Size of match buffer for literals/lengths. There are 4 reasons for
- // limiting lit_bufsize to 64K:
- // - frequencies can be kept in 16 bit counters
- // - if compression is not successful for the first block, all input
- // data is still in the window so we can still emit a stored block even
- // when input comes from standard input. (This can also be done for
- // all blocks if lit_bufsize is not greater than 32K.)
- // - if compression is not successful for a file smaller than 64K, we can
- // even emit a stored file instead of a stored block (saving 5 bytes).
- // This is applicable only for zip (not gzip or zlib).
- // - creating new Huffman trees less frequently may not provide fast
- // adaptation to changes in the input data statistics. (Take for
- // example a binary file with poorly compressible code followed by
- // a highly compressible string table.) Smaller buffer sizes give
- // fast adaptation but have of course the overhead of transmitting
- // trees more frequently.
- // - I can't count above 4
- int lit_bufsize;
- int last_lit; // running index in l_buf
- // Buffer for distances. To simplify the code, d_buf and l_buf have
- // the same number of elements. To use different lengths, an extra flag
- // array would be necessary.
- int d_buf; // index of pendig_buf
- int opt_len; // bit length of current block with optimal trees
- int static_len; // bit length of current block with static trees
- int matches; // number of string matches in current block
- int last_eob_len; // bit length of EOB code for last block
- // Output buffer. bits are inserted starting at the bottom (least
- // significant bits).
- short bi_buf;
- // Number of valid bits in bi_buf. All bits above the last valid bit
- // are always zero.
- int bi_valid;
- Deflate(){
- dyn_ltree=new short[HEAP_SIZE*2];
- dyn_dtree=new short[(2*D_CODES+1)*2]; // distance tree
- bl_tree=new short[(2*BL_CODES+1)*2]; // Huffman tree for bit lengths
- }
- void lm_init() {
- window_size=2*w_size;
- head[hash_size-1]=0;
- for(int i=0; i<hash_size-1; i++){
- head[i]=0;
- }
- // Set the default configuration parameters:
- max_lazy_match = Deflate.config_table[level].max_lazy;
- good_match = Deflate.config_table[level].good_length;
- nice_match = Deflate.config_table[level].nice_length;
- max_chain_length = Deflate.config_table[level].max_chain;
- strstart = 0;
- block_start = 0;
- lookahead = 0;
- match_length = prev_length = MIN_MATCH-1;
- match_available = 0;
- ins_h = 0;
- }
- // Initialize the tree data structures for a new zlib stream.
- void tr_init(){
- l_desc.dyn_tree = dyn_ltree;
- l_desc.stat_desc = StaticTree.static_l_desc;
- d_desc.dyn_tree = dyn_dtree;
- d_desc.stat_desc = StaticTree.static_d_desc;
- bl_desc.dyn_tree = bl_tree;
- bl_desc.stat_desc = StaticTree.static_bl_desc;
- bi_buf = 0;
- bi_valid = 0;
- last_eob_len = 8; // enough lookahead for inflate
- // Initialize the first block of the first file:
- init_block();
- }
- void init_block(){
- // Initialize the trees.
- for(int i = 0; i < L_CODES; i++) dyn_ltree[i*2] = 0;
- for(int i= 0; i < D_CODES; i++) dyn_dtree[i*2] = 0;
- for(int i= 0; i < BL_CODES; i++) bl_tree[i*2] = 0;
- dyn_ltree[END_BLOCK*2] = 1;
- opt_len = static_len = 0;
- last_lit = matches = 0;
- }
- // Restore the heap property by moving down the tree starting at node k,
- // exchanging a node with the smallest of its two sons if necessary, stopping
- // when the heap property is re-established (each father smaller than its
- // two sons).
- void pqdownheap(short[] tree, // the tree to restore
- int k // node to move down
- ){
- int v = heap[k];
- int j = k << 1; // left son of k
- while (j <= heap_len) {
- // Set j to the smallest of the two sons:
- if (j < heap_len &&
- smaller(tree, heap[j+1], heap[j], depth)){
- j++;
- }
- // Exit if v is smaller than both sons
- if(smaller(tree, v, heap[j], depth)) break;
- // Exchange v with the smallest son
- heap[k]=heap[j]; k = j;
- // And continue down the tree, setting j to the left son of k
- j <<= 1;
- }
- heap[k] = v;
- }
- static boolean smaller(short[] tree, int n, int m, byte[] depth){
- short tn2=tree[n*2];
- short tm2=tree[m*2];
- return (tn2<tm2 ||
- (tn2==tm2 && depth[n] <= depth[m]));
- }
- // Scan a literal or distance tree to determine the frequencies of the codes
- // in the bit length tree.
