jungerl /lib/syntax_tools/doc/erl_syntax.html

Language HTML Lines 2608
MD5 Hash c88080a99e6714ed35d735276bae267c
Repository https://github.com/bmizerany/jungerl.git View Raw File View Project SPDX
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Module erl_syntax</title>
<link rel="stylesheet" type="text/css" href="stylesheet.css">
</head>
<body bgcolor="white">
<h1>Module erl_syntax</h1>
Abstract Erlang syntax trees.<ul><li><a href="#description">Description</a></li><li><a href="#types">Data Types</a></li><li><a href="#index">Function Index</a></li><li><a href="#functions">Function Details</a></li></ul><h2><a name="description">Description</a></h2>Abstract Erlang syntax trees.
 
  <p> This module defines an abstract data type for representing Erlang
  source code as syntax trees, in a way that is backwards compatible
  with the data structures created by the Erlang standard library
  parser module <code>erl_parse</code> (often referred to as "parse
  trees", which is a bit of a misnomer). This means that all
  <code>erl_parse</code> trees are valid abstract syntax trees, but the
  reverse is not true: abstract syntax trees can in general not be used
  as input to functions expecting an <code>erl_parse</code> tree.
  However, as long as an abstract syntax tree represents a correct
  Erlang program, the function <a href="#revert-1"><code>revert/1</code></a> should be able to
  transform it to the corresponding <code>erl_parse</code>
  representation.</p>
 
  <p>A recommended starting point for the first-time user is the
  documentation of the <a href="#type-syntaxTree"><code>syntaxTree()</code></a> data type, and
  the function <a href="#type-1"><code>type/1</code></a>.</p>
 
  <h3><b>NOTES:</b></h3>
 
  <p>This module deals with the composition and decomposition of
  <em>syntactic</em> entities (as opposed to semantic ones); its
  purpose is to hide all direct references to the data structures used
  to represent these entities. With few exceptions, the functions in
  this module perform no semantic interpretation of their inputs, and
  in general, the user is assumed to pass type-correct arguments - if
  this is not done, the effects are not defined.</p>
 
  <p>With the exception of the <code>erl_parse</code> data structures,
  the internal representations of abstract syntax trees are subject to
  change without notice, and should not be documented outside this
  module. Furthermore, we do not give any guarantees on how an abstract
  syntax tree may or may not be represented, <em>with the following
  exceptions</em>: no syntax tree is represented by a single atom, such
  as <code>none</code>, by a list constructor <code>[X | Y]</code>, or
  by the empty list <code>[]</code>. This can be relied on when writing
  functions that operate on syntax trees.</p>
 
<h2><a name="types">Data Types</a></h2>

<h3><a name="type-erl_parse">erl_parse()</a></h3>
<p><tt>erl_parse() = <a href="/usr/local/home/richardc/hipe/otp/lib/stdlib/doc/erl_parse.html#type-parse_tree">erl_parse:parse_tree()</a></tt></p>
<p>The "parse tree"
  representation built by the Erlang standard library parser
  <code>erl_parse</code>. This is a subset of the
  <a href="#type-syntaxTree"><code>syntaxTree</code></a> type.
 </p>

<h3><a name="type-syntaxTree">syntaxTree()</a></h3>
<p><b>abstract datatype</b>: <tt>syntaxTree()</tt></p>
<p>An abstract syntax tree. The
  <code>erl_parse</code> "parse tree" representation is a subset of the
  <code>syntaxTree()</code> representation.
 
  <p>Every abstract syntax tree node has a <em>type</em>, given by the
  function <a href="#type-1"><code>type/1</code></a>. Each node also
  has associated <em>attributes</em>; see <a href="#get_attrs-1"><code>get_attrs/1</code></a> for details. The
  functions <a href="#make_tree-2"><code>make_tree/2</code></a> and <a href="#subtrees-1"><code>subtrees/1</code></a> are generic
  constructor/decomposition functions for abstract syntax trees. The
  functions <a href="#abstract-1"><code>abstract/1</code></a> and <a href="#concrete-1"><code>concrete/1</code></a> convert between
  constant Erlang terms and their syntactic representations. The set of
  syntax tree nodes is extensible through the <a href="#tree-2"><code>tree/2</code></a> function.</p>
 
  <p>A syntax tree can be transformed to the <code>erl_parse</code>
  representation with the <a href="#revert-1"><code>revert/1</code></a>
  function.</p>
 </p>

<h3><a name="type-syntaxTreeAttributes">syntaxTreeAttributes()</a></h3>
<p><b>abstract datatype</b>: <tt>syntaxTreeAttributes()</tt></p>
<p>This is an abstract representation of
  syntax tree node attributes; see the function <a href="#get_attrs-1"><code>get_attrs/1</code></a>.
 </p>

