boolangstudio /Dependencies/boo/lib/antlr-2.7.5/doc/runtime.html

Language HTML Lines 1236
MD5 Hash c22ad16a634f09209d75967a566f3e13
Repository https://github.com/w4x/boolangstudio.git View Raw File View Project SPDX
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
<html>
<head>
	<title>ANTLR Specification: Run-time</title> 
</head>
<body bgcolor="#FFFFFF" text="#000000">
<h1><a name="_bb1">Java Runtime Model</a></h1> 
<hr>
<h2><a name="_bb2">Programmer's Interface</a></h2> 
<p>
	In this section, we describe what ANTLR generates after reading your grammar file and how to use that output to parse input. The classes from which your lexer, token, and parser classes are derived are provided as well. 
</p>
<h3><a name="_bb3">What ANTLR generates</a></h3> 
<p>
	ANTLR generates the following types of files, where <i>MyParser</i>, <i>MyLexer</i>, and <i>MyTreeParser</i> are names of grammar classes specified in the grammar file. You may have an arbitrary number of parsers, lexers, and tree-parsers per grammar file; a separate class file will be generated for each. In addition, token type files will be generated containing the token vocabularies used in the parsers and lexers. One or more token vocabularies may be defined in a grammar file, and shared between different grammars. For example, given the grammar file: <tt>
</p>
<pre>class MyParser extends Parser;
options {
  exportVocab=My;
}
... rules ...

class MyLexer extends Lexer;
options {
  exportVocab=My;
}
... rules ...