- void scan_tree (short[] tree,// the tree to be scanned
- int max_code // and its largest code of non zero frequency
- ){
- int n; // iterates over all tree elements
- int prevlen = -1; // last emitted length
- int curlen; // length of current code
- int nextlen = tree[0*2+1]; // length of next code
- int count = 0; // repeat count of the current code
- int max_count = 7; // max repeat count
- int min_count = 4; // min repeat count
- if (nextlen == 0){ max_count = 138; min_count = 3; }
- tree[(max_code+1)*2+1] = (short)0xffff; // guard
- for(n = 0; n <= max_code; n++) {
- curlen = nextlen; nextlen = tree[(n+1)*2+1];
- if(++count < max_count && curlen == nextlen) {
- continue;
- }
- else if(count < min_count) {
- bl_tree[curlen*2] += count;
- }
- else if(curlen != 0) {
- if(curlen != prevlen) bl_tree[curlen*2]++;
- bl_tree[REP_3_6*2]++;
- }
- else if(count <= 10) {
- bl_tree[REPZ_3_10*2]++;
- }
- else{
- bl_tree[REPZ_11_138*2]++;
- }
- count = 0; prevlen = curlen;
- if(nextlen == 0) {
- max_count = 138; min_count = 3;
- }
- else if(curlen == nextlen) {
- max_count = 6; min_count = 3;
- }
- else{
- max_count = 7; min_count = 4;
- }
- }
- }
- // Construct the Huffman tree for the bit lengths and return the index in
- // bl_order of the last bit length code to send.
- int build_bl_tree(){
- int max_blindex; // index of last bit length code of non zero freq
- // Determine the bit length frequencies for literal and distance trees
- scan_tree(dyn_ltree, l_desc.max_code);
- scan_tree(dyn_dtree, d_desc.max_code);
- // Build the bit length tree:
- bl_desc.build_tree(this);
- // opt_len now includes the length of the tree representations, except
- // the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
- // Determine the number of bit length codes to send. The pkzip format
- // requires that at least 4 bit length codes be sent. (appnote.txt says
- // 3 but the actual value used is 4.)
- for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
- if (bl_tree[Tree.bl_order[max_blindex]*2+1] != 0) break;
- }
- // Update opt_len to include the bit length tree and counts
- opt_len += 3*(max_blindex+1) + 5+5+4;
- return max_blindex;
- }
- // Send the header for a block using dynamic Huffman trees: the counts, the
- // lengths of the bit length codes, the literal tree and the distance tree.
- // IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
- void send_all_trees(int lcodes, int dcodes, int blcodes){
- int rank; // index in bl_order
- send_bits(lcodes-257, 5); // not +255 as stated in appnote.txt
- send_bits(dcodes-1, 5);
- send_bits(blcodes-4, 4); // not -3 as stated in appnote.txt
- for (rank = 0; rank < blcodes; rank++) {
- send_bits(bl_tree[Tree.bl_order[rank]*2+1], 3);
- }
- send_tree(dyn_ltree, lcodes-1); // literal tree
- send_tree(dyn_dtree, dcodes-1); // distance tree
- }
- // Send a literal or distance tree in compressed form, using the codes in
- // bl_tree.
- void send_tree (short[] tree,// the tree to be sent
- int max_code // and its largest code of non zero frequency
- ){
- int n; // iterates over all tree elements
- int prevlen = -1; // last emitted length
- int curlen; // length of current code
- int nextlen = tree[0*2+1]; // length of next code
- int count = 0; // repeat count of the current code
- int max_count = 7; // max repeat count
- int min_count = 4; // min repeat count
- if (nextlen == 0){ max_count = 138; min_count = 3; }
- for (n = 0; n <= max_code; n++) {
- curlen = nextlen; nextlen = tree[(n+1)*2+1];
- if(++count < max_count && curlen == nextlen) {
- continue;
- }
- else if(count < min_count) {
- do { send_code(curlen, bl_tree); } while (--count != 0);
- }
- else if(curlen != 0){
- if(curlen != prevlen){
- send_code(curlen, bl_tree); count--;
- }
- send_code(REP_3_6, bl_tree);
- send_bits(count-3, 2);
- }
- else if(count <= 10){
- send_code(REPZ_3_10, bl_tree);
- send_bits(count-3, 3);
- }
- else{
- send_code(REPZ_11_138, bl_tree);
- send_bits(count-11, 7);
- }
- count = 0; prevlen = curlen;
- if(nextlen == 0){
- max_count = 138; min_count = 3;
- }
- else if(curlen == nextlen){
- max_count = 6; min_count = 3;
- }
- else{
- max_count = 7; min_count = 4;
- }
- }
- }
- // Output a byte on the stream.
- // IN assertion: there is enough room in pending_buf.