<h2><a name="index">Function Index</a></h2>
<table width="100%" border="1"><tr><td valign="top"><a href="#abstract-1">abstract/1</a></td><td>Returns the syntax tree corresponding to an Erlang term.</td></tr>
<tr><td valign="top"><a href="#add_ann-2">add_ann/2</a></td><td>Appends the term <code>Annotation</code> to the list of user
  annotations of <code>Node</code>.</td></tr>
<tr><td valign="top"><a href="#add_postcomments-2">add_postcomments/2</a></td><td>Appends <code>Comments</code> to the post-comments of
  <code>Node</code>.</td></tr>
<tr><td valign="top"><a href="#add_precomments-2">add_precomments/2</a></td><td>Appends <code>Comments</code> to the pre-comments of
  <code>Node</code>.</td></tr>
<tr><td valign="top"><a href="#application-2">application/2</a></td><td>Creates an abstract function application expression.</td></tr>
<tr><td valign="top"><a href="#application-3">application/3</a></td><td>Creates an abstract function application expression.</td></tr>
<tr><td valign="top"><a href="#application_arguments-1">application_arguments/1</a></td><td>Returns the list of argument subtrees of an
  <code>application</code> node.</td></tr>
<tr><td valign="top"><a href="#application_operator-1">application_operator/1</a></td><td>Returns the operator subtree of an <code>application</code>
  node.</td></tr>
<tr><td valign="top"><a href="#arity_qualifier-2">arity_qualifier/2</a></td><td>Creates an abstract arity qualifier.</td></tr>
<tr><td valign="top"><a href="#arity_qualifier_argument-1">arity_qualifier_argument/1</a></td><td>Returns the argument (the arity) subtree of an
  <code>arity_qualifier</code> node.</td></tr>
<tr><td valign="top"><a href="#arity_qualifier_body-1">arity_qualifier_body/1</a></td><td>Returns the body subtree of an <code>arity_qualifier</code>
  node.</td></tr>
<tr><td valign="top"><a href="#atom-1">atom/1</a></td><td>Creates an abstract atom literal.</td></tr>
<tr><td valign="top"><a href="#atom_literal-1">atom_literal/1</a></td><td>Returns the literal string represented by an <code>atom</code>
  node.</td></tr>
<tr><td valign="top"><a href="#atom_name-1">atom_name/1</a></td><td>Returns the printname of an <code>atom</code> node.</td></tr>
<tr><td valign="top"><a href="#atom_value-1">atom_value/1</a></td><td>Returns the value represented by an <code>atom</code> node.</td></tr>
<tr><td valign="top"><a href="#attribute-1">attribute/1</a></td><td><p>Equivalent to <a href="#attribute-2"><tt>attribute(Name, none)</tt></a>.</p>
</td></tr>
<tr><td valign="top"><a href="#attribute-2">attribute/2</a></td><td>Creates an abstract program attribute.</td></tr>
<tr><td valign="top"><a href="#attribute_arguments-1">attribute_arguments/1</a></td><td>Returns the list of argument subtrees of an
  <code>attribute</code> node, if any.</td></tr>
<tr><td valign="top"><a href="#attribute_name-1">attribute_name/1</a></td><td>Returns the name subtree of an <code>attribute</code> node.</td></tr>
<tr><td valign="top"><a href="#binary-1">binary/1</a></td><td>Creates an abstract binary-object template.</td></tr>
<tr><td valign="top"><a href="#binary_field-1">binary_field/1</a></td><td><p>Equivalent to <a href="#binary_field-2"><tt>binary_field(Body, [])</tt></a>.</p>
</td></tr>
<tr><td valign="top"><a href="#binary_field-2">binary_field/2</a></td><td>Creates an abstract binary template field.</td></tr>
<tr><td valign="top"><a href="#binary_field-3">binary_field/3</a></td><td>Creates an abstract binary template field.</td></tr>
<tr><td valign="top"><a href="#binary_field_body-1">binary_field_body/1</a></td><td>Returns the body subtree of a <code>binary_field</code>.</td></tr>
<tr><td valign="top"><a href="#binary_field_size-1">binary_field_size/1</a></td><td>Returns the size specifier subtree of a
  <code>binary_field</code> node, if any.</td></tr>
<tr><td valign="top"><a href="#binary_field_types-1">binary_field_types/1</a></td><td>Returns the list of type-specifier subtrees of a
  <code>binary_field</code> node.</td></tr>
<tr><td valign="top"><a href="#binary_fields-1">binary_fields/1</a></td><td>Returns the list of field subtrees of a <code>binary</code>
  node.</td></tr>
<tr><td valign="top"><a href="#block_expr-1">block_expr/1</a></td><td>Creates an abstract block expression.</td></tr>
<tr><td valign="top"><a href="#block_expr_body-1">block_expr_body/1</a></td><td>Returns the list of body subtrees of a <code>block_expr</code>
  node.</td></tr>
<tr><td valign="top"><a href="#case_expr-2">case_expr/2</a></td><td>Creates an abstract case-expression.</td></tr>
<tr><td valign="top"><a href="#case_expr_argument-1">case_expr_argument/1</a></td><td>Returns the argument subtree of a <code>case_expr</code> node.</td></tr>
<tr><td valign="top"><a href="#case_expr_clauses-1">case_expr_clauses/1</a></td><td>Returns the list of clause subtrees of a <code>case_expr</code>
  node.</td></tr>
<tr><td valign="top"><a href="#catch_expr-1">catch_expr/1</a></td><td>Creates an abstract catch-expression.</td></tr>
<tr><td valign="top"><a href="#catch_expr_body-1">catch_expr_body/1</a></td><td>Returns the body subtree of a <code>catch_expr</code> node.</td></tr>
<tr><td valign="top"><a href="#char-1">char/1</a></td><td>Creates an abstract character literal.</td></tr>
<tr><td valign="top"><a href="#char_literal-1">char_literal/1</a></td><td>Returns the literal string represented by a <code>char</code>
  node.</td></tr>
<tr><td valign="top"><a href="#char_value-1">char_value/1</a></td><td>Returns the value represented by a <code>char</code> node.</td></tr>
<tr><td valign="top"><a href="#class_qualifier-2">class_qualifier/2</a></td><td>Creates an abstract class qualifier.</td></tr>
<tr><td valign="top"><a href="#class_qualifier_argument-1">class_qualifier_argument/1</a></td><td>Returns the argument (the class) subtree of a
  <code>class_qualifier</code> node.</td></tr>
<tr><td valign="top"><a href="#class_qualifier_body-1">class_qualifier_body/1</a></td><td>Returns the body subtree of a <code>class_qualifier</code> node.</td></tr>
<tr><td valign="top"><a href="#clause-2">clause/2</a></td><td><p>Equivalent to <a href="#clause-3"><tt>clause([], Guard, Body)</tt></a>.</p>
</td></tr>
<tr><td valign="top"><a href="#clause-3">clause/3</a></td><td>Creates an abstract clause.</td></tr>
<tr><td valign="top"><a href="#clause_body-1">clause_body/1</a></td><td>Return the list of body subtrees of a <code>clause</code>
  node.</td></tr>
<tr><td valign="top"><a href="#clause_guard-1">clause_guard/1</a></td><td>Returns the guard subtree of a <code>clause</code> node, if
  any.</td></tr>
<tr><td valign="top"><a href="#clause_patterns-1">clause_patterns/1</a></td><td>Returns the list of pattern subtrees of a <code>clause</code>
  node.</td></tr>
<tr><td valign="top"><a href="#comment-1">comment/1</a></td><td><p>Equivalent to <a href="#comment-2"><tt>comment(none, Strings)</tt></a>.</p>
</td></tr>
<tr><td valign="top"><a href="#comment-2">comment/2</a></td><td>Creates an abstract comment with the given padding and text.</td></tr>
<tr><td valign="top"><a href="#comment_padding-1">comment_padding/1</a></td><td>Returns the amount of padding before the comment, or
  <code>none</code>.</td></tr>
<tr><td valign="top"><a href="#comment_text-1">comment_text/1</a></td><td>Returns the lines of text of the abstract comment.</td></tr>
<tr><td valign="top"><a href="#compact_list-1">compact_list/1</a></td><td>Yields the most compact form for an abstract list skeleton.</td></tr>
<tr><td valign="top"><a href="#concrete-1">concrete/1</a></td><td>Returns the Erlang term represented by a syntax tree.</td></tr>
<tr><td valign="top"><a href="#cond_expr-1">cond_expr/1</a></td><td>Creates an abstract cond-expression.</td></tr>
<tr><td valign="top"><a href="#cond_expr_clauses-1">cond_expr_clauses/1</a></td><td>Returns the list of clause subtrees of a <code>cond_expr</code>
  node.</td></tr>
<tr><td valign="top"><a href="#conjunction-1">conjunction/1</a></td><td>Creates an abstract conjunction.</td></tr>
<tr><td valign="top"><a href="#conjunction_body-1">conjunction_body/1</a></td><td>Returns the list of body subtrees of a
  <code>conjunction</code> node.</td></tr>
<tr><td valign="top"><a href="#cons-2">cons/2</a></td><td>"Optimising" list skeleton cons operation.</td></tr>
<tr><td valign="top"><a href="#copy_ann-2">copy_ann/2</a></td><td>Copies the list of user annotations from <code>Source</code> to
  <code>Target</code>.</td></tr>
<tr><td valign="top"><a href="#copy_attrs-2">copy_attrs/2</a></td><td>Copies the attributes from <code>Source</code> to
  <code>Target</code>.</td></tr>
<tr><td valign="top"><a href="#copy_comments-2">copy_comments/2</a></td><td>Copies the pre- and postcomments from <code>Source</code> to
  <code>Target</code>.</td></tr>
<tr><td valign="top"><a href="#copy_pos-2">copy_pos/2</a></td><td>Copies the position information from <code>Source</code> to
  <code>Target</code>.</td></tr>
<tr><td valign="top"><a href="#data-1">data/1</a></td><td><em>For special purposes only</em>.</td></tr>
<tr><td valign="top"><a href="#disjunction-1">disjunction/1</a></td><td>Creates an abstract disjunction.</td></tr>
<tr><td valign="top"><a href="#disjunction_body-1">disjunction_body/1</a></td><td>Returns the list of body subtrees of a
  <code>disjunction</code> node.</td></tr>
<tr><td valign="top"><a href="#eof_marker-0">eof_marker/0</a></td><td>Creates an abstract end-of-file marker.</td></tr>
<tr><td valign="top"><a href="#error_marker-1">error_marker/1</a></td><td>Creates an abstract error marker.</td></tr>
<tr><td valign="top"><a href="#error_marker_info-1">error_marker_info/1</a></td><td>Returns the ErrorInfo structure of an <code>error_marker</code>
  node.</td></tr>
<tr><td valign="top"><a href="#flatten_form_list-1">flatten_form_list/1</a></td><td>Flattens sublists of a <code>form_list</code> node.</td></tr>
<tr><td valign="top"><a href="#float-1">float/1</a></td><td>Creates an abstract floating-point literal.</td></tr>
<tr><td valign="top"><a href="#float_literal-1">float_literal/1</a></td><td>Returns the numeral string represented by a <code>float</code>
  node.</td></tr>
<tr><td valign="top"><a href="#float_value-1">float_value/1</a></td><td>Returns the value represented by a <code>float</code> node.</td></tr>
<tr><td valign="top"><a href="#form_list-1">form_list/1</a></td><td>Creates an abstract sequence of "source code forms".</td></tr>
<tr><td valign="top"><a href="#form_list_elements-1">form_list_elements/1</a></td><td>Returns the list of subnodes of a <code>form_list</code> node.</td></tr>
<tr><td valign="top"><a href="#fun_expr-1">fun_expr/1</a></td><td>Creates an abstract fun-expression.</td></tr>
<tr><td valign="top"><a href="#fun_expr_arity-1">fun_expr_arity/1</a></td><td>Returns the arity of a <code>fun_expr</code> node.</td></tr>
<tr><td valign="top"><a href="#fun_expr_clauses-1">fun_expr_clauses/1</a></td><td>Returns the list of clause subtrees of a <code>fun_expr</code>
  node.</td></tr>
<tr><td valign="top"><a href="#function-2">function/2</a></td><td>Creates an abstract function definition.</td></tr>
<tr><td valign="top"><a href="#function_arity-1">function_arity/1</a></td><td>Returns the arity of a <code>function</code> node.</td></tr>
<tr><td valign="top"><a href="#function_clauses-1">function_clauses/1</a></td><td>Returns the list of clause subtrees of a <code>function</code>
  node.</td></tr>
<tr><td valign="top"><a href="#function_name-1">function_name/1</a></td><td>Returns the name subtree of a <code>function</code> node.</td></tr>
<tr><td valign="top"><a href="#generator-2">generator/2</a></td><td>Creates an abstract generator.</td></tr>
<tr><td valign="top"><a href="#generator_body-1">generator_body/1</a></td><td>Returns the body subtree of a <code>generator</code> node.</td></tr>
<tr><td valign="top"><a href="#generator_pattern-1">generator_pattern/1</a></td><td>Returns the pattern subtree of a <code>generator</code> node.</td></tr>
<tr><td valign="top"><a href="#get_ann-1">get_ann/1</a></td><td>Returns the list of user annotations associated with a syntax
  tree node.</td></tr>
<tr><td valign="top"><a href="#get_attrs-1">get_attrs/1</a></td><td>Returns a representation of the attributes associated with a
  syntax tree node.</td></tr>
<tr><td valign="top"><a href="#get_pos-1">get_pos/1</a></td><td>Returns the position information associated with
  <code>Node</code>.</td></tr>
<tr><td valign="top"><a href="#get_postcomments-1">get_postcomments/1</a></td><td>Returns the associated post-comments of a node.</td></tr>
<tr><td valign="top"><a href="#get_precomments-1">get_precomments/1</a></td><td>Returns the associated pre-comments of a node.</td></tr>
<tr><td valign="top"><a href="#has_comments-1">has_comments/1</a></td><td>Yields <code>false</code> if the node has no associated
  comments, and <code>true</code> otherwise.</td></tr>
<tr><td valign="top"><a href="#if_expr-1">if_expr/1</a></td><td>Creates an abstract if-expression.</td></tr>
<tr><td valign="top"><a href="#if_expr_clauses-1">if_expr_clauses/1</a></td><td>Returns the list of clause subtrees of an <code>if_expr</code>
  node.</td></tr>
<tr><td valign="top"><a href="#implicit_fun-1">implicit_fun/1</a></td><td>Creates an abstract "implicit fun" expression.</td></tr>
<tr><td valign="top"><a href="#implicit_fun-2">implicit_fun/2</a></td><td>Creates an abstract "implicit fun" expression.</td></tr>
<tr><td valign="top"><a href="#implicit_fun_name-1">implicit_fun_name/1</a></td><td>Returns the name subtree of an <code>implicit_fun</code> node.</td></tr>
<tr><td valign="top"><a href="#infix_expr-3">infix_expr/3</a></td><td>Creates an abstract infix operator expression.</td></tr>
<tr><td valign="top"><a href="#infix_expr_left-1">infix_expr_left/1</a></td><td>Returns the left argument subtree of an
  <code>infix_expr</code> node.</td></tr>
<tr><td valign="top"><a href="#infix_expr_operator-1">infix_expr_operator/1</a></td><td>Returns the operator subtree of an <code>infix_expr</code>
  node.</td></tr>
<tr><td valign="top"><a href="#infix_expr_right-1">infix_expr_right/1</a></td><td>Returns the right argument subtree of an
  <code>infix_expr</code> node.</td></tr>
<tr><td valign="top"><a href="#integer-1">integer/1</a></td><td>Creates an abstract integer literal.</td></tr>
<tr><td valign="top"><a href="#integer_literal-1">integer_literal/1</a></td><td>Returns the numeral string represented by an
  <code>integer</code> node.</td></tr>
<tr><td valign="top"><a href="#integer_value-1">integer_value/1</a></td><td>Returns the value represented by an <code>integer</code> node.</td></tr>
<tr><td valign="top"><a href="#is_atom-2">is_atom/2</a></td><td>Returns <code>true</code> if <code>Node</code> has type
  <code>atom</code> and represents <code>Value</code>, otherwise
  <code>false</code>.</td></tr>
<tr><td valign="top"><a href="#is_char-2">is_char/2</a></td><td>Returns <code>true</code> if <code>Node</code> has type
  <code>char</code> and represents <code>Value</code>, otherwise
  <code>false</code>.</td></tr>
<tr><td valign="top"><a href="#is_form-1">is_form/1</a></td><td>Returns <code>true</code> if <code>Node</code> is a syntax tree
  representing a so-called "source code form", otherwise
  <code>false</code>.</td></tr>
<tr><td valign="top"><a href="#is_integer-2">is_integer/2</a></td><td>Returns <code>true</code> if <code>Node</code> has type
  <code>integer</code> and represents <code>Value</code>, otherwise
  <code>false</code>.</td></tr>
<tr><td valign="top"><a href="#is_leaf-1">is_leaf/1</a></td><td>Returns <code>true</code> if <code>Node</code> is a leaf node,
  otherwise <code>false</code>.</td></tr>
<tr><td valign="top"><a href="#is_list_skeleton-1">is_list_skeleton/1</a></td><td>Returns <code>true</code> if <code>Node</code> has type
  <code>list</code> or <code>nil</code>, otherwise <code>false</code>.</td></tr>
<tr><td valign="top"><a href="#is_literal-1">is_literal/1</a></td><td>Returns <code>true</code> if <code>Node</code> represents a
  literal term, otherwise <code>false</code>.</td></tr>
<tr><td valign="top"><a href="#is_proper_list-1">is_proper_list/1</a></td><td>Returns <code>true</code> if <code>Node</code> represents a
  proper list, and <code>false</code> otherwise.</td></tr>
<tr><td valign="top"><a href="#is_string-2">is_string/2</a></td><td>Returns <code>true</code> if <code>Node</code> has type
  <code>string</code> and represents <code>Value</code>, otherwise
  <code>false</code>.</td></tr>
<tr><td valign="top"><a href="#is_tree-1">is_tree/1</a></td><td><em>For special purposes only</em>.</td></tr>
<tr><td valign="top"><a href="#join_comments-2">join_comments/2</a></td><td>Appends the comments of <code>Source</code> to the current
  comments of <code>Target</code>.</td></tr>
<tr><td valign="top"><a href="#list-1">list/1</a></td><td><p>Equivalent to <a href="#list-2"><tt>list(List, none)</tt></a>.</p>
</td></tr>
<tr><td valign="top"><a href="#list-2">list/2</a></td><td>Constructs an abstract list skeleton.</td></tr>
<tr><td valign="top"><a href="#list_comp-2">list_comp/2</a></td><td>Creates an abstract list comprehension.</td></tr>
<tr><td valign="top"><a href="#list_comp_body-1">list_comp_body/1</a></td><td>Returns the list of body subtrees of a <code>list_comp</code>
  node.</td></tr>
<tr><td valign="top"><a href="#list_comp_template-1">list_comp_template/1</a></td><td>Returns the template subtree of a <code>list_comp</code> node.</td></tr>
<tr><td valign="top"><a href="#list_elements-1">list_elements/1</a></td><td>Returns the list of element subtrees of a list skeleton.</td></tr>
<tr><td valign="top"><a href="#list_head-1">list_head/1</a></td><td>Returns the head element subtree of a <code>list</code> node.</td></tr>
<tr><td valign="top"><a href="#list_length-1">list_length/1</a></td><td>Returns the number of element subtrees of a list skeleton.</td></tr>
<tr><td valign="top"><a href="#list_prefix-1">list_prefix/1</a></td><td>Returns the prefix element subtrees of a <code>list</code> node.</td></tr>
<tr><td valign="top"><a href="#list_suffix-1">list_suffix/1</a></td><td>Returns the suffix subtree of a <code>list</code> node, if one
  exists.</td></tr>
<tr><td valign="top"><a href="#list_tail-1">list_tail/1</a></td><td>Returns the tail of a <code>list</code> node.</td></tr>
<tr><td valign="top"><a href="#macro-1">macro/1</a></td><td><p>Equivalent to <a href="#macro-2"><tt>macro(Name, none)</tt></a>.</p>
</td></tr>
<tr><td valign="top"><a href="#macro-2">macro/2</a></td><td>Creates an abstract macro application.</td></tr>
<tr><td valign="top"><a href="#macro_arguments-1">macro_arguments/1</a></td><td>Returns the list of argument subtrees of a <code>macro</code>
  node, if any.</td></tr>
<tr><td valign="top"><a href="#macro_name-1">macro_name/1</a></td><td>Returns the name subtree of a <code>macro</code> node.</td></tr>
<tr><td valign="top"><a href="#make_tree-2">make_tree/2</a></td><td>Creates a syntax tree with the given type and subtrees.</td></tr>
<tr><td valign="top"><a href="#match_expr-2">match_expr/2</a></td><td>Creates an abstract match-expression.</td></tr>
<tr><td valign="top"><a href="#match_expr_body-1">match_expr_body/1</a></td><td>Returns the body subtree of a <code>match_expr</code> node.</td></tr>
<tr><td valign="top"><a href="#match_expr_pattern-1">match_expr_pattern/1</a></td><td>Returns the pattern subtree of a <code>match_expr</code> node.</td></tr>
<tr><td valign="top"><a href="#meta-1">meta/1</a></td><td>Creates a meta-representation of a syntax tree.</td></tr>
<tr><td valign="top"><a href="#module_qualifier-2">module_qualifier/2</a></td><td>Creates an abstract module qualifier.</td></tr>
<tr><td valign="top"><a href="#module_qualifier_argument-1">module_qualifier_argument/1</a></td><td>Returns the argument (the module) subtree of a
  <code>module_qualifier</code> node.</td></tr>
<tr><td valign="top"><a href="#module_qualifier_body-1">module_qualifier_body/1</a></td><td>Returns the body subtree of a <code>module_qualifier</code>
  node.</td></tr>
<tr><td valign="top"><a href="#nil-0">nil/0</a></td><td>Creates an abstract empty list.</td></tr>
<tr><td valign="top"><a href="#normalize_list-1">normalize_list/1</a></td><td>Expands an abstract list skeleton to its most explicit form.</td></tr>
<tr><td valign="top"><a href="#operator-1">operator/1</a></td><td>Creates an abstract operator.</td></tr>
<tr><td valign="top"><a href="#operator_literal-1">operator_literal/1</a></td><td>Returns the literal string represented by an
  <code>operator</code> node.</td></tr>
<tr><td valign="top"><a href="#operator_name-1">operator_name/1</a></td><td>Returns the name of an <code>operator</code> node.</td></tr>
<tr><td valign="top"><a href="#parentheses-1">parentheses/1</a></td><td>Creates an abstract parenthesised expression.</td></tr>
<tr><td valign="top"><a href="#parentheses_body-1">parentheses_body/1</a></td><td>Returns the body subtree of a <code>parentheses</code> node.</td></tr>
<tr><td valign="top"><a href="#prefix_expr-2">prefix_expr/2</a></td><td>Creates an abstract prefix operator expression.</td></tr>
<tr><td valign="top"><a href="#prefix_expr_argument-1">prefix_expr_argument/1</a></td><td>Returns the argument subtree of a <code>prefix_expr</code>
  node.</td></tr>
<tr><td valign="top"><a href="#prefix_expr_operator-1">prefix_expr_operator/1</a></td><td>Returns the operator subtree of a <code>prefix_expr</code>
  node.</td></tr>
<tr><td valign="top"><a href="#qualified_name-1">qualified_name/1</a></td><td>Creates an abstract qualified name.</td></tr>
<tr><td valign="top"><a href="#qualified_name_segments-1">qualified_name_segments/1</a></td><td>Returns the list of name segments of a
  <code>qualified_name</code> node.</td></tr>
<tr><td valign="top"><a href="#query_expr-1">query_expr/1</a></td><td>Creates an abstract Mnemosyne query expression.</td></tr>
<tr><td valign="top"><a href="#query_expr_body-1">query_expr_body/1</a></td><td>Returns the body subtree of a <code>query_expr</code> node.</td></tr>
<tr><td valign="top"><a href="#receive_expr-1">receive_expr/1</a></td><td><p>Equivalent to <a href="#receive_expr-3"><tt>receive_expr(Clauses, none, [])</tt></a>.</p>
</td></tr>
<tr><td valign="top"><a href="#receive_expr-3">receive_expr/3</a></td><td>Creates an abstract receive-expression.</td></tr>
<tr><td valign="top"><a href="#receive_expr_action-1">receive_expr_action/1</a></td><td>Returns the list of action body subtrees of a
  <code>receive_expr</code> node.</td></tr>
<tr><td valign="top"><a href="#receive_expr_clauses-1">receive_expr_clauses/1</a></td><td>Returns the list of clause subtrees of a
  <code>receive_expr</code> node.</td></tr>
<tr><td valign="top"><a href="#receive_expr_timeout-1">receive_expr_timeout/1</a></td><td>Returns the timeout subtree of a <code>receive_expr</code> node,
  if any.</td></tr>
<tr><td valign="top"><a href="#record_access-2">record_access/2</a></td><td><p>Equivalent to <a href="#record_access-3"><tt>record_access(Argument, none, Field)</tt></a>.</p>
</td></tr>
<tr><td valign="top"><a href="#record_access-3">record_access/3</a></td><td>Creates an abstract record field access expression.</td></tr>
<tr><td valign="top"><a href="#record_access_argument-1">record_access_argument/1</a></td><td>Returns the argument subtree of a <code>record_access</code>
  node.</td></tr>
<tr><td valign="top"><a href="#record_access_field-1">record_access_field/1</a></td><td>Returns the field subtree of a <code>record_access</code>
  node.</td></tr>
<tr><td valign="top"><a href="#record_access_type-1">record_access_type/1</a></td><td>Returns the type subtree of a <code>record_access</code> node,
  if any.</td></tr>
<tr><td valign="top"><a href="#record_expr-2">record_expr/2</a></td><td><p>Equivalent to <a href="#record_expr-3"><tt>record_expr(none, Type, Fields)</tt></a>.</p>
</td></tr>
<tr><td valign="top"><a href="#record_expr-3">record_expr/3</a></td><td>Creates an abstract record expression.</td></tr>
<tr><td valign="top"><a href="#record_expr_argument-1">record_expr_argument/1</a></td><td>Returns the argument subtree of a <code>record_expr</code> node,
  if any.</td></tr>
<tr><td valign="top"><a href="#record_expr_fields-1">record_expr_fields/1</a></td><td>Returns the list of field subtrees of a
  <code>record_expr</code> node.</td></tr>
<tr><td valign="top"><a href="#record_expr_type-1">record_expr_type/1</a></td><td>Returns the type subtree of a <code>record_expr</code> node.</td></tr>
<tr><td valign="top"><a href="#record_field-1">record_field/1</a></td><td><p>Equivalent to <a href="#record_field-2"><tt>record_field(Name, none)</tt></a>.</p>
</td></tr>
<tr><td valign="top"><a href="#record_field-2">record_field/2</a></td><td>Creates an abstract record field specification.</td></tr>
<tr><td valign="top"><a href="#record_field_name-1">record_field_name/1</a></td><td>Returns the name subtree of a <code>record_field</code> node.</td></tr>
<tr><td valign="top"><a href="#record_field_value-1">record_field_value/1</a></td><td>Returns the value subtree of a <code>record_field</code> node,
  if any.</td></tr>
<tr><td valign="top"><a href="#record_index_expr-2">record_index_expr/2</a></td><td>Creates an abstract record field index expression.</td></tr>
<tr><td valign="top"><a href="#record_index_expr_field-1">record_index_expr_field/1</a></td><td>Returns the field subtree of a <code>record_index_expr</code>
  node.</td></tr>
<tr><td valign="top"><a href="#record_index_expr_type-1">record_index_expr_type/1</a></td><td>Returns the type subtree of a <code>record_index_expr</code>
  node.</td></tr>
<tr><td valign="top"><a href="#remove_comments-1">remove_comments/1</a></td><td>Clears the associated comments of <code>Node</code>.</td></tr>
<tr><td valign="top"><a href="#revert-1">revert/1</a></td><td>Returns an <code>erl_parse</code>-compatible representation of a
  syntax tree, if possible.</td></tr>
<tr><td valign="top"><a href="#revert_forms-1">revert_forms/1</a></td><td>Reverts a sequence of Erlang source code forms.</td></tr>
<tr><td valign="top"><a href="#rule-2">rule/2</a></td><td>Creates an abstract Mnemosyne rule.</td></tr>
<tr><td valign="top"><a href="#rule_arity-1">rule_arity/1</a></td><td>Returns the arity of a <code>rule</code> node.</td></tr>
<tr><td valign="top"><a href="#rule_clauses-1">rule_clauses/1</a></td><td>Returns the list of clause subtrees of a <code>rule</code> node.</td></tr>
<tr><td valign="top"><a href="#rule_name-1">rule_name/1</a></td><td>Returns the name subtree of a <code>rule</code> node.</td></tr>
<tr><td valign="top"><a href="#set_ann-2">set_ann/2</a></td><td>Sets the list of user annotations of <code>Node</code> to
  <code>Annotations</code>.</td></tr>
<tr><td valign="top"><a href="#set_attrs-2">set_attrs/2</a></td><td>Sets the attributes of <code>Node</code> to
  <code>Attributes</code>.</td></tr>
<tr><td valign="top"><a href="#set_pos-2">set_pos/2</a></td><td>Sets the position information of <code>Node</code> to
  <code>Pos</code>.</td></tr>
<tr><td valign="top"><a href="#set_postcomments-2">set_postcomments/2</a></td><td>Sets the post-comments of <code>Node</code> to
  <code>Comments</code>.</td></tr>
<tr><td valign="top"><a href="#set_precomments-2">set_precomments/2</a></td><td>Sets the pre-comments of <code>Node</code> to
  <code>Comments</code>.</td></tr>
<tr><td valign="top"><a href="#size_qualifier-2">size_qualifier/2</a></td><td>Creates an abstract size qualifier.</td></tr>
<tr><td valign="top"><a href="#size_qualifier_argument-1">size_qualifier_argument/1</a></td><td>Returns the argument subtree (the size) of a
  <code>size_qualifier</code> node.</td></tr>
<tr><td valign="top"><a href="#size_qualifier_body-1">size_qualifier_body/1</a></td><td>Returns the body subtree of a <code>size_qualifier</code>
  node.</td></tr>
<tr><td valign="top"><a href="#string-1">string/1</a></td><td>Creates an abstract string literal.</td></tr>
<tr><td valign="top"><a href="#string_literal-1">string_literal/1</a></td><td>Returns the literal string represented by a <code>string</code>
  node.</td></tr>
<tr><td valign="top"><a href="#string_value-1">string_value/1</a></td><td>Returns the value represented by a <code>string</code> node.</td></tr>
<tr><td valign="top"><a href="#subtrees-1">subtrees/1</a></td><td>Returns the grouped list of all subtrees of a syntax tree.</td></tr>
<tr><td valign="top"><a href="#text-1">text/1</a></td><td>Creates an abstract piece of source code text.</td></tr>
<tr><td valign="top"><a href="#text_string-1">text_string/1</a></td><td>Returns the character sequence represented by a
  <code>text</code> node.</td></tr>
<tr><td valign="top"><a href="#tree-1">tree/1</a></td><td><p>Equivalent to <a href="#tree-2"><tt>tree(Type, [])</tt></a>.</p>
</td></tr>
<tr><td valign="top"><a href="#tree-2">tree/2</a></td><td><em>For special purposes only</em>.</td></tr>
<tr><td valign="top"><a href="#try_after_expr-2">try_after_expr/2</a></td><td><p>Equivalent to <a href="#try_expr-4"><tt>try_expr(Body, [], [], After)</tt></a>.</p>
</td></tr>
<tr><td valign="top"><a href="#try_expr-2">try_expr/2</a></td><td><p>Equivalent to <a href="#try_expr-3"><tt>try_expr(Body, [], Handlers)</tt></a>.</p>
</td></tr>
<tr><td valign="top"><a href="#try_expr-3">try_expr/3</a></td><td><p>Equivalent to <a href="#try_expr-4"><tt>try_expr(Body, Clauses, Handlers, [])</tt></a>.</p>
</td></tr>
<tr><td valign="top"><a href="#try_expr-4">try_expr/4</a></td><td>Creates an abstract try-expression.</td></tr>
<tr><td valign="top"><a href="#try_expr_after-1">try_expr_after/1</a></td><td>Returns the list of "after" subtrees of a <code>try_expr</code>
  node.</td></tr>
<tr><td valign="top"><a href="#try_expr_body-1">try_expr_body/1</a></td><td>Returns the list of body subtrees of a <code>try_expr</code>
  node.</td></tr>
<tr><td valign="top"><a href="#try_expr_clauses-1">try_expr_clauses/1</a></td><td>Returns the list of case-clause subtrees of a
  <code>try_expr</code> node.</td></tr>
<tr><td valign="top"><a href="#try_expr_handlers-1">try_expr_handlers/1</a></td><td>Returns the list of handler-clause subtrees of a
  <code>try_expr</code> node.</td></tr>
<tr><td valign="top"><a href="#tuple-1">tuple/1</a></td><td>Creates an abstract tuple.</td></tr>
<tr><td valign="top"><a href="#tuple_elements-1">tuple_elements/1</a></td><td>Returns the list of element subtrees of a <code>tuple</code>
  node.</td></tr>
<tr><td valign="top"><a href="#tuple_size-1">tuple_size/1</a></td><td>Returns the number of elements of a <code>tuple</code> node.</td></tr>
<tr><td valign="top"><a href="#type-1">type/1</a></td><td>Returns the type tag of <code>Node</code>.</td></tr>
<tr><td valign="top"><a href="#underscore-0">underscore/0</a></td><td>Creates an abstract universal pattern ("<code>_</code>").</td></tr>
<tr><td valign="top"><a href="#update_tree-2">update_tree/2</a></td><td>Creates a syntax tree with the same type and attributes as the
  given tree.</td></tr>
<tr><td valign="top"><a href="#variable-1">variable/1</a></td><td>Creates an abstract variable with the given name.</td></tr>
<tr><td valign="top"><a href="#variable_literal-1">variable_literal/1</a></td><td>Returns the name of a <code>variable</code> node as a string.</td></tr>
<tr><td valign="top"><a href="#variable_name-1">variable_name/1</a></td><td>Returns the name of a <code>variable</code> node as an atom.</td></tr>
<tr><td valign="top"><a href="#warning_marker-1">warning_marker/1</a></td><td>Creates an abstract warning marker.</td></tr>
<tr><td valign="top"><a href="#warning_marker_info-1">warning_marker_info/1</a></td><td>Returns the ErrorInfo structure of a <code>warning_marker</code>
  node.</td></tr>
</table>