class MyTreeParser extends TreeParser;
options {
  exportVocab=My;
}
... rules ...</tt></pre> 
<p>
	The following files will be generated: 
<ul>
	<li>
		<tt><i>MyParser</i>.java</tt>. The parser with member methods for the parser rules. 
	</li>
	<li>
		<tt><i>MyLexer</i>.java</tt>. The lexer with the member methods for the lexical rules. 
	</li>
	<li>
		<tt><i>MyTreeParser</i>.java</tt>. The tree-parser with the member methods for the tree-parser rules. 
	</li>
	<li>
		<tt><i>My</i>TokenTypes.java</tt>. An interface containing all of the token types defined by your parsers and lexers using the exported vocabulary named <tt>My</tt>.
	</li>
	<li>
		<tt><i>My</i>TokenTypes.txt</tt>. A text file containing all of the token types, literals, and paraphrases defined by parsers and lexers contributing vocabulary <tt>My</tt>.
	</li>
</ul>
<p>
	The programmer uses the classes by referring to them: 
<ol>
	<li>
		Create a lexical analyzer. The constructor with no arguments implies that you want to read from standard input. 
	</li>
	<li>
		Create a parser and attach it to the lexer (or other TokenStream). 
	</li>
	<li>
		Call one of the methods in the parser to begin parsing.
	</li>
</ol>
<p>
	If your parser generates an AST, then get the AST value, create a tree-parser, and invoke one of the tree-parser rules using the AST. 
</p>
<tt><pre>MyLexer lex = new MyLexer();
MyParser p =
  new MyParser(lex,<i>user-defined-args-if-any</i>);
p.<i>start-rule</i>();
// and, if you are tree parsing the result...
MyTreeParser tp = new MyTreeParser();
tp.<i>start-rule</i>(p.getAST());</tt></pre> 
<p>
	You can also specify the name of the token and/or AST objects that you want the lexer/parser to create. Java's support of dynamic programming makes this quite painless: 
</p>
<pre><tt>MyLexer lex = new MyLexer();
lex.setTokenObjectClass(&quot;mypackage.MyToken&quot;);
  // defaults to &quot;antlr.CommonToken&quot;
...
parser.setASTNodeClass(&quot;mypackage.MyASTNode&quot;);
  // defaults to &quot;antlr.CommonAST&quot;</tt></pre> 
<p>
Make sure you give a fully-qualified class name.
<p>
The lexer and parser can cause IOExceptions as well as RecognitionExceptions, which you must catch:
</p>
<pre>  CalcLexer lexer =
    new CalcLexer(new DataInputStream(System.in));
  CalcParser parser = new CalcParser(lexer);
  // Parse the input expression
  try {
    parser.expr();
  }
  catch (IOException io) {
    System.err.println(&quot;IOException&quot;);
  }
  catch(RecognitionException e) {
    System.err.println(&quot;exception: &quot;+e);
  }</pre> <h3><a name="sharingstate">Multiple Lexers/Parsers With Shared Input State</a></h3> 
<p>
	Occasionally, you will want two parsers or two lexers to share input state; that is, you will want them to pull input from the same source token stream or character stream. &nbsp; The section on <a href="streams.html#lexerstates">multiple lexer &quot;states&quot;</a> describes such a situation.
</p>
<p>
	ANTLR factors the input variables such as line number, guessing state, input stream, etc... into a separate object so that another lexer or parser could same that state.&nbsp; The <small><font face="Courier New">LexerSharedInputState</font></small> and <small><font face="Courier New">ParserSharedInputState</font></small> embody this factoring. &nbsp; Method <small><font face="Courier New">getInputState()</font></small> can be used on either <small><font face="Courier New">CharScanner</font></small> or <small><font face="Courier New">Parser</font></small> objects.&nbsp; Here is how to construct two lexers sharing the same input stream:
</p>
<pre><small>// create Java lexer</small>
<small>JavaLexer mainLexer = new JavaLexer(input);
// create javadoc lexer; attach to shared</small>
<small>// input state of java lexer
JavaDocLexer doclexer =</small>
<small>  new JavaDocLexer(mainLexer.getInputState());</small></pre> 
<p>
	Parsers with shared input state can be created similarly:
</p>
<pre><small>JavaDocParser jdocparser =</small>
<small>  new JavaDocParser(getInputState());
jdocparser.content(); // go parse the comment</small></pre> 
<p>
	Sharing state is easy, but what happens upon exception during the execution of the &quot;subparser&quot;?&nbsp; What about syntactic predicate execution?&nbsp; It turns out that invoking a subparser with the same input state is exactly the same as calling another rule in the same parser as far as error handling and syntactic predicate guessing are concerned.&nbsp; If the parser is guessing before the call to the subparser, the subparser must continue guessing, right?&nbsp; Exceptions thrown inside the subparser must exit the subparser and return to enclosing erro handler or syntactic predicate handler.
</p>
<h2><a name="_bb4">Parser Implementation</a></h2> <h3><a name="_bb5">Parser Class</a></h3> 
<p>
	ANTLR generates a parser class (an extension of <tt>LLkParser</tt>) that contains a method for every rule in your grammar. The general format looks like: <tt>
</p>
<pre>
public class MyParser extends LLkParser
    implements MyLexerTokenTypes
{
  protected P(TokenBuffer tokenBuf, int k) {
    super(tokenBuf,k);
    tokenNames = _tokenNames;
  }
  public P(TokenBuffer tokenBuf) {  
    this(tokenBuf,1);
  }
  protected P(TokenStream lexer, int k) {
    super(lexer,k);
    tokenNames = _tokenNames;       
  }
  public P(TokenStream lexer) {  
    this(lexer,1);
  }
  public P(ParserSharedInputState state) {
    super(state,1);
    tokenNames = _tokenNames;
  }
  ...
  // add your own constructors here...
  <i>rule-definitions</i>
}
</tt>  </pre> <h3><a name="_bb6">Parser Methods</a></h3> 
<p>
	ANTLR generates recursive-descent parsers, therefore, every rule in the grammar will result in a method that applies the specified grammatical structure to the input token stream. The general form of a parser method looks like: <tt>
</p>
<pre>
public void rule()
  throws RecognitionException,
         TokenStreamException
{
  <i>init-action-if-present</i>
  if ( <i>lookahead-predicts-production-1</i> ) {
     <i>code-to-match-production-1</i>
  }
  else if ( <i>lookahead-predicts-production-2</i> ) {
     <i>code-to-match-production-2</i>
  }
  ...
  else if ( <i>lookahead-predicts-production-n</i> ) {
     <i>code-to-match-production-n</i>
  }
  else {
    // syntax error
    throw new NoViableAltException(LT(1));
  }
}