- final void put_byte(byte[] p, int start, int len){
- System.arraycopy(p, start, pending_buf, pending, len);
- pending+=len;
- }
- final void put_byte(byte c){
- pending_buf[pending++]=c;
- }
- final void put_short(int w) {
- put_byte((byte)(w/*&0xff*/));
- put_byte((byte)(w>>>8));
- }
- final void putShortMSB(int b){
- put_byte((byte)(b>>8));
- put_byte((byte)(b/*&0xff*/));
- }
- final void send_code(int c, short[] tree){
- int c2=c*2;
- send_bits((tree[c2]&0xffff), (tree[c2+1]&0xffff));
- }
- void send_bits(int value, int length){
- int len = length;
- if (bi_valid > (int)Buf_size - len) {
- int val = value;
- // bi_buf |= (val << bi_valid);
- bi_buf |= ((val << bi_valid)&0xffff);
- put_short(bi_buf);
- bi_buf = (short)(val >>> (Buf_size - bi_valid));
- bi_valid += len - Buf_size;
- } else {
- // bi_buf |= (value) << bi_valid;
- bi_buf |= (((value) << bi_valid)&0xffff);
- bi_valid += len;
- }
- }
- // Send one empty static block to give enough lookahead for inflate.
- // This takes 10 bits, of which 7 may remain in the bit buffer.
- // The current inflate code requires 9 bits of lookahead. If the
- // last two codes for the previous block (real code plus EOB) were coded
- // on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
- // the last real code. In this case we send two empty static blocks instead
- // of one. (There are no problems if the previous block is stored or fixed.)
- // To simplify the code, we assume the worst case of last real code encoded
- // on one bit only.
- void _tr_align(){
- send_bits(STATIC_TREES<<1, 3);
- send_code(END_BLOCK, StaticTree.static_ltree);
- bi_flush();
- // Of the 10 bits for the empty block, we have already sent
- // (10 - bi_valid) bits. The lookahead for the last real code (before
- // the EOB of the previous block) was thus at least one plus the length
- // of the EOB plus what we have just sent of the empty static block.
- if (1 + last_eob_len + 10 - bi_valid < 9) {
- send_bits(STATIC_TREES<<1, 3);
- send_code(END_BLOCK, StaticTree.static_ltree);
- bi_flush();
- }
- last_eob_len = 7;
- }
- // Save the match info and tally the frequency counts. Return true if
- // the current block must be flushed.
- boolean _tr_tally (int dist, // distance of matched string
- int lc // match length-MIN_MATCH or unmatched char (if dist==0)
- ){
- pending_buf[d_buf+last_lit*2] = (byte)(dist>>>8);
- pending_buf[d_buf+last_lit*2+1] = (byte)dist;
- pending_buf[l_buf+last_lit] = (byte)lc; last_lit++;
- if (dist == 0) {
- // lc is the unmatched char
- dyn_ltree[lc*2]++;
- }
- else {
- matches++;
- // Here, lc is the match length - MIN_MATCH
- dist--; // dist = match distance - 1
- dyn_ltree[(Tree._length_code[lc]+LITERALS+1)*2]++;
- dyn_dtree[Tree.d_code(dist)*2]++;
- }
- if ((last_lit & 0x1fff) == 0 && level > 2) {
- // Compute an upper bound for the compressed length
- int out_length = last_lit*8;
- int in_length = strstart - block_start;
- int dcode;
- for (dcode = 0; dcode < D_CODES; dcode++) {
- out_length += (int)dyn_dtree[dcode*2] *
- (5L+Tree.extra_dbits[dcode]);
- }
- out_length >>>= 3;
- if ((matches < (last_lit/2)) && out_length < in_length/2) return true;
- }
- return (last_lit == lit_bufsize-1);
- // We avoid equality with lit_bufsize because of wraparound at 64K
- // on 16 bit machines and because stored blocks are restricted to
- // 64K-1 bytes.
- }
- // Send the block data compressed using the given Huffman trees
- void compress_block(short[] ltree, short[] dtree){
- int dist; // distance of matched string
- int lc; // match length or unmatched char (if dist == 0)
- int lx = 0; // running index in l_buf
- int code; // the code to send
- int extra; // number of extra bits to send
- if (last_lit != 0){
- do{
- dist=((pending_buf[d_buf+lx*2]<<8)&0xff00)|
- (pending_buf[d_buf+lx*2+1]&0xff);
- lc=(pending_buf[l_buf+lx])&0xff; lx++;
- if(dist == 0){
- send_code(lc, ltree); // send a literal byte
- }
- else{
- // Here, lc is the match length - MIN_MATCH
- code = Tree._length_code[lc];
- send_code(code+LITERALS+1, ltree); // send the length code
- extra = Tree.extra_lbits[code];
- if(extra != 0){
- lc -= Tree.base_length[code];
- send_bits(lc, extra); // send the extra length bits
- }
- dist--; // dist is now the match distance - 1
- code = Tree.d_code(dist);
- send_code(code, dtree); // send the distance code
- extra = Tree.extra_dbits[code];
- if (extra != 0) {
- dist -= Tree.base_dist[code];
- send_bits(dist, extra); // send the extra distance bits
- }
- } // literal or match pair ?
- // Check that the overlay between pending_buf and d_buf+l_buf is ok:
- }
- while (lx < last_lit);
- }
- send_code(END_BLOCK, ltree);
- last_eob_len = ltree[END_BLOCK*2+1];
- }
- // Set the data type to ASCII or BINARY, using a crude approximation:
- // binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
- // IN assertion: the fields freq of dyn_ltree are set and the total of all
- // frequencies does not exceed 64K (to fit in an int on 16 bit machines).