<h2><a name="functions">Function Details</a></h2>

<h3><a name="abstract-1">abstract/1</a></h3>
<p><tt>abstract(Term::term()) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the syntax tree corresponding to an Erlang term.
  <code>Term</code> must be a literal term, i.e., one that can be
  represented as a source code literal. Thus, it may not contain a
  process identifier, port, reference, binary or function value as a
  subterm. The function recognises printable strings, in order to get a
  compact and readable representation. Evaluation fails with reason
  <code>badarg</code> if <code>Term</code> is not a literal term.
 </p>
<p><b>See also:</b> <a href="#concrete-1">concrete/1</a>, <a href="#is_literal-1">is_literal/1</a>.</p>

<h3><a name="add_ann-2">add_ann/2</a></h3>
<p><tt>add_ann(Annotation::term(), Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Appends the term <code>Annotation</code> to the list of user
  annotations of <code>Node</code>.
 
  <p>Note: this is equivalent to <code>set_ann(Node, [Annotation |
  get_ann(Node)])</code>, but potentially more efficient.</p>
 </p>
<p><b>See also:</b> <a href="#get_ann-1">get_ann/1</a>, <a href="#set_ann-2">set_ann/2</a>.</p>

<h3><a name="add_postcomments-2">add_postcomments/2</a></h3>
<p><tt>add_postcomments(Comments::[<a href="#type-syntaxTree">syntaxTree()</a>], Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Appends <code>Comments</code> to the post-comments of
  <code>Node</code>.
 
  <p>Note: This is equivalent to <code>set_postcomments(Node,
  get_postcomments(Node) ++ Comments)</code>, but potentially more
  efficient.</p>
 </p>
<p><b>See also:</b> <a href="#add_precomments-2">add_precomments/2</a>, <a href="#comment-2">comment/2</a>, <a href="#get_postcomments-1">get_postcomments/1</a>, <a href="#join_comments-2">join_comments/2</a>, <a href="#set_postcomments-2">set_postcomments/2</a>.</p>

<h3><a name="add_precomments-2">add_precomments/2</a></h3>
<p><tt>add_precomments(Comments::[<a href="#type-syntaxTree">syntaxTree()</a>], Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Appends <code>Comments</code> to the pre-comments of
  <code>Node</code>.
 