</tt>  This code results from a rule of the form:  <tt></pre> <pre>
rule:   <i>production-1</i>
    |   <i>production-2</i>
   ...
    |   <i>production-n</i>
    ;
</tt>  </pre> 
<p>
	If you have specified arguments and a return type for the rule, the method header changes to: <tt>
</p>
<pre>
/* generated from:
 *    rule(<i>user-defined-args</i>)
 *      returns <i>return-type</i> : ... ;
 */
public <i>return-type</i> rule(<i>user-defined-args</i>)
  throws RecognitionException,
         TokenStreamException
{
  ...
}
</tt>  </pre> 
<p>
	Token types are integers and we make heavy use of bit sets and range comparisons to avoid excessively-long test expressions. 
</p>
<h3><a name="_bb7">EBNF Subrules</a></h3> 
<p>
	Subrules are like unlabeled rules, consequently, the code generated for an EBNF subrule mirrors that generated for a rule. The only difference is induced by the EBNF subrule operators that imply optionality or looping. 
</p>
<p>
	<b><tt>(...)?</tt> optional subrule</b>. The only difference between the code generated for an optional subrule and a rule is that there is no default <tt>else</tt>-clause to throw an exception--the recognition continues on having ignored the optional subrule. <tt>
</p>
<pre>
{
  <i>init-action-if-present</i>
  if ( <i>lookahead-predicts-production-1</i> ) {
     <i>code-to-match-production-1</i>
  }
  else if ( <i>lookahead-predicts-production-2</i> ) {
     <i>code-to-match-production-2</i>
  }
  ...
  else if ( <i>lookahead-predicts-production-n</i> ) {
     <i>code-to-match-production-n</i>
  }
}
</tt>  </pre> 
<p>
	Not testing the optional paths of optional blocks has the potential to delay the detection of syntax errors. 
</p>
<p>
	<b><tt>(...)*</tt> closure subrule</b>. A closure subrule is like an optional looping subrule, therefore, we wrap the code for a simple subrule in a &quot;forever&quot; loop that exits whenever the lookahead is not consistent with any of the alternative productions. <tt>
</p>
<pre>
{
  <i>init-action-if-present</i>
loop:
  do {
    if ( <i>lookahead-predicts-production-1</i> ) {
       <i>code-to-match-production-1</i>
    }
    else if ( <i>lookahead-predicts-production-2</i> ) {
       <i>code-to-match-production-2</i>
    }
    ...
    else if ( <i>lookahead-predicts-production-n</i> ) {
       <i>code-to-match-production-n</i>
    }
    else {
      break loop;
    }
  }
  while (true);
}
</tt>  </pre> 
<p>
	While there is no need to explicity test the lookahead for consistency with the exit path, the grammar analysis phase computes the lookahead of what follows the block. The lookahead of what follows much be disjoint from the lookahead of each alternative otherwise the loop will not know when to terminate. For example, consider the following subrule that is nondeterministic upon token <tt>A</tt>. <tt>
</p>
<pre>
( A | B )* A
</tt>  </pre> 
<p>
	Upon <tt>A</tt>, should the loop continue or exit? One must also ask if the loop should even begin. Because you cannot answer these questions with only one symbol of lookahead, the decision is non-LL(1). 
</p>
<p>
	Not testing the exit paths of closure loops has the potential to delay the detection of syntax errors. 
</p>
<p>
	As a special case, a closure subrule with one alternative production results in: <tt>
</p>
<pre>
{
  <i>init-action-if-present</i>
loop:
  while ( <i>lookahead-predicts-production-1</i> ) {
       <i>code-to-match-production-1</i>
  }
}
 </tt>  </pre> 
<p>
	This special case results in smaller, faster, and more readable code. 
</p>
<p>
	<b><tt>(...)+</tt> positive closure subrule</b>. A positive closure subrule is a loop around a series of production prediction tests like a closure subrule. However, we must guarantee that at least one iteration of the loop is done before proceeding to the construct beyond the subrule. 
</p>
<tt><pre>
{
  int _cnt = 0;
  <i>init-action-if-present</i>
loop:
  do {
    if ( <i>lookahead-predicts-production-1</i> ) {
       <i>code-to-match-production-1</i>
    }
    else if ( <i>lookahead-predicts-production-2</i> ) {
       <i>code-to-match-production-2</i>
    }
    ...
    else if ( <i>lookahead-predicts-production-n</i> ) {
       <i>code-to-match-production-n</i>
    }
    else if ( _cnt&gt;1 ) {
      // lookahead predicted nothing and we've
      // done an iteration
      break loop;
    }
    else {
      throw new NoViableAltException(LT(1));
    }
    _cnt++;  // track times through the loop
  }
  while (true);
}
</tt>  </pre> 
<p>
	While there is no need to explicity test the lookahead for consistency with the exit path, the grammar analysis phase computes the lookahead of what follows the block. The lookahead of what follows much be disjoint from the lookahead of each alternative otherwise the loop will not know when to terminate. For example, consider the following subrule that is nondeterministic upon token <tt>A</tt>. <tt>
</p>
<pre>
( A | B )+ A
</tt>  </pre> 
<p>
	Upon <tt>A</tt>, should the loop continue or exit? Because you cannot answer this with only one symbol of lookahead, the decision is non-LL(1). 
</p>
<p>
	Not testing the exit paths of closure loops has the potential to delay the detection of syntax errors. 
</p>
<p>
	You might ask why we do not have a <tt>while</tt> loop that tests to see if the lookahead is consistent with any of the alternatives (rather than having series of tests inside the loop with a <tt>break</tt>). It turns out that we can generate smaller code for a series of tests than one big one. Moreover, the individual tests must be done anyway to distinguish between alternatives so a <tt>while</tt> condition would be redundant. 
</p>
<p>
	As a special case, if there is only one alternative, the following is generated: <tt>
</p>
<pre>
{
  <i>init-action-if-present</i>
  do {
    <i>code-to-match-production-1</i>
  }
  while ( <i>lookahead-predicts-production-1</i> );
}
</tt>  </pre> 
<p>
	<b>Optimization.</b> When there are a large (where large is user-definable) number of strictly LL(1) prediction alternatives, then a <tt>switch</tt>-statement can be used rather than a sequence of <tt>if</tt>-statements. The non-LL(1) cases are handled by generating the usual <tt>if</tt>-statements in the <tt>default</tt> case. For example: <tt>
</p>
<pre>
switch ( LA(1) ) {
  case KEY_WHILE :
  case KEY_IF :
  case KEY_DO :
    statement();
    break;