- void set_data_type(){
- int n = 0;
- int ascii_freq = 0;
- int bin_freq = 0;
- while(n<7){ bin_freq += dyn_ltree[n*2]; n++;}
- while(n<128){ ascii_freq += dyn_ltree[n*2]; n++;}
- while(n<LITERALS){ bin_freq += dyn_ltree[n*2]; n++;}
- data_type=(byte)(bin_freq > (ascii_freq >>> 2) ? Z_BINARY : Z_ASCII);
- }
- // Flush the bit buffer, keeping at most 7 bits in it.
- void bi_flush(){
- if (bi_valid == 16) {
- put_short(bi_buf);
- bi_buf=0;
- bi_valid=0;
- }
- else if (bi_valid >= 8) {
- put_byte((byte)bi_buf);
- bi_buf>>>=8;
- bi_valid-=8;
- }
- }
- // Flush the bit buffer and align the output on a byte boundary
- void bi_windup(){
- if (bi_valid > 8) {
- put_short(bi_buf);
- } else if (bi_valid > 0) {
- put_byte((byte)bi_buf);
- }
- bi_buf = 0;
- bi_valid = 0;
- }
- // Copy a stored block, storing first the length and its
- // one's complement if requested.
- void copy_block(int buf, // the input data
- int len, // its length
- boolean header // true if block header must be written
- ){
- int index=0;
- bi_windup(); // align on byte boundary
- last_eob_len = 8; // enough lookahead for inflate
- if (header) {
- put_short((short)len);
- put_short((short)~len);
- }
- // while(len--!=0) {
- // put_byte(window[buf+index]);
- // index++;
- // }
- put_byte(window, buf, len);
- }
- void flush_block_only(boolean eof){
- _tr_flush_block(block_start>=0 ? block_start : -1,
- strstart-block_start,
- eof);
- block_start=strstart;
- strm.flush_pending();
- }
- // Copy without compression as much as possible from the input stream, return
- // the current block state.
- // This function does not insert new strings in the dictionary since
- // uncompressible data is probably not useful. This function is used
- // only for the level=0 compression option.
- // NOTE: this function should be optimized to avoid extra copying from
- // window to pending_buf.
- int deflate_stored(int flush){
- // Stored blocks are limited to 0xffff bytes, pending_buf is limited
- // to pending_buf_size, and each stored block has a 5 byte header:
- int max_block_size = 0xffff;
- int max_start;
- if(max_block_size > pending_buf_size - 5) {
- max_block_size = pending_buf_size - 5;
- }
- // Copy as much as possible from input to output:
- while(true){
- // Fill the window as much as possible:
- if(lookahead<=1){
- fill_window();
- if(lookahead==0 && flush==Z_NO_FLUSH) return NeedMore;
- if(lookahead==0) break; // flush the current block
- }
- strstart+=lookahead;
- lookahead=0;
- // Emit a stored block if pending_buf will be full:
- max_start=block_start+max_block_size;
- if(strstart==0|| strstart>=max_start) {
- // strstart == 0 is possible when wraparound on 16-bit machine
- lookahead = (int)(strstart-max_start);
- strstart = (int)max_start;
-
- flush_block_only(false);
- if(strm.avail_out==0) return NeedMore;
- }
- // Flush if we may have to slide, otherwise block_start may become
- // negative and the data will be gone:
- if(strstart-block_start >= w_size-MIN_LOOKAHEAD) {
- flush_block_only(false);
- if(strm.avail_out==0) return NeedMore;
- }
- }
- flush_block_only(flush == Z_FINISH);
- if(strm.avail_out==0)
- return (flush == Z_FINISH) ? FinishStarted : NeedMore;
- return flush == Z_FINISH ? FinishDone : BlockDone;
- }
- // Send a stored block
- void _tr_stored_block(int buf, // input block
- int stored_len, // length of input block
- boolean eof // true if this is the last block for a file
- ){
- send_bits((STORED_BLOCK<<1)+(eof?1:0), 3); // send block type
- copy_block(buf, stored_len, true); // with header
- }
- // Determine the best encoding for the current block: dynamic trees, static
- // trees or store, and output the encoded block to the zip file.
- void _tr_flush_block(int buf, // input block, or NULL if too old
- int stored_len, // length of input block
- boolean eof // true if this is the last block for a file
- ) {
- int opt_lenb, static_lenb;// opt_len and static_len in bytes
- int max_blindex = 0; // index of last bit length code of non zero freq
- // Build the Huffman trees unless a stored block is forced
- if(level > 0) {
- // Check if the file is ascii or binary
- if(data_type == Z_UNKNOWN) set_data_type();
- // Construct the literal and distance trees
- l_desc.build_tree(this);
- d_desc.build_tree(this);
- // At this point, opt_len and static_len are the total bit lengths of
- // the compressed block data, excluding the tree representations.
- // Build the bit length tree for the above two trees, and get the index
- // in bl_order of the last bit length code to send.