  <p>Note: This is equivalent to <code>set_precomments(Node,
  get_precomments(Node) ++ Comments)</code>, but potentially more
  efficient.</p>
 </p>
<p><b>See also:</b> <a href="#add_postcomments-2">add_postcomments/2</a>, <a href="#comment-2">comment/2</a>, <a href="#get_precomments-1">get_precomments/1</a>, <a href="#join_comments-2">join_comments/2</a>, <a href="#set_precomments-2">set_precomments/2</a>.</p>

<h3><a name="application-2">application/2</a></h3>
<p><tt>application(Operator::<a href="#type-syntaxTree">syntaxTree()</a>, Arguments::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract function application expression. If
  <code>Arguments</code> is <code>[A1, ..., An]</code>, the result
  represents "<code><em>Operator</em>(<em>A1</em>, ...,
  <em>An</em>)</code>".
 </p>
<p><b>See also:</b> <a href="#application-3">application/3</a>, <a href="#application_arguments-1">application_arguments/1</a>, <a href="#application_operator-1">application_operator/1</a>.</p>

<h3><a name="application-3">application/3</a></h3>
<p><tt>application(Module, Function::<a href="#type-syntaxTree">syntaxTree()</a>, Arguments::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt>
<ul><li><tt>Module = none | <a href="#type-syntaxTree">syntaxTree()</a></tt></li></ul></p>
<p>Creates an abstract function application expression. (Utility
  function.) If <code>Module</code> is <code>none</code>, this is
  call is equivalent to <code>application(Function,
  Arguments)</code>, otherwise it is equivalent to
  <code>application(module_qualifier(Module, Function),
  Arguments)</code>.
 </p>
<p><b>See also:</b> <a href="#application-2">application/2</a>, <a href="#module_qualifier-2">module_qualifier/2</a>.</p>

<h3><a name="application_arguments-1">application_arguments/1</a></h3>
<p><tt>application_arguments(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Returns the list of argument subtrees of an
  <code>application</code> node.
 </p>
<p><b>See also:</b> <a href="#application-2">application/2</a>.</p>

<h3><a name="application_operator-1">application_operator/1</a></h3>
<p><tt>application_operator(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the operator subtree of an <code>application</code>
  node.
 
  <p>Note: if <code>Node</code> represents
  "<code><em>M</em>:<em>F</em>(...)</code>", then the result is the
  subtree representing "<code><em>M</em>:<em>F</em></code>".</p>
 </p>
<p><b>See also:</b> <a href="#application-2">application/2</a>, <a href="#module_qualifier-2">module_qualifier/2</a>.</p>

<h3><a name="arity_qualifier-2">arity_qualifier/2</a></h3>
<p><tt>arity_qualifier(Body::<a href="#type-syntaxTree">syntaxTree()</a>, Arity::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract arity qualifier. The result represents
  "<code><em>Body</em>/<em>Arity</em></code>".
 </p>
<p><b>See also:</b> <a href="#arity_qualifier_argument-1">arity_qualifier_argument/1</a>, <a href="#arity_qualifier_body-1">arity_qualifier_body/1</a>.</p>

<h3><a name="arity_qualifier_argument-1">arity_qualifier_argument/1</a></h3>
<p><tt>arity_qualifier_argument(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the argument (the arity) subtree of an
  <code>arity_qualifier</code> node.
 </p>
<p><b>See also:</b> <a href="#arity_qualifier-1">arity_qualifier/1</a>.</p>

<h3><a name="arity_qualifier_body-1">arity_qualifier_body/1</a></h3>
<p><tt>arity_qualifier_body(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the body subtree of an <code>arity_qualifier</code>
  node.
 </p>
<p><b>See also:</b> <a href="#arity_qualifier-1">arity_qualifier/1</a>.</p>

<h3><a name="atom-1">atom/1</a></h3>
<p><tt>atom(Name) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt>
<ul><li><tt>Name = atom() | string()</tt></li></ul></p>
<p>Creates an abstract atom literal. The print name of the atom is
  the character sequence represented by <code>Name</code>.
 </p>
<p><b>See also:</b> <a href="#atom_literal-1">atom_literal/1</a>, <a href="#atom_name-1">atom_name/1</a>, <a href="#atom_value-1">atom_value/1</a>, <a href="#is_atom-2">is_atom/2</a>.</p>

<h3><a name="atom_literal-1">atom_literal/1</a></h3>
<p><tt>atom_literal(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; string()</tt></p>
<p>Returns the literal string represented by an <code>atom</code>
  node. This includes surrounding single-quote characters if necessary.
 
  <p>Note that e.g. the result of <code>atom("x\ny")</code> represents
  any and all of <code>'x\ny'</code>, <code>'x\12y'</code>,
  <code>'x\012y'</code> and <code>'x\^Jy\'</code>; cf.
  <code>string/1</code>.</p>
 </p>
<p><b>See also:</b> <a href="#atom-1">atom/1</a>, <a href="#string-1">string/1</a>.</p>

<h3><a name="atom_name-1">atom_name/1</a></h3>
<p><tt>atom_name(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; string()</tt></p>
<p>Returns the printname of an <code>atom</code> node.
 </p>
<p><b>See also:</b> <a href="#atom-1">atom/1</a>.</p>

<h3><a name="atom_value-1">atom_value/1</a></h3>
<p><tt>atom_value(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; atom()</tt></p>
<p>Returns the value represented by an <code>atom</code> node.
 </p>
<p><b>See also:</b> <a href="#atom-1">atom/1</a>.</p>

<h3><a name="attribute-1">attribute/1</a></h3>
<p><tt>attribute(Name) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Equivalent to <a href="#attribute-2"><tt>attribute(Name, none)</tt></a>.</p>


<h3><a name="attribute-2">attribute/2</a></h3>
<p><tt>attribute(Name::<a href="#type-syntaxTree">syntaxTree()</a>, Args::Arguments) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt>
<ul><li><tt>Arguments = none | [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></li></ul></p>
<p>Creates an abstract program attribute. If
  <code>Arguments</code> is <code>[A1, ..., An]</code>, the result
  represents "<code>-<em>Name</em>(<em>A1</em>, ...,
  <em>An</em>).</code>". Otherwise, if <code>Arguments</code> is
  <code>none</code>, the result represents
  "<code>-<em>Name</em>.</code>". The latter form makes it possible
  to represent preprocessor directives such as
  "<code>-endif.</code>". Attributes are source code forms.
 
  <p>Note: The preprocessor macro definition directive
  "<code>-define(<em>Name</em>, <em>Body</em>).</code>" has relatively
  few requirements on the syntactical form of <code>Body</code> (viewed
  as a sequence of tokens). The <code>text</code> node type can be used
  for a <code>Body</code> that is not a normal Erlang construct.</p>
 </p>
<p><b>See also:</b> <a href="#attribute-1">attribute/1</a>, <a href="#attribute_arguments-1">attribute_arguments/1</a>, <a href="#attribute_name-1">attribute_name/1</a>, <a href="#is_form-1">is_form/1</a>, <a href="#text-1">text/1</a>.</p>

<h3><a name="attribute_arguments-1">attribute_arguments/1</a></h3>
<p><tt>attribute_arguments(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; none | [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Returns the list of argument subtrees of an
  <code>attribute</code> node, if any. If <code>Node</code>
  represents "<code>-<em>Name</em>.</code>", the result is
  <code>none</code>. Otherwise, if <code>Node</code> represents
  "<code>-<em>Name</em>(<em>E1</em>, ..., <em>En</em>).</code>",
  <code>[E1, ..., E1]</code> is returned.
 </p>
<p><b>See also:</b> <a href="#attribute-1">attribute/1</a>.</p>

<h3><a name="attribute_name-1">attribute_name/1</a></h3>
<p><tt>attribute_name(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the name subtree of an <code>attribute</code> node.
 </p>
<p><b>See also:</b> <a href="#attribute-1">attribute/1</a>.</p>

<h3><a name="binary-1">binary/1</a></h3>
<p><tt>binary(Fields::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract binary-object template. If
  <code>Fields</code> is <code>[F1, ..., Fn]</code>, the result
  represents "<code>&lt;&lt;<em>F1</em>, ...,
  <em>Fn</em>&gt;&gt;</code>".
 </p>
<p><b>See also:</b> <a href="#binary_field-2">binary_field/2</a>, <a href="#binary_fields-1">binary_fields/1</a>.</p>

<h3><a name="binary_field-1">binary_field/1</a></h3>
<p><tt>binary_field(Body) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Equivalent to <a href="#binary_field-2"><tt>binary_field(Body, [])</tt></a>.</p>


<h3><a name="binary_field-2">binary_field/2</a></h3>
<p><tt>binary_field(Body::<a href="#type-syntaxTree">syntaxTree()</a>, Types::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract binary template field. If
  <code>Types</code> is the empty list, the result simply represents
  "<code><em>Body</em></code>", otherwise, if <code>Types</code> is
  <code>[T1, ..., Tn]</code>, the result represents
  "<code><em>Body</em>/<em>T1</em>-...-<em>Tn</em></code>".
 </p>
<p><b>See also:</b> <a href="#binary-1">binary/1</a>, <a href="#binary_field-1">binary_field/1</a>, <a href="#binary_field-3">binary_field/3</a>, <a href="#binary_field_body-1">binary_field_body/1</a>, <a href="#binary_field_size-1">binary_field_size/1</a>, <a href="#binary_field_types-1">binary_field_types/1</a>.</p>

<h3><a name="binary_field-3">binary_field/3</a></h3>
<p><tt>binary_field(Body::<a href="#type-syntaxTree">syntaxTree()</a>, Size, Types::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt>
<ul><li><tt>Size = none | <a href="#type-syntaxTree">syntaxTree()</a></tt></li></ul></p>
<p>Creates an abstract binary template field. (Utility function.)
  If <code>Size</code> is <code>none</code>, this is equivalent to
  "<code>binary_field(Body, Types)</code>", otherwise it is
  equivalent to "<code>binary_field(size_qualifier(Body, Size),
  Types)</code>".
 </p>
<p><b>See also:</b> <a href="#binary-1">binary/1</a>, <a href="#binary_field-2">binary_field/2</a>, <a href="#size_qualifier-2">size_qualifier/2</a>.</p>

<h3><a name="binary_field_body-1">binary_field_body/1</a></h3>
<p><tt>binary_field_body(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the body subtree of a <code>binary_field</code>.
 </p>
<p><b>See also:</b> <a href="#binary_field-2">binary_field/2</a>.</p>

<h3><a name="binary_field_size-1">binary_field_size/1</a></h3>
<p><tt>binary_field_size(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; none | <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the size specifier subtree of a
  <code>binary_field</code> node, if any. (Utility function.) If
  <code>Node</code> represents
  "<code><em>Body</em>:<em>Size</em></code>" or
  "<code><em>Body</em>:<em>Size</em>/<em>T1</em>, ...,
  <em>Tn</em></code>", the result is <code>Size</code>, otherwise
  <code>none</code> is returned.
 </p>
<p><b>See also:</b> <a href="#binary_field-2">binary_field/2</a>, <a href="#binary_field-3">binary_field/3</a>.</p>

<h3><a name="binary_field_types-1">binary_field_types/1</a></h3>
<p><tt>binary_field_types(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Returns the list of type-specifier subtrees of a
  <code>binary_field</code> node. If <code>Node</code> represents
  "<code>.../<em>T1</em>, ..., <em>Tn</em></code>", the result is
  <code>[T1, ..., Tn]</code>, otherwise the result is the empty list.
 </p>
<p><b>See also:</b> <a href="#binary_field-2">binary_field/2</a>.</p>

<h3><a name="binary_fields-1">binary_fields/1</a></h3>
<p><tt>binary_fields(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Returns the list of field subtrees of a <code>binary</code>
  node.
 </p>
<p><b>See also:</b> <a href="#binary-1">binary/1</a>, <a href="#binary_field-2">binary_field/2</a>.</p>

<h3><a name="block_expr-1">block_expr/1</a></h3>
<p><tt>block_expr(Body::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract block expression. If <code>Body</code> is
  <code>[B1, ..., Bn]</code>, the result represents "<code>begin
  <em>B1</em>, ..., <em>Bn</em> end</code>".
 </p>
<p><b>See also:</b> <a href="#block_expr_body-1">block_expr_body/1</a>.</p>

<h3><a name="block_expr_body-1">block_expr_body/1</a></h3>
<p><tt>block_expr_body(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Returns the list of body subtrees of a <code>block_expr</code>
  node.
 </p>
<p><b>See also:</b> <a href="#block_expr-1">block_expr/1</a>.</p>

<h3><a name="case_expr-2">case_expr/2</a></h3>
<p><tt>case_expr(Argument::<a href="#type-syntaxTree">syntaxTree()</a>, Clauses::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract case-expression. If <code>Clauses</code> is
  <code>[C1, ..., Cn]</code>, the result represents "<code>case
  <em>Argument</em> of <em>C1</em>; ...; <em>Cn</em> end</code>". More
  exactly, if each <code>Ci</code> represents "<code>(<em>Pi</em>)
  <em>Gi</em> -&gt; <em>Bi</em></code>", then the result represents
  "<code>case <em>Argument</em> of <em>P1</em> <em>G1</em> -&gt;
  <em>B1</em>; ...; <em>Pn</em> <em>Gn</em> -&gt; <em>Bn</em> end</code>".
 </p>
<p><b>See also:</b> <a href="#case_expr_argument-1">case_expr_argument/1</a>, <a href="#case_expr_clauses-1">case_expr_clauses/1</a>, <a href="#clause-3">clause/3</a>, <a href="#cond_expr-1">cond_expr/1</a>, <a href="#if_expr-1">if_expr/1</a>.</p>

<h3><a name="case_expr_argument-1">case_expr_argument/1</a></h3>
<p><tt>case_expr_argument(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the argument subtree of a <code>case_expr</code> node.
 </p>
<p><b>See also:</b> <a href="#case_expr-2">case_expr/2</a>.</p>

<h3><a name="case_expr_clauses-1">case_expr_clauses/1</a></h3>
<p><tt>case_expr_clauses(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Returns the list of clause subtrees of a <code>case_expr</code>
  node.
 </p>
<p><b>See also:</b> <a href="#case_expr-2">case_expr/2</a>.</p>

<h3><a name="catch_expr-1">catch_expr/1</a></h3>
<p><tt>catch_expr(Expr::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract catch-expression. The result represents
  "<code>catch <em>Expr</em></code>".
 </p>
<p><b>See also:</b> <a href="#catch_expr_body-1">catch_expr_body/1</a>.</p>

<h3><a name="catch_expr_body-1">catch_expr_body/1</a></h3>
<p><tt>catch_expr_body(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the body subtree of a <code>catch_expr</code> node.
 </p>
<p><b>See also:</b> <a href="#catch_expr-1">catch_expr/1</a>.</p>

<h3><a name="char-1">char/1</a></h3>
<p><tt>char(Value::char()) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract character literal. The result represents
  "<code>$<em>Name</em></code>", where <code>Name</code> corresponds to
  <code>Value</code>.
 