  case KEY_INT :
  case KEY_FLOAT :
    declaration();
    break;
  default :
    // do whatever else-clause is appropriate
}
</tt>  </pre> 
<p>
	This optimization relies on the compiler building a more direct jump (via jump table or hash table) to the ith production matching code. This is also more readable and faster than a series of bit set membership tests. 
</p>
<h3><a name="_bb8">Production Prediction</a> </h3> 
<p>
	<b>LL(1) prediction.</b> Any LL(1) prediction test is a simple set membership test. If the set is a singleton set (a set with only one element), then an integer token type <tt>==</tt> comparison is done. If the set degree is greater than one, a bit set is created and the single input token type is tested for membership against that set. For example, consider the following rule: <tt>
</p>
<pre>
a : A | b ;
b : B | C | D | E | F;
</tt>  </pre> 
<p>
	The lookahead that predicts production one is {<tt>A</tt>} and the lookahead that predicts production two is {<tt>B,C,D,E,F</tt>}. The following code would be generated by ANTLR for rule <tt>a</tt> (slightly cleaned up for clarity): 
</p>
<tt><pre>
public void a() {
  if ( LA(1)==A ) {
    match(A);
  }
  else if (token_set1.member(LA(1))) {
    b();
  }
}
</tt>  </pre> 
<p>
	The prediction for the first production can be done with a simple integer comparison, but the second alternative uses a bit set membership test for speed, which you probably didn't recognize as testing <tt>LA(1) member {B,C,D,E,F}</tt>. The complexity threshold above which bitset-tests are generated is user-definable. 
</p>
<p>
	We use arrays of <tt>long int</tt>s (64 bits) to hold bit sets. The ith element of a bitset is stored in the word number <tt>i/64</tt> and the bit position within that word is <tt>i % 64</tt>. The divide and modulo operations are extremely expensive and, but fortunately, a strength reduction can be done. Dividing by a power of two is the same as shifting right and modulo a power of two is the same as masking with that power minus one. All of these details are hidden inside the implementation of the <tt>BitSet</tt> class in the package <tt>antlr.collections.impl</tt>. 
</p>
<p>
	The various bit sets needed by ANTLR are created and initialized in the generated parser (or lexer) class. 
</p>
<p>
	<b>Approximate LL(k) prediction.</b> An extension of LL(1)...basically we do a series of up to k bit set tests rather than a single as we do in LL(1) prediction. Each decision will use a different amount of lookahead, with LL(1) being the dominant decision type. 
</p>
<h3><a name="_bb9"></a><a name="Production Element Recognition">Production Element Recognition</a> </h3> 
<p>
	<b>Token references.</b> Token references are translated to: <tt>
</p>
<pre>
match(<i>token-type</i>);
</tt>  </pre> 
<p>
	For example, a reference to token <tt>KEY_BEGIN</tt> results in: <tt>
</p>
<pre>
match(KEY_BEGIN);
</tt>  </pre> 
<p>
	where <tt>KEY_BEGIN</tt> will be an integer constant defined in the <tt><i>MyParser</i>TokenType</tt> interface generated by ANTLR. 
</p>
<p>
	<b>String literal references.</b> String literal references are references to automatically generated tokens to which ANTLR automatically assigns a token type (one for each unique string). String references are translated to: 
</p>
<tt><pre>
match(<i>T</i>);
</tt>  </pre> 
<p>
	where <tt><i>T</i></tt> is the token type assigned by ANTLR to that token. 
</p>
<p>
	<b>Character literal references.</b> Referencing a character literal implies that the current rule is a lexical rule. Single characters, '<i>t</i>', are translated to: 
</p>
<tt><pre>
match('<i>t</i>');
</tt>  </pre> 
<p>
	which can be manually inlined with: <tt>
</p>
<pre>
if ( c=='<i>t</i>' ) consume();
else throw new MismatchedCharException(
               &quot;mismatched char: '&quot;+(char)c+&quot;'&quot;);
 </tt>  </pre> 
<p>
	if the method call proves slow (at the cost of space). 
</p>
<p>
	<b>Wildcard references.</b> In lexical rules, the wildcard is translated to: <tt>
</p>
<pre>
consume();
</tt>  </pre> 
<p>
	which simply gets the next character of input without doing a test. 
</p>
<p>
	References to the wildcard in a parser rule results in the same thing except that the <tt>consume</tt> call will be with respect to the parser. 
</p>
<p>
	<b>Not operator.</b> When operating on a token, <tt>~<i>T</i></tt> is translated to: 
</p>
<tt><pre>
matchNot(<i>T</i>);
</tt> </pre> 
<p>
	When operating on a character literal, <tt>'<i>t</i>'</tt> is translated to: <tt>
</p>
<pre>
matchNot('<i>t</i>');
</tt>  </pre> 
<p>
	<b>Range operator.</b> In parser rules, the range operator (<tt><i>T1</i>..<i>T2</i></tt>) is translated to: <tt>
</p>
<pre>
matchRange(<i>T1</i>,<i>T2</i>);
</tt>   </pre> 
<p>
	In a lexical rule, the range operator for characters <tt><i>c1..c2</i></tt> is translated to: <tt>
</p>
<pre>
matchRange(<i>c1</i>,<i>c2</i>);
</tt>  </pre> 
<p>
	<b>Labels.</b> Element labels on atom references become <tt>Token</tt> references in parser rules and <tt>int</tt>s in lexical rules. For example, the parser rule: <tt>
</p>
<pre>
a : id:ID {System.out.println(&quot;id is &quot;+id);} ;
</tt>  would be translated to:  <tt></pre> <pre>
public void a() {
  Token id = null;
  id = LT(1);
  match(ID);
  System.out.println(&quot;id is &quot;+id);
}
</tt>  For lexical rules such as:  <tt></pre> <pre>
ID : w:. {System.out.println(&quot;w is &quot;+(char)w);};
</tt>  the following code would result:  <tt></pre> <pre>
public void ID() {
  int w = 0;
  w = c;
  consume(); // match wildcard (anything)
  System.out.println(&quot;w is &quot;+(char)w);
}
</tt>  </pre> 
<p>
	Labels on rule references result in <tt>AST</tt> references, when generating trees, of the form <tt><i>label</i>_ast</tt>. 
</p>
<p>
	<b>Rule references.</b> Rule references become method calls. Arguments to rules become arguments to the invoked methods. Return values are assigned like Java assignments. Consider rule reference <tt>i=list[1]</tt> to rule: <tt>
</p>
<pre>
list[int scope] returns int
    :   { return scope+3; }
    ;
</tt>  The rule reference would be translated to:  <tt></pre> <pre>
i = list(1);
</tt>  </pre> 
<p>
	<b>Semantic actions.</b> Actions are translated verbatim to the output parser or lexer except for the <a href="trees.html#Action Translation">translations required for AST generation</a> and the following:

<ul>
<li><tt>$FOLLOW(r)</tt>: FOLLOW set name for rule r
<li><tt>$FIRST(r)</tt>: FIRST set name for rule r
</ul>

<p>
Omitting the rule argument implies you mean the current rule.  The result type is a BitSet, which you can test via $FIRST(a).member(LBRACK) etc...

<p>
Here is a sample rule:

<pre>
a : A {System.out.println($FIRST(a));} B
  exception
    catch [RecognitionException e] {    
        if ( $FOLLOW.member(SEMICOLON) ) {
        consumeUntil(SEMICOLON);
    }
    else {
        consume();
    }
    }
  ;
</pre>

Results in

<pre>
public final void a() throws RecognitionException, TokenStreamException {  
    try {
        match(A);
        System.out.println(_tokenSet_0);
        match(B);
    }
    catch (RecognitionException e) {
        if ( _tokenSet_1.member(SEMICOLON) ) {
            consumeUntil(SEMICOLON);
        }
        else {
            consume();
        }
    }
}
</pre>

<p>
	To add members to a lexer or parser class definition, add the class member definitions enclosed in {} immediately following the class specification, for example: <tt>
</p>
<pre>
class MyParser;
{
   protected int i;
   public MyParser(TokenStream lexer,
        int aUsefulArgument) {
      i = aUsefulArgument;
   }
}
... rules ...
</tt></pre> 
<p>
	ANTLR collects everything inside the {...} and inserts it in the class definition before the rule-method definitions. When generating C++, this may have to be extended to allow actions after the rules due to the wacky ordering restrictions of C++. 
</p>

<h3><a name="_bb10">Standard Classes</a></h3> 
<p>
	ANTLR constructs parser classes that are subclasses of the <tt>antlr.LLkParser</tt> class, which is a subclass of the <tt>antlr.Parser</tt> class. We summarize the more important members of these classes here. See Parser.java and LLkParser.java for details of the implementation. <tt>
</p>
<pre>
public abstract class Parser {
   protected ParserSharedInputState inputState;
   protected ASTFactory ASTFactory;
   public abstract int LA(int i);
   public abstract Token LT(int i);
   public abstract void consume();
   public void consumeUntil(BitSet set) { ... }
   public void consumeUntil(int tokenType) { ... }
   public void match(int t)
      throws MismatchedTokenException { ... }
   public void matchNot(int t)
      throws MismatchedTokenException { ... }
   ...
}

public class LLkParser extends Parser {
   public LLkParser(TokenBuffer tokenBuf, int k_)
     { ... }
   public LLkParser(TokenStream lexer, int k_)
     { ... }
   public int LA(int i) { return input.LA(i); }
   public Token LT(int i) { return input.LT(i); }
   public void consume() { input.consume(); }
   ...
}
</pre> </tt><h2><a name="_bb11">Lexer Implementation</a></h2> <h3><a name="_bb12">Lexer Form</a></h3> 
<p>
	The lexers produced by ANTLR are a lot like the parsers produced by ANTLR. They only major differences are that (a) scanners use characters instead of tokens, and (b) ANTLR generates a special <tt>nextToken</tt> rule for each scanner which is a production containing each public lexer rule as an alternate. The name of the lexical grammar class provided by the programmer results in a subclass of <tt>CharScanner</tt>, for example <tt>
</p>
<pre>
public class MyLexer extends antlr.CharScanner
  implements LTokenTypes, TokenStream
{
  public L(InputStream in) {
          this(new ByteBuffer(in));
  }
  public L(Reader in) {
          this(new CharBuffer(in));
  }
  public L(InputBuffer ib) {
          this(new LexerSharedInputState(ib));
  }
  public L(LexerSharedInputState state) {
          super(state);
          caseSensitiveLiterals = true;
          setCaseSensitive(true);
          literals = new Hashtable();
  }

  public Token nextToken() throws TokenStreamException {
     <i>scanning logic</i>
    ...
  }
  <i>recursive and other non-inlined lexical methods</i>
  ...
}
</tt>  </pre> 
<p>
	When an ANTLR-generated parser needs another token from its lexer, it calls a method called <tt>nextToken</tt>. The general form of the <tt>nextToken</tt> method is: <tt>
</p>
<pre>
public Token nextToken()
  throws TokenStreamException {
  int tt;
  for (;;) {
     try {
        resetText();
        switch ( c ) {
        <i>case for each char predicting lexical rule</i>
           <i>call lexical rule gets token type -&gt;</i> tt
        default :
           throw new NoViableAltForCharException(
               &quot;bad char: '&quot;+(char)c+&quot;'&quot;);
        }
        if ( tt!=Token.SKIP ) {
           return makeToken(tt);
        }
     }
     catch (RecognitionException ex) {
        reportError(ex.toString());
     }
  }
}
</tt>  </pre> 
<p>
	For example, the lexical rules: <tt>
</p>
<pre>
lexclass Lex;

WS   : ('\t' | '\r' | ' ') {_ttype=Token.SKIP;} ;
PLUS : '+';
MINUS: '-';
INT  : ( '0'..'9' )+ ;
ID   : ( 'a'..'z' )+ ;
UID  : ( 'A'..'Z' )+ ;
</tt>  would result in something like:  <tt></pre> <pre>
public class Lex extends CharScanner
  implements TTokenTypes {
...
public Token nextToken()
    throws TokenStreamException {
    int _tt = Token.EOF_TYPE;
    for (;;) {
    try {
       resetText();
       switch ( _c ) {
       case '\t': case '\r': case ' ': 
           _tt=mWS();
           break;
       case '+': 
           _tt=mPLUS();
           break;
       case '-': 
           _tt=mMINUS();
           break;
       case '0': case '1': case '2': case '3': 
       case '4': case '5': case '6': case '7': 
       case '8': case '9': 
           _tt=mINT();
           break;
       case 'a': case 'b': case 'c': case 'd': 
       case 'e': case 'f': case 'g': case 'h': 
       case 'i': case 'j': case 'k': case 'l': 
       case 'm': case 'n': case 'o': case 'p': 
       case 'q': case 'r': case 's': case 't': 
       case 'u': case 'v': case 'w': case 'x': 
       case 'y': case 'z': 
           _tt=mID();
           break;
       case 'A': case 'B': case 'C': case 'D': 
       case 'E': case 'F': case 'G': case 'H': 
       case 'I': case 'J': case 'K': case 'L': 
       case 'M': case 'N': case 'O': case 'P': 
       case 'Q': case 'R': case 'S': case 'T': 
       case 'U': case 'V': case 'W': case 'X': 
       case 'Y': case 'Z': 
           _tt=mUID();
           break;
       case EOF_CHAR :
           _tt = Token.EOF_TYPE;
           break;
       default :
          throw new NoViableAltForCharException(
               &quot;invalid char &quot;+_c);
       }
       if ( _tt!=Token.SKIP ) {
           return makeToken(_tt);
       }
    }  // try
	catch (RecognitionException ex) {
	  reportError(ex.toString());
	}
	}  // for
}