- max_blindex=build_bl_tree();
- // Determine the best encoding. Compute first the block length in bytes
- opt_lenb=(opt_len+3+7)>>>3;
- static_lenb=(static_len+3+7)>>>3;
- if(static_lenb<=opt_lenb) opt_lenb=static_lenb;
- }
- else {
- opt_lenb=static_lenb=stored_len+5; // force a stored block
- }
- if(stored_len+4<=opt_lenb && buf != -1){
- // 4: two words for the lengths
- // The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
- // Otherwise we can't have processed more than WSIZE input bytes since
- // the last block flush, because compression would have been
- // successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
- // transform a block into a stored block.
- _tr_stored_block(buf, stored_len, eof);
- }
- else if(static_lenb == opt_lenb){
- send_bits((STATIC_TREES<<1)+(eof?1:0), 3);
- compress_block(StaticTree.static_ltree, StaticTree.static_dtree);
- }
- else{
- send_bits((DYN_TREES<<1)+(eof?1:0), 3);
- send_all_trees(l_desc.max_code+1, d_desc.max_code+1, max_blindex+1);
- compress_block(dyn_ltree, dyn_dtree);
- }
- // The above check is made mod 2^32, for files larger than 512 MB
- // and uLong implemented on 32 bits.
- init_block();
- if(eof){
- bi_windup();
- }
- }
- // Fill the window when the lookahead becomes insufficient.
- // Updates strstart and lookahead.
- //
- // IN assertion: lookahead < MIN_LOOKAHEAD
- // OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
- // At least one byte has been read, or avail_in == 0; reads are
- // performed for at least two bytes (required for the zip translate_eol
- // option -- not supported here).
- void fill_window(){
- int n, m;
- int p;
- int more; // Amount of free space at the end of the window.
- do{
- more = (window_size-lookahead-strstart);
- // Deal with !@#$% 64K limit:
- if(more==0 && strstart==0 && lookahead==0){
- more = w_size;
- }
- else if(more==-1) {
- // Very unlikely, but possible on 16 bit machine if strstart == 0
- // and lookahead == 1 (input done one byte at time)
- more--;
- // If the window is almost full and there is insufficient lookahead,
- // move the upper half to the lower one to make room in the upper half.
- }
- else if(strstart >= w_size+ w_size-MIN_LOOKAHEAD) {
- System.arraycopy(window, w_size, window, 0, w_size);
- match_start-=w_size;
- strstart-=w_size; // we now have strstart >= MAX_DIST
- block_start-=w_size;
- // Slide the hash table (could be avoided with 32 bit values
- // at the expense of memory usage). We slide even when level == 0
- // to keep the hash table consistent if we switch back to level > 0
- // later. (Using level 0 permanently is not an optimal usage of
- // zlib, so we don't care about this pathological case.)
- n = hash_size;
- p=n;
- do {
- m = (head[--p]&0xffff);
- head[p]=(m>=w_size ? (short)(m-w_size) : 0);
- }
- while (--n != 0);
- n = w_size;
- p = n;
- do {
- m = (prev[--p]&0xffff);
- prev[p] = (m >= w_size ? (short)(m-w_size) : 0);
- // If n is not on any hash chain, prev[n] is garbage but
- // its value will never be used.
- }
- while (--n!=0);
- more += w_size;
- }
- if (strm.avail_in == 0) return;
- // If there was no sliding:
- // strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
- // more == window_size - lookahead - strstart
- // => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
- // => more >= window_size - 2*WSIZE + 2
- // In the BIG_MEM or MMAP case (not yet supported),
- // window_size == input_size + MIN_LOOKAHEAD &&
- // strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
- // Otherwise, window_size == 2*WSIZE so more >= 2.
- // If there was sliding, more >= WSIZE. So in all cases, more >= 2.
- n = strm.read_buf(window, strstart + lookahead, more);
- lookahead += n;
- // Initialize the hash value now that we have some input:
- if(lookahead >= MIN_MATCH) {
- ins_h = window[strstart]&0xff;
- ins_h=(((ins_h)<<hash_shift)^(window[strstart+1]&0xff))&hash_mask;
- }
- // If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
- // but this is not important since only literal bytes will be emitted.
- }
- while (lookahead < MIN_LOOKAHEAD && strm.avail_in != 0);
- }
- // Compress as much as possible from the input stream, return the current
- // block state.
- // This function does not perform lazy evaluation of matches and inserts
- // new strings in the dictionary only for unmatched strings or for short
- // matches. It is used only for the fast compression options.
- int deflate_fast(int flush){
- // short hash_head = 0; // head of the hash chain
- int hash_head = 0; // head of the hash chain
- boolean bflush; // set if current block must be flushed
- while(true){
- // Make sure that we always have enough lookahead, except
- // at the end of the input file. We need MAX_MATCH bytes
- // for the next match, plus MIN_MATCH bytes to insert the
- // string following the next match.