  <p>Note: the literal corresponding to a particular character value is
  not uniquely defined. E.g., the character "<code>a</code>" can be
  written both as "<code>$a</code>" and "<code>$\141</code>", and a Tab
  character can be written as "<code>$\11</code>", "<code>$\011</code>"
  or "<code>$\t</code>".</p>
 </p>
<p><b>See also:</b> <a href="#char_literal-1">char_literal/1</a>, <a href="#char_value-1">char_value/1</a>, <a href="#is_char-2">is_char/2</a>.</p>

<h3><a name="char_literal-1">char_literal/1</a></h3>
<p><tt>char_literal(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; string()</tt></p>
<p>Returns the literal string represented by a <code>char</code>
  node. This includes the leading "<code>$</code>" character.
 </p>
<p><b>See also:</b> <a href="#char-1">char/1</a>.</p>

<h3><a name="char_value-1">char_value/1</a></h3>
<p><tt>char_value(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; char()</tt></p>
<p>Returns the value represented by a <code>char</code> node.
 </p>
<p><b>See also:</b> <a href="#char-1">char/1</a>.</p>

<h3><a name="class_qualifier-2">class_qualifier/2</a></h3>
<p><tt>class_qualifier(Class::<a href="#type-syntaxTree">syntaxTree()</a>, Body::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract class qualifier. The result represents
  "<code><em>Class</em>:<em>Body</em></code>".
 </p>
<p><b>See also:</b> <a href="#class_qualifier_argument-1">class_qualifier_argument/1</a>, <a href="#class_qualifier_body-1">class_qualifier_body/1</a>, <a href="#try_expr-4">try_expr/4</a>.</p>

<h3><a name="class_qualifier_argument-1">class_qualifier_argument/1</a></h3>
<p><tt>class_qualifier_argument(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the argument (the class) subtree of a
  <code>class_qualifier</code> node.
 </p>
<p><b>See also:</b> <a href="#class_qualifier-1">class_qualifier/1</a>.</p>

<h3><a name="class_qualifier_body-1">class_qualifier_body/1</a></h3>
<p><tt>class_qualifier_body(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the body subtree of a <code>class_qualifier</code> node.
 </p>
<p><b>See also:</b> <a href="#class_qualifier-1">class_qualifier/1</a>.</p>

<h3><a name="clause-2">clause/2</a></h3>
<p><tt>clause(Guard, Body) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Equivalent to <a href="#clause-3"><tt>clause([], Guard, Body)</tt></a>.</p>


<h3><a name="clause-3">clause/3</a></h3>
<p><tt>clause(Patterns::[<a href="#type-syntaxTree">syntaxTree()</a>], Guard, Body::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt>
<ul><li><tt>Guard = none | <a href="#type-syntaxTree">syntaxTree()</a> | [<a href="#type-syntaxTree">syntaxTree()</a>] | [[<a href="#type-syntaxTree">syntaxTree()</a>]]</tt></li></ul></p>
<p>Creates an abstract clause. If <code>Patterns</code> is
  <code>[P1, ..., Pn]</code> and <code>Body</code> is <code>[B1, ...,
  Bm]</code>, then if <code>Guard</code> is <code>none</code>, the
  result represents "<code>(<em>P1</em>, ..., <em>Pn</em>) -&gt;
  <em>B1</em>, ..., <em>Bm</em></code>", otherwise, unless
  <code>Guard</code> is a list, the result represents
  "<code>(<em>P1</em>, ..., <em>Pn</em>) when <em>Guard</em> -&gt;
  <em>B1</em>, ..., <em>Bm</em></code>".
 
  <p>For simplicity, the <code>Guard</code> argument may also be any
  of the following:
  <ul>
    <li>An empty list <code>[]</code>. This is equivalent to passing
        <code>none</code>.</li>
    <li>A nonempty list <code>[E1, ..., Ej]</code> of syntax trees.
        This is equivalent to passing <code>conjunction([E1, ...,
        Ej])</code>.</li>
    <li>A nonempty list of lists of syntax trees <code>[[E1_1, ...,
        E1_k1], ..., [Ej_1, ..., Ej_kj]]</code>, which is equivalent
        to passing <code>disjunction([conjunction([E1_1, ...,
        E1_k1]), ..., conjunction([Ej_1, ..., Ej_kj])])</code>.</li>
  </ul>
  </p>
 </p>
<p><b>See also:</b> <a href="#clause-2">clause/2</a>, <a href="#clause_body-1">clause_body/1</a>, <a href="#clause_guard-1">clause_guard/1</a>, <a href="#clause_patterns-1">clause_patterns/1</a>.</p>

<h3><a name="clause_body-1">clause_body/1</a></h3>
<p><tt>clause_body(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Return the list of body subtrees of a <code>clause</code>
  node.
 </p>
<p><b>See also:</b> <a href="#clause-3">clause/3</a>.</p>

<h3><a name="clause_guard-1">clause_guard/1</a></h3>
<p><tt>clause_guard(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; none | <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the guard subtree of a <code>clause</code> node, if
  any. If <code>Node</code> represents "<code>(<em>P1</em>, ...,
  <em>Pn</em>) when <em>Guard</em> -&gt; <em>B1</em>, ...,
  <em>Bm</em></code>", <code>Guard</code> is returned. Otherwise, the
  result is <code>none</code>.
 </p>
<p><b>See also:</b> <a href="#clause-3">clause/3</a>.</p>

<h3><a name="clause_patterns-1">clause_patterns/1</a></h3>
<p><tt>clause_patterns(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Returns the list of pattern subtrees of a <code>clause</code>
  node.
 </p>
<p><b>See also:</b> <a href="#clause-3">clause/3</a>.</p>

<h3><a name="comment-1">comment/1</a></h3>
<p><tt>comment(Strings) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Equivalent to <a href="#comment-2"><tt>comment(none, Strings)</tt></a>.</p>


<h3><a name="comment-2">comment/2</a></h3>
<p><tt>comment(Pad::Padding, Strings::[string()]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt>
<ul><li><tt>Padding = none | integer()</tt></li></ul></p>
<p>Creates an abstract comment with the given padding and text. If
  <code>Strings</code> is a (possibly empty) list
  <code>["<em>Txt1</em>", ..., "<em>TxtN</em>"]</code>, the result
  represents the source code text
  <pre>
      %<em>Txt1</em>
      ...
      %<em>TxtN</em></pre>
  <code>Padding</code> states the number of empty character positions
  to the left of the comment separating it horizontally from
  source code on the same line (if any). If <code>Padding</code> is
  <code>none</code>, a default positive number is used. If
  <code>Padding</code> is an integer less than 1, there should be no
  separating space. Comments are in themselves regarded as source
  program forms.
 </p>
<p><b>See also:</b> <a href="#comment-1">comment/1</a>, <a href="#is_form-1">is_form/1</a>.</p>

<h3><a name="comment_padding-1">comment_padding/1</a></h3>
<p><tt>comment_padding(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; none | integer()</tt></p>
<p>Returns the amount of padding before the comment, or
  <code>none</code>. The latter means that a default padding may be
  used.
 </p>
<p><b>See also:</b> <a href="#comment-2">comment/2</a>.</p>

<h3><a name="comment_text-1">comment_text/1</a></h3>
<p><tt>comment_text(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [string()]</tt></p>
<p>Returns the lines of text of the abstract comment.
 </p>
<p><b>See also:</b> <a href="#comment-2">comment/2</a>.</p>

<h3><a name="compact_list-1">compact_list/1</a></h3>
<p><tt>compact_list(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Yields the most compact form for an abstract list skeleton. The
  result either represents "<code>[<em>E1</em>, ..., <em>En</em> |
  <em>Tail</em>]</code>", where <code>Tail</code> is not a list
  skeleton, or otherwise simply "<code>[<em>E1</em>, ...,
  <em>En</em>]</code>". Annotations on subtrees of <code>Node</code>
  that represent list skeletons may be lost, but comments will be
  propagated to the result. Returns <code>Node</code> itself if
  <code>Node</code> does not represent a list skeleton.
 </p>
<p><b>See also:</b> <a href="#list-2">list/2</a>, <a href="#normalize_list-1">normalize_list/1</a>.</p>

<h3><a name="concrete-1">concrete/1</a></h3>
<p><tt>concrete(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; term()</tt></p>
<p>Returns the Erlang term represented by a syntax tree. Evaluation
  fails with reason <code>badarg</code> if <code>Node</code> does not
  represent a literal term.
 
  <p>Note: Currently, the set of syntax trees which have a concrete
  representation is larger than the set of trees which can be built
  using the function <code>abstract/1</code>. An abstract character
  will be concretised as an integer, while <code>abstract/1</code> does
  not at present yield an abstract character for any input. (Use the
  <code>char/1</code> function to explicitly create an abstract
  character.)</p>
 </p>
<p><b>See also:</b> <a href="#abstract-1">abstract/1</a>, <a href="#char-1">char/1</a>, <a href="#is_literal-1">is_literal/1</a>.</p>

<h3><a name="cond_expr-1">cond_expr/1</a></h3>
<p><tt>cond_expr(Clauses::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract cond-expression. If <code>Clauses</code> is
  <code>[C1, ..., Cn]</code>, the result represents "<code>cond
  <em>C1</em>; ...; <em>Cn</em> end</code>". More exactly, if each
  <code>Ci</code> represents "<code>() <em>Ei</em> -&gt;
  <em>Bi</em></code>", then the result represents "<code>cond
  <em>E1</em> -&gt; <em>B1</em>; ...; <em>En</em> -&gt; <em>Bn</em>
  end</code>".
 </p>
<p><b>See also:</b> <a href="#case_expr-2">case_expr/2</a>, <a href="#clause-3">clause/3</a>, <a href="#cond_expr_clauses-1">cond_expr_clauses/1</a>.</p>

<h3><a name="cond_expr_clauses-1">cond_expr_clauses/1</a></h3>
<tt>cond_expr_clauses(Node) -&gt; term()
</tt><p>Returns the list of clause subtrees of a <code>cond_expr</code>
  node.
 </p>
<p><b>See also:</b> <a href="#cond_expr-1">cond_expr/1</a>.</p>

<h3><a name="conjunction-1">conjunction/1</a></h3>
<p><tt>conjunction(List::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract conjunction. If <code>List</code> is
  <code>[E1, ..., En]</code>, the result represents
  "<code><em>E1</em>, ..., <em>En</em></code>".
 </p>
<p><b>See also:</b> <a href="#conjunction_body-1">conjunction_body/1</a>, <a href="#disjunction-1">disjunction/1</a>.</p>

<h3><a name="conjunction_body-1">conjunction_body/1</a></h3>
<p><tt>conjunction_body(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Returns the list of body subtrees of a
  <code>conjunction</code> node.
 </p>
<p><b>See also:</b> <a href="#conjunction-1">conjunction/1</a>.</p>

<h3><a name="cons-2">cons/2</a></h3>
<p><tt>cons(Head::<a href="#type-syntaxTree">syntaxTree()</a>, Tail::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>"Optimising" list skeleton cons operation. Creates an abstract
  list skeleton whose first element is <code>Head</code> and whose tail
  corresponds to <code>Tail</code>. This is similar to
  <code>list([Head], Tail)</code>, except that <code>Tail</code> may
  not be <code>none</code>, and that the result does not necessarily
  represent exactly "<code>[<em>Head</em> | <em>Tail</em>]</code>", but
  may depend on the <code>Tail</code> subtree. E.g., if
  <code>Tail</code> represents <code>[X, Y]</code>, the result may
  represent "<code>[<em>Head</em>, X, Y]</code>", rather than
  "<code>[<em>Head</em> | [X, Y]]</code>". Annotations on
  <code>Tail</code> itself may be lost if <code>Tail</code> represents
  a list skeleton, but comments on <code>Tail</code> are propagated to
  the result.
 </p>
<p><b>See also:</b> <a href="#list-2">list/2</a>, <a href="#list_head-1">list_head/1</a>, <a href="#list_tail-1">list_tail/1</a>.</p>

<h3><a name="copy_ann-2">copy_ann/2</a></h3>
<p><tt>copy_ann(Source::<a href="#type-syntaxTree">syntaxTree()</a>, Target::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Copies the list of user annotations from <code>Source</code> to
  <code>Target</code>.
 
  <p>Note: this is equivalent to <code>set_ann(Target,
  get_ann(Source))</code>, but potentially more efficient.</p>
 </p>
<p><b>See also:</b> <a href="#get_ann-1">get_ann/1</a>, <a href="#set_ann-2">set_ann/2</a>.</p>

<h3><a name="copy_attrs-2">copy_attrs/2</a></h3>
<p><tt>copy_attrs(Source::<a href="#type-syntaxTree">syntaxTree()</a>, Target::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Copies the attributes from <code>Source</code> to
  <code>Target</code>.
 
  <p>Note: this is equivalent to <code>set_attrs(Target,
  get_attrs(Source))</code>, but potentially more efficient.</p>
 </p>
<p><b>See also:</b> <a href="#get_attrs-1">get_attrs/1</a>, <a href="#set_attrs-2">set_attrs/2</a>.</p>

<h3><a name="copy_comments-2">copy_comments/2</a></h3>
<p><tt>copy_comments(Source::<a href="#type-syntaxTree">syntaxTree()</a>, Target::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Copies the pre- and postcomments from <code>Source</code> to
  <code>Target</code>.
 