public int mWS()
    throws RecognitionException,
           CharStreamException,
           TokenStreamException {
    int _ttype = WS;
    switch ( _c) {
    case '\t': 
        match('\t');
        break;
    case '\r': 
        match('\r');
        break;
    case ' ': 
        match(' ');
        break;
    default :
    {
        throw new NoViableAltForException(
               &quot;no viable for char: &quot;+(char)_c);
    }
    }
     _ttype = Token.SKIP;
    return _ttype;
}

public int mPLUS()
    throws RecognitionException,
           CharStreamException,
           TokenStreamException {
    int _ttype = PLUS;
    match('+');
    return _ttype;
}

public int mMINUS()
    throws RecognitionException,
           CharStreamException,
           TokenStreamException {

    int _ttype = MINUS;
    match('-');
    return _ttype;
}

public int mINT()
    throws RecognitionException,
           CharStreamException,
           TokenStreamException {

    int _ttype = INT;
    {
    int _cnt=0;
    _loop:
    do {
        if ( _c&gt;='0' &amp;&amp; _c&lt;='9')
          { matchRange('0','9'); }
        else
        if ( _cnt&gt;=1 ) break _loop;
        else {
           throw new ScannerException(
              &quot;no viable alternative for char: &quot;+
                (char)_c);
        }
        _cnt++;
    } while (true);
    }
    return _ttype;
}

public int mID()
    throws RecognitionException,
           CharStreamException,
           TokenStreamException {
    int _ttype = ID;
    {
    int _cnt=0;
    _loop:
    do {
        if ( _c&gt;='a' &amp;&amp; _c&lt;='z')
        { matchRange('a','z'); }
        else
        if ( _cnt&gt;=1 ) break _loop;
        else {
            throw new NoViableAltForCharException(
               &quot;no viable alternative for char: &quot;+
                 (char)_c);
        }
        _cnt++;
        } while (true);
    }
    return _ttype;
}

public int mUID()
    throws RecognitionException,
           CharStreamException,
           TokenStreamException {

    int _ttype = UID;
    {
    int _cnt=0;
    _loop:
    do {
        if ( _c&gt;='A' &amp;&amp; _c&lt;='Z')
        { matchRange('A','Z'); }
        else
        if ( _cnt&gt;=1 ) break _loop;
        else {
            throw new NoViableAltForCharException(
               &quot;no viable alternative for char: &quot;+
                 (char)_c);
        }
        _cnt++;
    } while (true);
    }
    return _ttype;
}