- if(lookahead < MIN_LOOKAHEAD){
- fill_window();
- if(lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH){
- return NeedMore;
- }
- if(lookahead == 0) break; // flush the current block
- }
- // Insert the string window[strstart .. strstart+2] in the
- // dictionary, and set hash_head to the head of the hash chain:
- if(lookahead >= MIN_MATCH){
- ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask;
- // prev[strstart&w_mask]=hash_head=head[ins_h];
- hash_head=(head[ins_h]&0xffff);
- prev[strstart&w_mask]=head[ins_h];
- head[ins_h]=(short)strstart;
- }
- // Find the longest match, discarding those <= prev_length.
- // At this point we have always match_length < MIN_MATCH
- if(hash_head!=0L &&
- ((strstart-hash_head)&0xffff) <= w_size-MIN_LOOKAHEAD
- ){
- // To simplify the code, we prevent matches with the string
- // of window index 0 (in particular we have to avoid a match
- // of the string with itself at the start of the input file).
- if(strategy != Z_HUFFMAN_ONLY){
- match_length=longest_match (hash_head);
- }
- // longest_match() sets match_start
- }
- if(match_length>=MIN_MATCH){
- // check_match(strstart, match_start, match_length);
- bflush=_tr_tally(strstart-match_start, match_length-MIN_MATCH);
- lookahead -= match_length;
- // Insert new strings in the hash table only if the match length
- // is not too large. This saves time but degrades compression.
- if(match_length <= max_lazy_match &&
- lookahead >= MIN_MATCH) {
- match_length--; // string at strstart already in hash table
- do{
- strstart++;
- ins_h=((ins_h<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask;
- // prev[strstart&w_mask]=hash_head=head[ins_h];
- hash_head=(head[ins_h]&0xffff);
- prev[strstart&w_mask]=head[ins_h];
- head[ins_h]=(short)strstart;
- // strstart never exceeds WSIZE-MAX_MATCH, so there are
- // always MIN_MATCH bytes ahead.
- }
- while (--match_length != 0);
- strstart++;
- }
- else{
- strstart += match_length;
- match_length = 0;
- ins_h = window[strstart]&0xff;
- ins_h=(((ins_h)<<hash_shift)^(window[strstart+1]&0xff))&hash_mask;
- // If lookahead < MIN_MATCH, ins_h is garbage, but it does not
- // matter since it will be recomputed at next deflate call.
- }
- }
- else {
- // No match, output a literal byte
- bflush=_tr_tally(0, window[strstart]&0xff);
- lookahead--;
- strstart++;
- }
- if (bflush){
- flush_block_only(false);
- if(strm.avail_out==0) return NeedMore;
- }
- }
- flush_block_only(flush == Z_FINISH);
- if(strm.avail_out==0){
- if(flush == Z_FINISH) return FinishStarted;
- else return NeedMore;
- }
- return flush==Z_FINISH ? FinishDone : BlockDone;
- }
- // Same as above, but achieves better compression. We use a lazy
- // evaluation for matches: a match is finally adopted only if there is
- // no better match at the next window position.
- int deflate_slow(int flush){
- // short hash_head = 0; // head of hash chain
- int hash_head = 0; // head of hash chain
- boolean bflush; // set if current block must be flushed
- // Process the input block.
- while(true){
- // Make sure that we always have enough lookahead, except
- // at the end of the input file. We need MAX_MATCH bytes
- // for the next match, plus MIN_MATCH bytes to insert the
- // string following the next match.
- if (lookahead < MIN_LOOKAHEAD) {
- fill_window();
- if(lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
- return NeedMore;
- }
- if(lookahead == 0) break; // flush the current block
- }
- // Insert the string window[strstart .. strstart+2] in the
- // dictionary, and set hash_head to the head of the hash chain:
- if(lookahead >= MIN_MATCH) {
- ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff)) & hash_mask;
- // prev[strstart&w_mask]=hash_head=head[ins_h];
- hash_head=(head[ins_h]&0xffff);
- prev[strstart&w_mask]=head[ins_h];
- head[ins_h]=(short)strstart;
- }
- // Find the longest match, discarding those <= prev_length.
- prev_length = match_length; prev_match = match_start;
- match_length = MIN_MATCH-1;
- if (hash_head != 0 && prev_length < max_lazy_match &&
- ((strstart-hash_head)&0xffff) <= w_size-MIN_LOOKAHEAD
- ){
- // To simplify the code, we prevent matches with the string
- // of window index 0 (in particular we have to avoid a match
- // of the string with itself at the start of the input file).
- if(strategy != Z_HUFFMAN_ONLY) {
- match_length = longest_match(hash_head);
- }
- // longest_match() sets match_start
- if (match_length <= 5 && (strategy == Z_FILTERED ||
- (match_length == MIN_MATCH &&
- strstart - match_start > 4096))) {
- // If prev_match is also MIN_MATCH, match_start is garbage
- // but we will ignore the current match anyway.
- match_length = MIN_MATCH-1;
- }
- }
- // If there was a match at the previous step and the current
- // match is not better, output the previous match:
- if(prev_length >= MIN_MATCH && match_length <= prev_length) {
- int max_insert = strstart + lookahead - MIN_MATCH;
- // Do not insert strings in hash table beyond this.