  <p>Note: This is equivalent to
  <code>set_postcomments(set_precomments(Target,
  get_precomments(Source)), get_postcomments(Source))</code>, but
  potentially more efficient.</p>
 </p>
<p><b>See also:</b> <a href="#comment-2">comment/2</a>, <a href="#get_postcomments-1">get_postcomments/1</a>, <a href="#get_precomments-1">get_precomments/1</a>, <a href="#set_postcomments-2">set_postcomments/2</a>, <a href="#set_precomments-2">set_precomments/2</a>.</p>

<h3><a name="copy_pos-2">copy_pos/2</a></h3>
<p><tt>copy_pos(Source::<a href="#type-syntaxTree">syntaxTree()</a>, Target::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Copies the position information from <code>Source</code> to
  <code>Target</code>.
 
  <p>This is equivalent to <code>set_pos(Target,
  get_pos(Source))</code>, but potentially more efficient.</p>
 </p>
<p><b>See also:</b> <a href="#get_pos-1">get_pos/1</a>, <a href="#set_pos-2">set_pos/2</a>.</p>

<h3><a name="data-1">data/1</a></h3>
<p><tt>data(Tree::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; term()</tt></p>
<p><em>For special purposes only</em>. Returns the associated data
  of a syntax tree node. Evaluation fails with reason
  <code>badarg</code> if <code>is_tree(Node)</code> does not yield
  <code>true</code>.
 </p>
<p><b>See also:</b> <a href="#tree-2">tree/2</a>.</p>

<h3><a name="disjunction-1">disjunction/1</a></h3>
<p><tt>disjunction(List::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract disjunction. If <code>List</code> is
  <code>[E1, ..., En]</code>, the result represents
  "<code><em>E1</em>; ...; <em>En</em></code>".
 </p>
<p><b>See also:</b> <a href="#conjunction-1">conjunction/1</a>, <a href="#disjunction_body-1">disjunction_body/1</a>.</p>

<h3><a name="disjunction_body-1">disjunction_body/1</a></h3>
<p><tt>disjunction_body(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Returns the list of body subtrees of a
  <code>disjunction</code> node.
 </p>
<p><b>See also:</b> <a href="#disjunction-1">disjunction/1</a>.</p>

<h3><a name="eof_marker-0">eof_marker/0</a></h3>
<p><tt>eof_marker() -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract end-of-file marker. This represents the
  end of input when reading a sequence of source code forms. An
  end-of-file marker is itself regarded as a source code form
  (namely, the last in any sequence in which it occurs). It has no
  defined lexical form.
 
  <p>Note: this is retained only for backwards compatibility with
  existing parsers and tools.</p>
 </p>
<p><b>See also:</b> <a href="#error_marker-1">error_marker/1</a>, <a href="#is_form-1">is_form/1</a>, <a href="#warning_marker-1">warning_marker/1</a>.</p>

<h3><a name="error_marker-1">error_marker/1</a></h3>
<p><tt>error_marker(Error::term()) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract error marker. The result represents an
  occurrence of an error in the source code, with an associated Erlang
  I/O ErrorInfo structure given by <code>Error</code> (see module
  <code>io</code> for details). Error markers are regarded as source
  code forms, but have no defined lexical form.
 
  <p>Note: this is supported only for backwards compatibility with
  existing parsers and tools.</p>
 </p>
<p><b>See also:</b> <a href="/usr/local/home/richardc/hipe/otp/lib/stdlib/doc/io.html">io</a>, <a href="#eof_marker-0">eof_marker/0</a>, <a href="#error_marker_info-1">error_marker_info/1</a>, <a href="#is_form-1">is_form/1</a>, <a href="#warning_marker-1">warning_marker/1</a>.</p>

<h3><a name="error_marker_info-1">error_marker_info/1</a></h3>
<p><tt>error_marker_info(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; term()</tt></p>
<p>Returns the ErrorInfo structure of an <code>error_marker</code>
  node.
 </p>
<p><b>See also:</b> <a href="#error_marker-1">error_marker/1</a>.</p>

<h3><a name="flatten_form_list-1">flatten_form_list/1</a></h3>
<p><tt>flatten_form_list(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Flattens sublists of a <code>form_list</code> node. Returns
  <code>Node</code> with all subtrees of type <code>form_list</code>
  recursively expanded, yielding a single "flat" abstract form
  sequence.
 </p>
<p><b>See also:</b> <a href="#form_list-1">form_list/1</a>.</p>

<h3><a name="float-1">float/1</a></h3>
<p><tt>float(Value::float()) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract floating-point literal. The lexical
  representation is the decimal floating-point numeral of
  <code>Value</code>.
 </p>
<p><b>See also:</b> <a href="#float_literal-1">float_literal/1</a>, <a href="#float_value-1">float_value/1</a>.</p>

<h3><a name="float_literal-1">float_literal/1</a></h3>
<p><tt>float_literal(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; string()</tt></p>
<p>Returns the numeral string represented by a <code>float</code>
  node.
 </p>
<p><b>See also:</b> <a href="#float-1">float/1</a>.</p>

<h3><a name="float_value-1">float_value/1</a></h3>
<p><tt>float_value(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; float()</tt></p>
<p>Returns the value represented by a <code>float</code> node. Note
  that floating-point values should usually not be compared for
  equality.
 </p>
<p><b>See also:</b> <a href="#float-1">float/1</a>.</p>

<h3><a name="form_list-1">form_list/1</a></h3>
<p><tt>form_list(Forms::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract sequence of "source code forms". If
  <code>Forms</code> is <code>[F1, ..., Fn]</code>, where each
  <code>Fi</code> is a form (cf. <code>is_form/1</code>, the result
  represents
  <pre>
      <em>F1</em>
      ...
      <em>Fn</em></pre>
  where the <code>Fi</code> are separated by one or more line breaks. A
  node of type <code>form_list</code> is itself regarded as a source
  code form; cf. <code>flatten_form_list/1</code>.
 
  <p>Note: this is simply a way of grouping source code forms as a
  single syntax tree, usually in order to form an Erlang module
  definition.</p>
 </p>
<p><b>See also:</b> <a href="#flatten_form_list-1">flatten_form_list/1</a>, <a href="#form_list_elements-1">form_list_elements/1</a>, <a href="#is_form-1">is_form/1</a>.</p>

<h3><a name="form_list_elements-1">form_list_elements/1</a></h3>
<p><tt>form_list_elements(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Returns the list of subnodes of a <code>form_list</code> node.
 </p>
<p><b>See also:</b> <a href="#form_list-1">form_list/1</a>.</p>

<h3><a name="fun_expr-1">fun_expr/1</a></h3>
<p><tt>fun_expr(Clauses::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract fun-expression. If <code>Clauses</code> is
  <code>[C1, ..., Cn]</code>, the result represents "<code>fun
  <em>C1</em>; ...; <em>Cn</em> end</code>". More exactly, if each
  <code>Ci</code> represents "<code>(<em>Pi1</em>, ..., <em>Pim</em>)
  <em>Gi</em> -&gt; <em>Bi</em></code>", then the result represents
  "<code>fun (<em>P11</em>, ..., <em>P1m</em>) <em>G1</em> -&gt;
  <em>B1</em>; ...; (<em>Pn1</em>, ..., <em>Pnm</em>) <em>Gn</em> -&gt;
  <em>Bn</em> end</code>".
 </p>
<p><b>See also:</b> <a href="#fun_expr_arity-1">fun_expr_arity/1</a>, <a href="#fun_expr_clauses-1">fun_expr_clauses/1</a>.</p>

<h3><a name="fun_expr_arity-1">fun_expr_arity/1</a></h3>
<p><tt>fun_expr_arity(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; integer()</tt></p>
<p>Returns the arity of a <code>fun_expr</code> node. The result is
  the number of parameter patterns in the first clause of the
  fun-expression; subsequent clauses are ignored.
 
  <p>An exception is thrown if <code>fun_expr_clauses(Node)</code>
  returns an empty list, or if the first element of that list is not a
  syntax tree <code>C</code> of type <code>clause</code> such that
  <code>clause_patterns(C)</code> is a nonempty list.</p>
 </p>
<p><b>See also:</b> <a href="#clause-3">clause/3</a>, <a href="#clause_patterns-1">clause_patterns/1</a>, <a href="#fun_expr-1">fun_expr/1</a>, <a href="#fun_expr_clauses-1">fun_expr_clauses/1</a>.</p>

<h3><a name="fun_expr_clauses-1">fun_expr_clauses/1</a></h3>
<p><tt>fun_expr_clauses(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Returns the list of clause subtrees of a <code>fun_expr</code>
  node.
 </p>
<p><b>See also:</b> <a href="#fun_expr-1">fun_expr/1</a>.</p>

<h3><a name="function-2">function/2</a></h3>
<p><tt>function(Name::<a href="#type-syntaxTree">syntaxTree()</a>, Clauses::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract function definition. If <code>Clauses</code>
  is <code>[C1, ..., Cn]</code>, the result represents
  "<code><em>Name</em> <em>C1</em>; ...; <em>Name</em>
  <em>Cn</em>.</code>". More exactly, if each <code>Ci</code>
  represents "<code>(<em>Pi1</em>, ..., <em>Pim</em>) <em>Gi</em> -&gt;
  <em>Bi</em></code>", then the result represents
  "<code><em>Name</em>(<em>P11</em>, ..., <em>P1m</em>) <em>G1</em> -&gt;
  <em>B1</em>; ...; <em>Name</em>(<em>Pn1</em>, ..., <em>Pnm</em>)
  <em>Gn</em> -&gt; <em>Bn</em>.</code>". Function definitions are source
  code forms.
 </p>
<p><b>See also:</b> <a href="#function_arity-1">function_arity/1</a>, <a href="#function_clauses-1">function_clauses/1</a>, <a href="#function_name-1">function_name/1</a>, <a href="#is_form-1">is_form/1</a>, <a href="#rule-2">rule/2</a>.</p>

<h3><a name="function_arity-1">function_arity/1</a></h3>
<p><tt>function_arity(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; integer()</tt></p>
<p>Returns the arity of a <code>function</code> node. The result
  is the number of parameter patterns in the first clause of the
  function; subsequent clauses are ignored.
 
  <p>An exception is thrown if <code>function_clauses(Node)</code>
  returns an empty list, or if the first element of that list is not
  a syntax tree <code>C</code> of type <code>clause</code> such that
  <code>clause_patterns(C)</code> is a nonempty list.</p>
 </p>
<p><b>See also:</b> <a href="#clause-3">clause/3</a>, <a href="#clause_patterns-1">clause_patterns/1</a>, <a href="#function-2">function/2</a>, <a href="#function_clauses-1">function_clauses/1</a>.</p>

<h3><a name="function_clauses-1">function_clauses/1</a></h3>
<tt>function_clauses(Node) -&gt; term()
</tt><p>Returns the list of clause subtrees of a <code>function</code>
  node.
 </p>
<p><b>See also:</b> <a href="#function-2">function/2</a>.</p>

<h3><a name="function_name-1">function_name/1</a></h3>
<tt>function_name(Node) -&gt; term()
</tt><p>Returns the name subtree of a <code>function</code> node.
 </p>
<p><b>See also:</b> <a href="#function-2">function/2</a>.</p>

<h3><a name="generator-2">generator/2</a></h3>
<p><tt>generator(Pattern::<a href="#type-syntaxTree">syntaxTree()</a>, Body::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract generator. The result represents
  "<code><em>Pattern</em> &lt;- <em>Body</em></code>".
 </p>
<p><b>See also:</b> <a href="#generator_body-1">generator_body/1</a>, <a href="#generator_pattern-1">generator_pattern/1</a>, <a href="#list_comp-2">list_comp/2</a>.</p>

<h3><a name="generator_body-1">generator_body/1</a></h3>
<p><tt>generator_body(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the body subtree of a <code>generator</code> node.
 </p>
<p><b>See also:</b> <a href="#generator-2">generator/2</a>.</p>

<h3><a name="generator_pattern-1">generator_pattern/1</a></h3>
<p><tt>generator_pattern(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the pattern subtree of a <code>generator</code> node.
 </p>
<p><b>See also:</b> <a href="#generator-2">generator/2</a>.</p>

<h3><a name="get_ann-1">get_ann/1</a></h3>
<p><tt>get_ann(X1::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [term()]</tt></p>
<p>Returns the list of user annotations associated with a syntax
  tree node. For a newly created node, this is the empty list. The
  annotations may be any terms.
 </p>
<p><b>See also:</b> <a href="#get_attrs-1">get_attrs/1</a>, <a href="#set_ann-2">set_ann/2</a>.</p>

<h3><a name="get_attrs-1">get_attrs/1</a></h3>
<p><tt>get_attrs(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTreeAttributes">syntaxTreeAttributes()</a></tt></p>
<p>Returns a representation of the attributes associated with a
  syntax tree node. The attributes are all the extra information that
  can be attached to a node. Currently, this includes position
  information, source code comments, and user annotations. The result
  of this function cannot be inspected directly; only attached to
  another node (cf. <code>set_attrs/2</code>).
 