}
</tt>  </pre> 
<p>
	ANTLR-generated lexers assume that you will be reading streams of characters. If this is not the case, you must create your own lexer. 
</p>
<h3><a name="_bb13">Creating Your Own Lexer</a></h3> 
<p>
	To create your own lexer, your Java class that will doing the lexing must implement interface <tt>TokenStream</tt>, which simply states that you must be able to return a stream of tokens via <tt>nextToken</tt>: <tt>
</p>
<pre>
/**This interface allows any object to
 * pretend it is a stream of tokens.
 * @author Terence Parr, MageLang Institute
 */
public interface TokenStream {
  public Token nextToken();
}
</tt>  </pre> 
<p>
	ANTLR will not generate a lexer if you do not specify a lexical class. 
</p>
<p>
	Launching a parser with a non-ANTLR-generated lexer is the same as launching a parser with an ANTLR-generated lexer: 
</p>
<tt><pre>HandBuiltLexer lex = new HandBuiltLexer(...);
MyParser p = new MyParser(lex);
p.<i>start-rule</i>();</tt></pre> 
<p>
	The parser does not care what kind of object you use for scanning as as long as it can answer <tt>nextToken</tt>. 
</p>
<p>
	If you build your own lexer, and the token values are also generated by that lexer, then you should inform the ANTLR-generated parsers about the token type values generated by that lexer. Use the <a href="options.html#importVocab">importVocab</a> in the parsers that use the externally-generated token set, and create a token definition file following the requirements of the importVocab option. 
</p>
<h3><a name="_bb14"></a><a name="Lexical Rules">Lexical Rules</a> </h3> 
<p>
	Lexical rules are essentially the same as parser rules except that lexical rules apply a structure to a series of characters rather than a series of tokens. As with parser rules, each lexical rule results in a method in the output lexer class. 
</p>
<p>
	<b>Alternative blocks.</b> Consider a simple series of alternatives within a block: <tt>
</p>
<pre>
FORMAT : 'x' | 'f' | 'd';
</tt>  </pre> 
<p>
	The lexer would contain the following method: <tt>
</p>
<pre>
public int mFORMAT() {
  if ( c=='x' ) {
    match('x');
  }
  else if ( c=='x' ) {
    match('x');
  }
  else if ( c=='f' ) {
    match('f');
  }
  else if ( c=='d' ) {
    match('d');
  }
  else {
    throw new NoViableAltForCharException(
        &quot;no viable alternative: '&quot;+(char)c+&quot;'&quot;);
  }
  return FORMAT;
}
</tt>  </pre> 
<p>
	The only real differences between lexical methods and grammar methods are that lookahead prediction expressions do character comparisons rather than <tt>LA(i)</tt> comparisons, <tt>match</tt> matches characters instead of tokens, a <tt>return</tt> is added to the bottom of the rule, and lexical methods throw <tt>CharStreamException</tt> objects in addition to <font face="Courier New">TokenStreamException</font> and <font face="Courier New">RecognitionException</font> objects. 
</p>
<p>
	<b>Optimization: Non-Recursive lexical rules.</b> Rules that do not directly or indirectly call themselves can be inlined into the lexer entry method: <tt>nextToken</tt>. For example, the common identifier rule would be placed directly into the <tt>nextToken</tt> method. That is, rule: <tt>
</p>
<pre>
ID  :   ( 'a'..'z' | 'A'..'Z' )+
    ;
</tt> </pre> 
<p>
	would not result in a method in your lexer class. This rule would become part of the resulting lexer as it would be probably inlined by ANTLR: <tt>
</p>
<pre>
public Token nextToken() {
  switch ( c ) {
  <i>cases for operators and such here</i>
  case '0': // chars that predict ID token
  case '1':
  case '2':
  case '3':
  case '4':
  case '5':
  case '6':
  case '7':
  case '8':
  case '9':
    while ( c&gt;='0' &amp;&amp; c&lt;='9' ) {
      matchRange('0','9');
    }
    return makeToken(ID);
  default :
    <i>check harder stuff here like rules
      beginning with a..z</i>
}
</tt>  </pre> 
<p>
	If not inlined, the method for scanning identifiers would look like: <tt>
</p>
<pre>
public int mID() {
  while ( c&gt;='0' &amp;&amp; c&lt;='9' ) {
    matchRange('0','9');
  }
  return ID;
}
</tt>  </pre> 
<p>
	where token names are converted to method names by prefixing them with the letter <tt>m</tt>. The <tt>nextToken</tt> method would become: <tt>
</p>
<pre>
public Token nextToken() {
  switch ( c ) {
  <i>cases for operators and such here</i>
  case '0': // chars that predict ID token
  case '1':
  case '2':
  case '3':
  case '4':
  case '5':
  case '6':
  case '7':
  case '8':
  case '9':
    return makeToken(mID());
  default :
    <i>check harder stuff here like rules
      beginning with a..z</i>
}
</tt>  </pre> 
<p>
	Note that this type of range loop is so common that it should probably be optimized to: <tt>
</p>
<pre>
while ( c&gt;='0' &amp;&amp; c&lt;='9' ) {
  consume();
}
</tt>  </pre> 
<p>
	<b>Optimization: Recursive lexical rules.</b> Lexical rules that are directly or indirectly recursive are not inlined. For example, consider the following rule that matches nested actions: <tt>
</p>
<pre>
ACTION
    :   '{' ( ACTION | ~'}' )* '}'
    ;
</tt>  </pre> 
<p>
	<tt>ACTION</tt> would be result in (assuming a character vocabulary of 'a'..'z', '{', '}'): <tt>
</p>
<pre>
public int mACTION()
    throws RecognitionException,
           CharStreamException,
           TokenStreamException {

    int _ttype = ACTION;
    match('{');
    {
    _loop:
    do {
        switch ( _c) {
        case '{':
            mACTION();
            break;
        case 'a': case 'b': case 'c': case 'd':
        case 'e': case 'f': case 'g': case 'h':
        case 'i': case 'j': case 'k': case 'l':
        case 'm': case 'n': case 'o': case 'p':
        case 'q': case 'r': case 's': case 't':
        case 'u': case 'v': case 'w': case 'x':
        case 'y': case 'z':
            matchNot('}');
            break;
        default :
            break _loop;
        }
    } while (true);
    }
    match('}');
    return _ttype;
}
</tt>       </pre> <h2><a name="_bb15">Token Objects</a></h2> 
<p>
	The basic token knows only about a token type:
</p>
<pre><tt>public class Token {
  // constants
  public static final int MIN_USER_TYPE = 3;
  public static final int INVALID_TYPE = 0;
  public static final int EOF_TYPE = 1;
  public static final int SKIP = -1;
  
  // each Token has at least a token type
  int type=INVALID_TYPE;
  
  // the illegal token object
  public static Token badToken =
    new Token(INVALID_TYPE, &quot;<no text>&quot;);
  
  public Token() {;}
  public Token(int t) { type = t; }
  public Token(int t, String txt) {
    type = t; setText(txt);
  }

  public void setType(int t) { type = t; }
  public void setLine(int l) {;}
  public void setColumn(int c) {;}
  public void setText(String t) {;}
  