- // check_match(strstart-1, prev_match, prev_length);
- bflush=_tr_tally(strstart-1-prev_match, prev_length - MIN_MATCH);
- // Insert in hash table all strings up to the end of the match.
- // strstart-1 and strstart are already inserted. If there is not
- // enough lookahead, the last two strings are not inserted in
- // the hash table.
- lookahead -= prev_length-1;
- prev_length -= 2;
- do{
- if(++strstart <= max_insert) {
- ins_h=(((ins_h)<<hash_shift)^(window[(strstart)+(MIN_MATCH-1)]&0xff))&hash_mask;
- //prev[strstart&w_mask]=hash_head=head[ins_h];
- hash_head=(head[ins_h]&0xffff);
- prev[strstart&w_mask]=head[ins_h];
- head[ins_h]=(short)strstart;
- }
- }
- while(--prev_length != 0);
- match_available = 0;
- match_length = MIN_MATCH-1;
- strstart++;
- if (bflush){
- flush_block_only(false);
- if(strm.avail_out==0) return NeedMore;
- }
- } else if (match_available!=0) {
- // If there was no match at the previous position, output a
- // single literal. If there was a match but the current match
- // is longer, truncate the previous match to a single literal.
- bflush=_tr_tally(0, window[strstart-1]&0xff);
- if (bflush) {
- flush_block_only(false);
- }
- strstart++;
- lookahead--;
- if(strm.avail_out == 0) return NeedMore;
- } else {
- // There is no previous match to compare with, wait for
- // the next step to decide.
- match_available = 1;
- strstart++;
- lookahead--;
- }
- }
- if(match_available!=0) {
- bflush=_tr_tally(0, window[strstart-1]&0xff);
- match_available = 0;
- }
- flush_block_only(flush == Z_FINISH);
- if(strm.avail_out==0){
- if(flush == Z_FINISH) return FinishStarted;
- else return NeedMore;
- }
- return flush == Z_FINISH ? FinishDone : BlockDone;
- }
- int longest_match(int cur_match){
- int chain_length = max_chain_length; // max hash chain length
- int scan = strstart; // current string
- int match; // matched string
- int len; // length of current match
- int best_len = prev_length; // best match length so far
- int limit = strstart>(w_size-MIN_LOOKAHEAD) ?
- strstart-(w_size-MIN_LOOKAHEAD) : 0;
- int nice_match=this.nice_match;
- // Stop when cur_match becomes <= limit. To simplify the code,
- // we prevent matches with the string of window index 0.
- int wmask = w_mask;
- int strend = strstart + MAX_MATCH;
- byte scan_end1 = window[scan+best_len-1];
- byte scan_end = window[scan+best_len];
- // The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
- // It is easy to get rid of this optimization if necessary.
- // Do not waste too much time if we already have a good match:
- if (prev_length >= good_match) {
- chain_length >>= 2;
- }
- // Do not look for matches beyond the end of the input. This is necessary
- // to make deflate deterministic.
- if (nice_match > lookahead) nice_match = lookahead;
- do {
- match = cur_match;
- // Skip to next match if the match length cannot increase
- // or if the match length is less than 2:
- if (window[match+best_len] != scan_end ||
- window[match+best_len-1] != scan_end1 ||
- window[match] != window[scan] ||
- window[++match] != window[scan+1]) continue;
- // The check at best_len-1 can be removed because it will be made
- // again later. (This heuristic is not always a win.)
- // It is not necessary to compare scan[2] and match[2] since they
- // are always equal when the other bytes match, given that
- // the hash keys are equal and that HASH_BITS >= 8.
- scan += 2; match++;
- // We check for insufficient lookahead only every 8th comparison;
- // the 256th check will be made at strstart+258.