  <p>For accessing individual attributes, see <code>get_pos/1</code>,
  <code>get_ann/1</code>, <code>get_precomments/1</code> and
  <code>get_postcomments/1</code>.</p>
 </p>
<p><b>See also:</b> <a href="#get_ann-1">get_ann/1</a>, <a href="#get_pos-1">get_pos/1</a>, <a href="#get_postcomments-1">get_postcomments/1</a>, <a href="#get_precomments-1">get_precomments/1</a>, <a href="#set_attrs-2">set_attrs/2</a>.</p>

<h3><a name="get_pos-1">get_pos/1</a></h3>
<p><tt>get_pos(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; term()</tt></p>
<p>Returns the position information associated with
  <code>Node</code>. This is usually a nonnegative integer (indicating
  the source code line number), but may be any term. By default, all
  new tree nodes have their associated position information set to the
  integer zero.
 </p>
<p><b>See also:</b> <a href="#get_attrs-1">get_attrs/1</a>, <a href="#set_pos-2">set_pos/2</a>.</p>

<h3><a name="get_postcomments-1">get_postcomments/1</a></h3>
<p><tt>get_postcomments(X1::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Returns the associated post-comments of a node. This is a
  possibly empty list of abstract comments, in top-down textual order.
  When the code is formatted, post-comments are typically displayed to
  the right of and/or below the node. For example:
  <pre>
          {foo, X, Y}     % Post-comment of tuple</pre>
 
  <p>If possible, the comment should be moved past any following
  separator characters on the same line, rather than placing the
  separators on the following line. E.g.:
  <pre>
          foo([X | Xs], Y) -&gt;
              foo(Xs, bar(X));     % Post-comment of 'bar(X)' node
           ...</pre>
  (where the comment is moved past the rightmost "<code>)</code>" and
  the "<code>;</code>").</p>
 </p>
<p><b>See also:</b> <a href="#comment-2">comment/2</a>, <a href="#get_attrs-1">get_attrs/1</a>, <a href="#get_precomments-1">get_precomments/1</a>, <a href="#set_postcomments-2">set_postcomments/2</a>.</p>

<h3><a name="get_precomments-1">get_precomments/1</a></h3>
<p><tt>get_precomments(X1::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Returns the associated pre-comments of a node. This is a
  possibly empty list of abstract comments, in top-down textual order.
  When the code is formatted, pre-comments are typically displayed
  directly above the node. For example:
  <pre>
          % Pre-comment of function
          foo(X) -&gt; {bar, X}.</pre>
 
  <p>If possible, the comment should be moved before any preceding
  separator characters on the same line. E.g.:
  <pre>
          foo([X | Xs]) -&gt;
              % Pre-comment of 'bar(X)' node
              [bar(X) | foo(Xs)];
          ...</pre>
  (where the comment is moved before the "<code>[</code>").</p>
 </p>
<p><b>See also:</b> <a href="#comment-2">comment/2</a>, <a href="#get_attrs-1">get_attrs/1</a>, <a href="#get_postcomments-1">get_postcomments/1</a>, <a href="#set_precomments-2">set_precomments/2</a>.</p>

<h3><a name="has_comments-1">has_comments/1</a></h3>
<p><tt>has_comments(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; bool()</tt></p>
<p>Yields <code>false</code> if the node has no associated
  comments, and <code>true</code> otherwise.
 
  <p>Note: This is equivalent to <code>(get_precomments(Node) == [])
  and (get_postcomments(Node) == [])</code>, but potentially more
  efficient.</p>
 </p>
<p><b>See also:</b> <a href="#get_postcomments-1">get_postcomments/1</a>, <a href="#get_precomments-1">get_precomments/1</a>, <a href="#remove_comments-1">remove_comments/1</a>.</p>

<h3><a name="if_expr-1">if_expr/1</a></h3>
<p><tt>if_expr(Clauses::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract if-expression. If <code>Clauses</code> is
  <code>[C1, ..., Cn]</code>, the result represents "<code>if
  <em>C1</em>; ...; <em>Cn</em> end</code>". More exactly, if each
  <code>Ci</code> represents "<code>() <em>Gi</em> -&gt;
  <em>Bi</em></code>", then the result represents "<code>if
  <em>G1</em> -&gt; <em>B1</em>; ...; <em>Gn</em> -&gt; <em>Bn</em>
  end</code>".
 </p>
<p><b>See also:</b> <a href="#case_expr-2">case_expr/2</a>, <a href="#clause-3">clause/3</a>, <a href="#if_expr_clauses-1">if_expr_clauses/1</a>.</p>

<h3><a name="if_expr_clauses-1">if_expr_clauses/1</a></h3>
<tt>if_expr_clauses(Node) -&gt; term()
</tt><p>Returns the list of clause subtrees of an <code>if_expr</code>
  node.
 </p>
<p><b>See also:</b> <a href="#if_expr-1">if_expr/1</a>.</p>

<h3><a name="implicit_fun-1">implicit_fun/1</a></h3>
<p><tt>implicit_fun(Name::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract "implicit fun" expression. The result
  represents "<code>fun <em>Name</em></code>".
 </p>
<p><b>See also:</b> <a href="#implicit_fun-2">implicit_fun/2</a>, <a href="#implicit_fun_name-1">implicit_fun_name/1</a>.</p>

<h3><a name="implicit_fun-2">implicit_fun/2</a></h3>
<p><tt>implicit_fun(Name::<a href="#type-syntaxTree">syntaxTree()</a>, Arity::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract "implicit fun" expression. (Utility
  function.) If <code>Arity</code> is <code>none</code>, this is
  equivalent to <code>implicit_fun(Name)</code>, otherwise it is
  equivalent to <code>implicit_fun(arity_qualifier(Name,
  Arity))</code>.
 </p>
<p><b>See also:</b> <a href="#implicit_fun-1">implicit_fun/1</a>.</p>

<h3><a name="implicit_fun_name-1">implicit_fun_name/1</a></h3>
<p><tt>implicit_fun_name(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the name subtree of an <code>implicit_fun</code> node.
 
  <p>Note: if <code>Node</code> represents "<code>fun
  <em>N</em>/<em>A</em></code>", then the result is the subtree
  representing "<code><em>N</em>/<em>A</em></code>".</p>
 </p>
<p><b>See also:</b> <a href="#implicit_fun-1">implicit_fun/1</a>.</p>

<h3><a name="infix_expr-3">infix_expr/3</a></h3>
<p><tt>infix_expr(Left::<a href="#type-syntaxTree">syntaxTree()</a>, Operator::<a href="#type-syntaxTree">syntaxTree()</a>, Right::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract infix operator expression. The result
  represents "<code><em>Left</em> <em>Operator</em>
  <em>Right</em></code>".
 </p>
<p><b>See also:</b> <a href="#infix_expr_left-1">infix_expr_left/1</a>, <a href="#infix_expr_operator-1">infix_expr_operator/1</a>, <a href="#infix_expr_right-1">infix_expr_right/1</a>, <a href="#prefix_expr-2">prefix_expr/2</a>.</p>

<h3><a name="infix_expr_left-1">infix_expr_left/1</a></h3>
<p><tt>infix_expr_left(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the left argument subtree of an
  <code>infix_expr</code> node.
 </p>
<p><b>See also:</b> <a href="#infix_expr-3">infix_expr/3</a>.</p>

<h3><a name="infix_expr_operator-1">infix_expr_operator/1</a></h3>
<p><tt>infix_expr_operator(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the operator subtree of an <code>infix_expr</code>
  node.
 </p>
<p><b>See also:</b> <a href="#infix_expr-3">infix_expr/3</a>.</p>

<h3><a name="infix_expr_right-1">infix_expr_right/1</a></h3>
<p><tt>infix_expr_right(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the right argument subtree of an
  <code>infix_expr</code> node.
 </p>
<p><b>See also:</b> <a href="#infix_expr-3">infix_expr/3</a>.</p>

<h3><a name="integer-1">integer/1</a></h3>
<p><tt>integer(Value::integer()) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract integer literal. The lexical representation
  is the canonical decimal numeral of <code>Value</code>.
 </p>
<p><b>See also:</b> <a href="#integer_literal-1">integer_literal/1</a>, <a href="#integer_value-1">integer_value/1</a>, <a href="#is_integer-2">is_integer/2</a>.</p>

<h3><a name="integer_literal-1">integer_literal/1</a></h3>
<p><tt>integer_literal(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; string()</tt></p>
<p>Returns the numeral string represented by an
  <code>integer</code> node.
 </p>
<p><b>See also:</b> <a href="#integer-1">integer/1</a>.</p>

<h3><a name="integer_value-1">integer_value/1</a></h3>
<p><tt>integer_value(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; integer()</tt></p>
<p>Returns the value represented by an <code>integer</code> node.
 </p>
<p><b>See also:</b> <a href="#integer-1">integer/1</a>.</p>

<h3><a name="is_atom-2">is_atom/2</a></h3>
<p><tt>is_atom(Node::<a href="#type-syntaxTree">syntaxTree()</a>, Value::atom()) -&gt; bool()</tt></p>
<p>Returns <code>true</code> if <code>Node</code> has type
  <code>atom</code> and represents <code>Value</code>, otherwise
  <code>false</code>.
 </p>
<p><b>See also:</b> <a href="#atom-1">atom/1</a>.</p>

<h3><a name="is_char-2">is_char/2</a></h3>
<p><tt>is_char(Node::<a href="#type-syntaxTree">syntaxTree()</a>, Value::char()) -&gt; bool()</tt></p>
<p>Returns <code>true</code> if <code>Node</code> has type
  <code>char</code> and represents <code>Value</code>, otherwise
  <code>false</code>.
 </p>
<p><b>See also:</b> <a href="#char-1">char/1</a>.</p>

<h3><a name="is_form-1">is_form/1</a></h3>
<p><tt>is_form(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; bool()</tt></p>
<p>Returns <code>true</code> if <code>Node</code> is a syntax tree
  representing a so-called "source code form", otherwise
  <code>false</code>. Forms are the Erlang source code units which,
  placed in sequence, constitute an Erlang program. Current form types
  are:
  <p><center><table border="1">
   <tr>
    <td><code>attribute</code></td>
    <td><code>comment</code></td>
    <td><code>error_marker</code></td>
    <td><code>eof_marker</code></td>
   </tr><tr>
    <td><code>form_list</code></td>
    <td><code>function</code></td>
    <td><code>rule</code></td>
    <td><code>warning_marker</code></td>
   </tr>
  </table></center></p></p>
<p><b>See also:</b> <a href="#attribute-2">attribute/2</a>, <a href="#comment-2">comment/2</a>, <a href="#eof_marker-1">eof_marker/1</a>, <a href="#error_marker-1">error_marker/1</a>, <a href="#form_list-1">form_list/1</a>, <a href="#function-2">function/2</a>, <a href="#rule-2">rule/2</a>, <a href="#type-1">type/1</a>, <a href="#warning_marker-1">warning_marker/1</a>.</p>

<h3><a name="is_integer-2">is_integer/2</a></h3>
<p><tt>is_integer(Node::<a href="#type-syntaxTree">syntaxTree()</a>, Value::integer()) -&gt; bool()</tt></p>
<p>Returns <code>true</code> if <code>Node</code> has type
  <code>integer</code> and represents <code>Value</code>, otherwise
  <code>false</code>.
 </p>
<p><b>See also:</b> <a href="#integer-1">integer/1</a>.</p>

<h3><a name="is_leaf-1">is_leaf/1</a></h3>
<p><tt>is_leaf(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; bool()</tt></p>
<p>Returns <code>true</code> if <code>Node</code> is a leaf node,
  otherwise <code>false</code>. The currently recognised leaf node
  types are:
  <p><center><table border="1">
   <tr>
    <td><code>atom</code></td>
    <td><code>char</code></td>
    <td><code>comment</code></td>
    <td><code>eof_marker</code></td>
    <td><code>error_marker</code></td>
   </tr><tr>
    <td><code>float</code></td>
    <td><code>integer</code></td>
    <td><code>nil</code></td>
    <td><code>operator</code></td>
    <td><code>string</code></td>
   </tr><tr>
    <td><code>text</code></td>
    <td><code>underscore</code></td>
    <td><code>variable</code></td>
    <td><code>warning_marker</code></td>
   </tr>
  </table></center></p>
  <p>A node of type <code>tuple</code> is a leaf node if and only if
  its arity is zero.</p>
 
  <p>Note: not all literals are leaf nodes, and vice versa. E.g.,
  tuples with nonzero arity and nonempty lists may be literals, but are
  not leaf nodes. Variables, on the other hand, are leaf nodes but not
  literals.</p>
 </p>
<p><b>See also:</b> <a href="#is_literal-1">is_literal/1</a>, <a href="#type-1">type/1</a>.</p>

<h3><a name="is_list_skeleton-1">is_list_skeleton/1</a></h3>
<p><tt>is_list_skeleton(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; bool()</tt></p>
<p>Returns <code>true</code> if <code>Node</code> has type
  <code>list</code> or <code>nil</code>, otherwise <code>false</code>.
 </p>
<p><b>See also:</b> <a href="#list-2">list/2</a>, <a href="#nil-0">nil/0</a>.</p>

<h3><a name="is_literal-1">is_literal/1</a></h3>
<p><tt>is_literal(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; bool()</tt></p>
<p>Returns <code>true</code> if <code>Node</code> represents a
  literal term, otherwise <code>false</code>. This function returns
  <code>true</code> if and only if the value of
  <code>concrete(Node)</code> is defined.
 </p>
<p><b>See also:</b> <a href="#abstract-1">abstract/1</a>, <a href="#concrete-1">concrete/1</a>.</p>

<h3><a name="is_proper_list-1">is_proper_list/1</a></h3>
<p><tt>is_proper_list(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; bool()</tt></p>
<p>Returns <code>true</code> if <code>Node</code> represents a
  proper list, and <code>false</code> otherwise. A proper list is a
  list skeleton either on the form "<code>[]</code>" or
  "<code>[<em>E1</em>, ..., <em>En</em>]</code>", or "<code>[... |
  <em>Tail</em>]</code>" where recursively <code>Tail</code> also
  represents a proper list.
 
  <p>Note: Since <code>Node</code> is a syntax tree, the actual
  run-time values corresponding to its subtrees may often be partially
  or completely unknown. Thus, if <code>Node</code> represents e.g.
  "<code>[... | Ns]</code>" (where <code>Ns</code> is a variable), then
  the function will return <code>false</code>, because it is not known
  whether <code>Ns</code> will be bound to a list at run-time. If
  <code>Node</code> instead represents e.g. "<code>[1, 2, 3]</code>" or
  "<code>[A | []]</code>", then the function will return
  <code>true</code>.</p>
 </p>
<p><b>See also:</b> <a href="#list-2">list/2</a>.</p>

<h3><a name="is_string-2">is_string/2</a></h3>
<p><tt>is_string(Node::<a href="#type-syntaxTree">syntaxTree()</a>, Value::string()) -&gt; bool()</tt></p>
<p>Returns <code>true</code> if <code>Node</code> has type
  <code>string</code> and represents <code>Value</code>, otherwise
  <code>false</code>.
 </p>
<p><b>See also:</b> <a href="#string-1">string/1</a>.</p>

<h3><a name="is_tree-1">is_tree/1</a></h3>
<p><tt>is_tree(Tree::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; bool()</tt></p>
<p><em>For special purposes only</em>. Returns <code>true</code> if
  <code>Tree</code> is an abstract syntax tree and <code>false</code>
  otherwise.
 