  public int getType() { return type; }
  public int getLine() { return 0; }
  public int getColumn() { return 0; }
  public String getText() {...}
}
</tt></pre> 
	<p>
		The raw <tt>Token</tt> class is not very useful.&nbsp; ANTLR supplies a &quot;common&quot; token class that it uses by default, which contains the line number and text associated with the token:<tt>
	</p>
	</tt>
	<p>
		<tt>public class CommonToken extends Token {
			<br>
			&nbsp; // most tokens will want line, text information
			<br>
			&nbsp; int line;
			<br>
			&nbsp; String text = null;
			<br>
			&nbsp; 
			<br>
			&nbsp; public CommonToken() {}
			<br>
			&nbsp; public CommonToken(String s)&nbsp; { text = s; }
			<br>
			&nbsp; public CommonToken(int t, String txt) {
			<br>
			&nbsp;&nbsp;&nbsp; type = t;
			<br>
			&nbsp;&nbsp;&nbsp; setText(txt);
			<br>
			&nbsp; }
			<br>
			<br>
			&nbsp; public void setLine(int l)&nbsp;&nbsp;&nbsp; { line = l; }
			<br>
			&nbsp; public int&nbsp; getLine()&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; { return line; }
			<br>
			&nbsp; public void setText(String s) { text = s; }
			<br>
			&nbsp; public String getText()&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; { return text; }
			<br>
			}</tt>
	</p>
	<p>
		ANTLR will generate an interface that defines the types of tokens in a token vocabulary. Parser and lexers that share this token vocabulary are generated such that they implement the resulting token types interface: <tt>
	</p>
<pre>public interface MyLexerTokenTypes {
  public static final int ID = 2;
  public static final int BEGIN = 3;
  ...
}</tt></pre> 
	<p>
		ANTLR defines a token object for use with the <small><font face="Courier New">TokenStreamHiddenTokenFilter</font></small> object called <small><font face="Courier New">CommonHiddenStreamToken</font></small>:
	</p>
<pre>public class CommonHiddenStreamToken
  extends CommonToken {
  protected CommonHiddenStreamToken hiddenBefore;
  protected CommonHiddenStreamToken hiddenAfter;

  public CommonHiddenStreamToken
    <strong>getHiddenAfter</strong>() {...}
  public CommonHiddenStreamToken
    <strong>getHiddenBefore</strong>() {...}
}</pre> 
	<p>
		Hidden tokens are weaved amongst the normal tokens.&nbsp; Note that, for garbage collection reasons, hidden tokens never point back to normal tokens (preventing a linked list of the entire token stream).
	</p>
	<h2><a name="_bb16">Token Lookahead Buffer</a></h2> 
	<p>
		The parser must always have fast access to k symbols of lookahead. In a world without syntactic predicates, a simple buffer of k <tt>Token</tt> references would suffice. However, given that even LL(1) ANTLR parsers must be able to backtrack, an arbitrarily-large buffer of <tt>Token</tt> references must be maintained. <tt>LT(i)</tt> looks into the token buffer. 
	</p>
	<p>
		Fortunately, the parser itself does not implement the token-buffering and lookahead algorithm. That is handled by the <tt>TokenBuffer</tt> object. We begin the discussion of lookahead by providing an LL(k) parser framework: <tt>
	</p>
<pre>
public class LLkParser extends Parser {
   TokenBuffer input;
   public int LA(int i) {
      return input.LA(i);
   }
   public Token LT(int i) {
      return input.LT(i);
   }
   public void consume() {
      input.consume();
   }
}
</tt>       </pre> 
	<p>
		All lookahead-related calls are simply forwarded to the <tt>TokenBuffer</tt> object. In the future, some simple caching may be performed in the parser itself to avoid the extra indirection, or ANTLR may generate the call to input.LT(i) directly. 
	</p>
	<p>
		The <tt>TokenBuffer</tt> object caches the token stream emitted by the scanner. It supplies <tt>LT()</tt> and <tt>LA()</tt> methods for accessing the k<sup>th</sup> lookahead token or token type, as well as methods for consuming tokens, guessing, and backtracking. <tt>
	</p>
<pre>
public class TokenBuffer {
   ...
   /** Mark another token for
    *  deferred consumption */
   public final void consume() {...}

   /** Get a lookahead token */
   public final Token LT(int i) { ... }

   /** Get a lookahead token value */
   public final int LA(int i) { ... }

   /**Return an integer marker that can be used to
    * rewind the buffer to its current state. */
   public final int mark() { ... }

   /**Rewind the token buffer to a marker.*/
   public final void rewind(int mark) { ... }
}
</pre> </tt>
	<p>
		To begin backtracking, a <tt>mark</tt> is issued, which makes the <tt>TokenBuffer</tt> record the current position so that it can rewind the token stream. A subsequent <tt>rewind</tt> directive will reset the internal state to the point before the last <tt>mark</tt>. 
	</p>
	<p>
		Consider the following rule that employs backtracking: 
	</p>
	<tt><pre>
stat:   (list EQUAL) =&gt; list EQUAL list
    |   list
    ;
list:   LPAREN (ID)* RPAREN
    ;
</tt> </pre> 
<p>
	Something like the following code would be generated: <tt>
</p>
<pre>
public void stat()
  throws RecognitionException,
         TokenStreamException
{
  boolean synPredFailed;
  if ( LA(1)==LPAREN ) { // check lookahead
    int marker = tokenBuffer.mark();
    try {
      list();
      match(EQUAL);
      synPredFailed = false;
    }
    catch (RecognitionException e) {
      tokenBuffer.rewind(marker);
      synPredFailed = true;
    }
  }
  if ( LA(1)==LPAREN &amp;&amp; !synPredFailed ) {
    // test prediction of alt 1
    list();
    match(EQUAL);
    list();
  }
  else if ( LA(1)==LPAREN ) {
    list();
  }
}
</tt>      </pre> 
<p>
	The token lookahead buffer uses a circular token buffer to perform quick indexed access to the lookahead tokens. The circular buffer is expanded as necessary to calculate LT(i) for arbitrary i. <tt>TokenBuffer.consume()</tt> does not actually read more tokens. Instead, it defers the read by counting how many tokens have been consumed, and then adjusts the token buffer and/or reads new tokens when LA() or LT() is called. 
</p>
<p>
	<font face="Arial" size="2">Version: $Id: //depot/code/org.antlr/release/antlr-2.7.5/doc/runtime.html#1 $</font> 
</body>
</html>
Back to Top