- do {
- } while (window[++scan] == window[++match] &&
- window[++scan] == window[++match] &&
- window[++scan] == window[++match] &&
- window[++scan] == window[++match] &&
- window[++scan] == window[++match] &&
- window[++scan] == window[++match] &&
- window[++scan] == window[++match] &&
- window[++scan] == window[++match] &&
- scan < strend);
- len = MAX_MATCH - (int)(strend - scan);
- scan = strend - MAX_MATCH;
- if(len>best_len) {
- match_start = cur_match;
- best_len = len;
- if (len >= nice_match) break;
- scan_end1 = window[scan+best_len-1];
- scan_end = window[scan+best_len];
- }
- } while ((cur_match = (prev[cur_match & wmask]&0xffff)) > limit
- && --chain_length != 0);
- if (best_len <= lookahead) return best_len;
- return lookahead;
- }
-
- int deflateInit(ZStream strm, int level, int bits){
- return deflateInit2(strm, level, Z_DEFLATED, bits, DEF_MEM_LEVEL,
- Z_DEFAULT_STRATEGY);
- }
- int deflateInit(ZStream strm, int level){
- return deflateInit(strm, level, MAX_WBITS);
- }
- int deflateInit2(ZStream strm, int level, int method, int windowBits,
- int memLevel, int strategy){
- int noheader = 0;
- // byte[] my_version=ZLIB_VERSION;
- //
- // if (version == null || version[0] != my_version[0]
- // || stream_size != sizeof(z_stream)) {
- // return Z_VERSION_ERROR;
- // }
- strm.msg = null;
- if (level == Z_DEFAULT_COMPRESSION) level = 6;
- if (windowBits < 0) { // undocumented feature: suppress zlib header
- noheader = 1;
- windowBits = -windowBits;
- }
- if (memLevel < 1 || memLevel > MAX_MEM_LEVEL ||
- method != Z_DEFLATED ||
- windowBits < 9 || windowBits > 15 || level < 0 || level > 9 ||
- strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
- return Z_STREAM_ERROR;
- }
- strm.dstate = (Deflate)this;
- this.noheader = noheader;
- w_bits = windowBits;
- w_size = 1 << w_bits;
- w_mask = w_size - 1;
- hash_bits = memLevel + 7;
- hash_size = 1 << hash_bits;
- hash_mask = hash_size - 1;
- hash_shift = ((hash_bits+MIN_MATCH-1)/MIN_MATCH);
- window = new byte[w_size*2];
- prev = new short[w_size];
- head = new short[hash_size];
- lit_bufsize = 1 << (memLevel + 6); // 16K elements by default
- // We overlay pending_buf and d_buf+l_buf. This works since the average
- // output size for (length,distance) codes is <= 24 bits.
- pending_buf = new byte[lit_bufsize*4];
- pending_buf_size = lit_bufsize*4;
- d_buf = lit_bufsize/2;
- l_buf = (1+2)*lit_bufsize;
- this.level = level;
- //System.out.println("level="+level);
- this.strategy = strategy;
- this.method = (byte)method;
- return deflateReset(strm);
- }
- int deflateReset(ZStream strm){
- strm.total_in = strm.total_out = 0;
- strm.msg = null; //
- strm.data_type = Z_UNKNOWN;
- pending = 0;
- pending_out = 0;
- if(noheader < 0) {
- noheader = 0; // was set to -1 by deflate(..., Z_FINISH);
- }
- status = (noheader!=0) ? BUSY_STATE : INIT_STATE;
- strm.adler=strm._adler.adler32(0, null, 0, 0);
- last_flush = Z_NO_FLUSH;
- tr_init();
- lm_init();
- return Z_OK;
- }
- int deflateEnd(){
- if(status!=INIT_STATE && status!=BUSY_STATE && status!=FINISH_STATE){
- return Z_STREAM_ERROR;
- }
- // Deallocate in reverse order of allocations:
- pending_buf=null;
- head=null;
- prev=null;
- window=null;
- // free
- // dstate=null;
- return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
- }
- int deflateParams(ZStream strm, int _level, int _strategy){
- int err=Z_OK;
- if(_level == Z_DEFAULT_COMPRESSION){
- _level = 6;
- }
- if(_level < 0 || _level > 9 ||
- _strategy < 0 || _strategy > Z_HUFFMAN_ONLY) {
- return Z_STREAM_ERROR;
- }
- if(config_table[level].func!=config_table[_level].func &&
- strm.total_in != 0) {
- // Flush the last buffer:
- err = strm.deflate(Z_PARTIAL_FLUSH);
- }
- if(level != _level) {
- level = _level;
- max_lazy_match = config_table[level].max_lazy;
- good_match = config_table[level].good_length;
- nice_match = config_table[level].nice_length;
- max_chain_length = config_table[level].max_chain;
- }
- strategy = _strategy;
- return err;
- }
- int deflateSetDictionary (ZStream strm, byte[] dictionary, int dictLength){
- int length = dictLength;
- int index=0;
- if(dictionary == null || status != INIT_STATE)
- return Z_STREAM_ERROR;
- strm.adler=strm._adler.adler32(strm.adler, dictionary, 0, dictLength);
- if(length < MIN_MATCH) return Z_OK;
- if(length > w_size-MIN_LOOKAHEAD){
- length = w_size-MIN_LOOKAHEAD;
- index=dictLength-length; // use the tail of the dictionary
- }
- System.arraycopy(dictionary, index, window, 0, length);
- strstart = length;
- block_start = length;
- // Insert all strings in the hash table (except for the last two bytes).
- // s->lookahead stays null, so s->ins_h will be recomputed at the next
- // call of fill_window.
- ins_h = window[0]&0xff;
- ins_h=(((ins_h)<<hash_shift)^(window[1]&0xff))&hash_mask;
- for(int n=0; n<=length-MIN_MATCH; n++){
- ins_h=(((ins_h)<<hash_shift)^(window[(n)+(MIN_MATCH-1)]&0xff))&hash_mask;
- prev[n&w_mask]=head[ins_h];
- head[ins_h]=(short)n;
- }
- return Z_OK;
- }
- int deflate(ZStream strm, int flush){…