  <p><em>Note</em>: this function yields <code>false</code> for all
  "old-style" <code>erl_parse</code>-compatible "parse trees".</p>
 </p>
<p><b>See also:</b> <a href="#tree-2">tree/2</a>.</p>

<h3><a name="join_comments-2">join_comments/2</a></h3>
<p><tt>join_comments(Source::<a href="#type-syntaxTree">syntaxTree()</a>, Target::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Appends the comments of <code>Source</code> to the current
  comments of <code>Target</code>.
 
  <p>Note: This is equivalent to
  <code>add_postcomments(get_postcomments(Source),
  add_precomments(get_precomments(Source), Target))</code>, but
  potentially more efficient.</p>
 </p>
<p><b>See also:</b> <a href="#add_postcomments-2">add_postcomments/2</a>, <a href="#add_precomments-2">add_precomments/2</a>, <a href="#comment-2">comment/2</a>, <a href="#get_postcomments-1">get_postcomments/1</a>, <a href="#get_precomments-1">get_precomments/1</a>.</p>

<h3><a name="list-1">list/1</a></h3>
<p><tt>list(List) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Equivalent to <a href="#list-2"><tt>list(List, none)</tt></a>.</p>


<h3><a name="list-2">list/2</a></h3>
<p><tt>list(Elements::List, Tail) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt>
<ul><li><tt>List = [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></li><li><tt>Tail = none | <a href="#type-syntaxTree">syntaxTree()</a></tt></li></ul></p>
<p>Constructs an abstract list skeleton. The result has type
  <code>list</code> or <code>nil</code>. If <code>List</code> is a
  nonempty list <code>[E1, ..., En]</code>, the result has type
  <code>list</code> and represents either "<code>[<em>E1</em>, ...,
  <em>En</em>]</code>", if <code>Tail</code> is <code>none</code>, or
  otherwise "<code>[<em>E1</em>, ..., <em>En</em> |
  <em>Tail</em>]</code>". If <code>List</code> is the empty list,
  <code>Tail</code> <em>must</em> be <code>none</code>, and in that
  case the result has type <code>nil</code> and represents
  "<code>[]</code>" (cf. <code>nil/0</code>).
 
  <p>The difference between lists as semantic objects (built up of
  individual "cons" and "nil" terms) and the various syntactic forms
  for denoting lists may be bewildering at first. This module provides
  functions both for exact control of the syntactic representation as
  well as for the simple composition and deconstruction in terms of
  cons and head/tail operations.</p>
 
  <p>Note: in <code>list(Elements, none)</code>, the "nil" list
  terminator is implicit and has no associated information (cf.
  <code>get_attrs/1</code>), while in the seemingly equivalent
  <code>list(Elements, Tail)</code> when <code>Tail</code> has type
  <code>nil</code>, the list terminator subtree <code>Tail</code> may
  have attached attributes such as position, comments, and annotations,
  which will be preserved in the result.</p>
 </p>
<p><b>See also:</b> <a href="#compact_list-1">compact_list/1</a>, <a href="#cons-2">cons/2</a>, <a href="#get_attrs-1">get_attrs/1</a>, <a href="#is_list_skeleton-1">is_list_skeleton/1</a>, <a href="#is_proper_list-1">is_proper_list/1</a>, <a href="#list-1">list/1</a>, <a href="#list_elements-1">list_elements/1</a>, <a href="#list_head-1">list_head/1</a>, <a href="#list_length-1">list_length/1</a>, <a href="#list_prefix-1">list_prefix/1</a>, <a href="#list_suffix-1">list_suffix/1</a>, <a href="#list_tail-1">list_tail/1</a>, <a href="#nil-0">nil/0</a>, <a href="#normalize_list-1">normalize_list/1</a>.</p>

<h3><a name="list_comp-2">list_comp/2</a></h3>
<p><tt>list_comp(Template::<a href="#type-syntaxTree">syntaxTree()</a>, Body::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract list comprehension. If <code>Body</code> is
  <code>[E1, ..., En]</code>, the result represents
  "<code>[<em>Template</em> || <em>E1</em>, ..., <em>En</em>]</code>".
 </p>
<p><b>See also:</b> <a href="#generator-2">generator/2</a>, <a href="#list_comp_body-1">list_comp_body/1</a>, <a href="#list_comp_template-1">list_comp_template/1</a>.</p>

<h3><a name="list_comp_body-1">list_comp_body/1</a></h3>
<p><tt>list_comp_body(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Returns the list of body subtrees of a <code>list_comp</code>
  node.
 </p>
<p><b>See also:</b> <a href="#list_comp-2">list_comp/2</a>.</p>

<h3><a name="list_comp_template-1">list_comp_template/1</a></h3>
<p><tt>list_comp_template(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the template subtree of a <code>list_comp</code> node.
 </p>
<p><b>See also:</b> <a href="#list_comp-2">list_comp/2</a>.</p>

<h3><a name="list_elements-1">list_elements/1</a></h3>
<p><tt>list_elements(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Returns the list of element subtrees of a list skeleton.
  <code>Node</code> must represent a proper list. E.g., if
  <code>Node</code> represents "<code>[<em>X1</em>, <em>X2</em> |
  [<em>X3</em>, <em>X4</em> | []]</code>", then
  <code>list_elements(Node)</code> yields the list <code>[X1, X2, X3,
  X4]</code>.
 </p>
<p><b>See also:</b> <a href="#is_proper_list-1">is_proper_list/1</a>, <a href="#list-2">list/2</a>.</p>

<h3><a name="list_head-1">list_head/1</a></h3>
<p><tt>list_head(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the head element subtree of a <code>list</code> node. If
  <code>Node</code> represents "<code>[<em>Head</em> ...]</code>", the
  result will represent "<code><em>Head</em></code>".
 </p>
<p><b>See also:</b> <a href="#cons-2">cons/2</a>, <a href="#list-2">list/2</a>, <a href="#list_tail-1">list_tail/1</a>.</p>

<h3><a name="list_length-1">list_length/1</a></h3>
<tt>list_length(Node) -&gt; term()
</tt><p>Returns the number of element subtrees of a list skeleton.
  <code>Node</code> must represent a proper list. E.g., if
  <code>Node</code> represents "<code>[X1 | [X2, X3 | [X4, X5,
  X6]]]</code>", then <code>list_length(Node)</code> returns the
  integer 6.
 
  <p>Note: this is equivalent to
  <code>length(list_elements(Node))</code>, but potentially more
  efficient.</p>
 </p>
<p><b>See also:</b> <a href="#is_proper_list-1">is_proper_list/1</a>, <a href="#list-2">list/2</a>, <a href="#list_elements-1">list_elements/1</a>.</p>

<h3><a name="list_prefix-1">list_prefix/1</a></h3>
<p><tt>list_prefix(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Returns the prefix element subtrees of a <code>list</code> node.
  If <code>Node</code> represents "<code>[<em>E1</em>, ...,
  <em>En</em>]</code>" or "<code>[<em>E1</em>, ..., <em>En</em> |
  <em>Tail</em>]</code>", the returned value is <code>[E1, ...,
  En]</code>.
 </p>
<p><b>See also:</b> <a href="#list-2">list/2</a>.</p>

<h3><a name="list_suffix-1">list_suffix/1</a></h3>
<p><tt>list_suffix(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; none | <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the suffix subtree of a <code>list</code> node, if one
  exists. If <code>Node</code> represents "<code>[<em>E1</em>, ...,
  <em>En</em> | <em>Tail</em>]</code>", the returned value is
  <code>Tail</code>, otherwise, i.e., if <code>Node</code> represents
  "<code>[<em>E1</em>, ..., <em>En</em>]</code>", <code>none</code> is
  returned.
 
  <p>Note that even if this function returns some <code>Tail</code>
  that is not <code>none</code>, the type of <code>Tail</code> can be
  <code>nil</code>, if the tail has been given explicitly, and the list
  skeleton has not been compacted (cf.
  <code>compact_list/1</code>).</p>
 </p>
<p><b>See also:</b> <a href="#compact_list-1">compact_list/1</a>, <a href="#list-2">list/2</a>, <a href="#nil-0">nil/0</a>.</p>

<h3><a name="list_tail-1">list_tail/1</a></h3>
<tt>list_tail(Node) -&gt; term()
</tt><p>Returns the tail of a <code>list</code> node. If
  <code>Node</code> represents a single-element list
  "<code>[<em>E</em>]</code>", then the result has type
  <code>nil</code>, representing "<code>[]</code>". If
  <code>Node</code> represents "<code>[<em>E1</em>, <em>E2</em>
  ...]</code>", the result will represent "<code>[<em>E2</em>
  ...]</code>", and if <code>Node</code> represents
  "<code>[<em>Head</em> | <em>Tail</em>]</code>", the result will
  represent "<code><em>Tail</em></code>".
 </p>
<p><b>See also:</b> <a href="#cons-2">cons/2</a>, <a href="#list-2">list/2</a>, <a href="#list_head-1">list_head/1</a>.</p>

<h3><a name="macro-1">macro/1</a></h3>
<p><tt>macro(Name) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Equivalent to <a href="#macro-2"><tt>macro(Name, none)</tt></a>.</p>


<h3><a name="macro-2">macro/2</a></h3>
<p><tt>macro(Name::<a href="#type-syntaxTree">syntaxTree()</a>, Arguments) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt>
<ul><li><tt>Arguments = none | [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></li></ul></p>
<p>Creates an abstract macro application. If <code>Arguments</code>
  is <code>none</code>, the result represents
  "<code>?<em>Name</em></code>", otherwise, if <code>Arguments</code>
  is <code>[A1, ..., An]</code>, the result represents
  "<code>?<em>Name</em>(<em>A1</em>, ..., <em>An</em>)</code>".
 
  <p>Notes: if <code>Arguments</code> is the empty list, the result
  will thus represent "<code>?<em>Name</em>()</code>", including a pair
  of matching parentheses.</p>
 
  <p>The only syntactical limitation imposed by the preprocessor on the
  arguments to a macro application (viewed as sequences of tokens) is
  that they must be balanced with respect to parentheses, brackets,
  <code>begin ... end</code>, <code>case ... end</code>, etc. The
  <code>text</code> node type can be used to represent arguments which
  are not regular Erlang constructs.</p>
 </p>
<p><b>See also:</b> <a href="#macro-1">macro/1</a>, <a href="#macro_arguments-1">macro_arguments/1</a>, <a href="#macro_name-1">macro_name/1</a>, <a href="#text-1">text/1</a>.</p>

<h3><a name="macro_arguments-1">macro_arguments/1</a></h3>
<p><tt>macro_arguments(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; none | [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Returns the list of argument subtrees of a <code>macro</code>
  node, if any. If <code>Node</code> represents
  "<code>?<em>Name</em></code>", <code>none</code> is returned.
  Otherwise, if <code>Node</code> represents
  "<code>?<em>Name</em>(<em>A1</em>, ..., <em>An</em>)</code>",
  <code>[A1, ..., An]</code> is returned.
 </p>
<p><b>See also:</b> <a href="#macro-2">macro/2</a>.</p>

<h3><a name="macro_name-1">macro_name/1</a></h3>
<p><tt>macro_name(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the name subtree of a <code>macro</code> node.
 </p>
<p><b>See also:</b> <a href="#macro-2">macro/2</a>.</p>

<h3><a name="make_tree-2">make_tree/2</a></h3>
<p><tt>make_tree(Type::atom(), Groups::[[<a href="#type-syntaxTree">syntaxTree()</a>]]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates a syntax tree with the given type and subtrees.
  <code>Type</code> must be a node type name (cf. <code>type/1</code>)
  that does not denote a leaf node type (cf. <code>is_leaf/1</code>).
  <code>Groups</code> must be a <em>nonempty</em> list of groups of
  syntax trees, representing the subtrees of a node of the given type,
  in left-to-right order as they would occur in the printed program
  text, grouped by category as done by <code>subtrees/1</code>.
 
  <p>The result of <code>copy_attrs(Node, make_tree(type(Node),
  subtrees(Node)))</code> (cf. <code>update_tree/2</code>) represents
  the same source code text as the original <code>Node</code>, assuming
  that <code>subtrees(Node)</code> yields a nonempty list. However, it
  does not necessarily have the same data representation as
  <code>Node</code>.</p>
 </p>
<p><b>See also:</b> <a href="#copy_attrs-2">copy_attrs/2</a>, <a href="#is_leaf-1">is_leaf/1</a>, <a href="#subtrees-1">subtrees/1</a>, <a href="#type-1">type/1</a>, <a href="#update_tree-1">update_tree/1</a>.</p>

<h3><a name="match_expr-2">match_expr/2</a></h3>
<p><tt>match_expr(Pattern::<a href="#type-syntaxTree">syntaxTree()</a>, Body::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract match-expression. The result represents
  "<code><em>Pattern</em> = <em>Body</em></code>".
 </p>
<p><b>See also:</b> <a href="#match_expr_body-1">match_expr_body/1</a>, <a href="#match_expr_pattern-1">match_expr_pattern/1</a>.</p>

<h3><a name="match_expr_body-1">match_expr_body/1</a></h3>
<p><tt>match_expr_body(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the body subtree of a <code>match_expr</code> node.
 </p>
<p><b>See also:</b> <a href="#match_expr-2">match_expr/2</a>.</p>

<h3><a name="match_expr_pattern-1">match_expr_pattern/1</a></h3>
<p><tt>match_expr_pattern(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the pattern subtree of a <code>match_expr</code> node.
 </p>
<p><b>See also:</b> <a href="#match_expr-2">match_expr/2</a>.</p>

<h3><a name="meta-1">meta/1</a></h3>
<p><tt>meta(Tree::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates a meta-representation of a syntax tree. The result
  represents an Erlang expression "<code><em>MetaTree</em></code>"
  which, if evaluated, will yield a new syntax tree representing the
  same source code text as <code>Tree</code> (although the actual data
  representation may be different). The expression represented by
  <code>MetaTree</code> is <em>implementation independent</em> with
  regard to the data structures used by the abstract syntax tree
  implementation. Comments attached to nodes of <code>Tree</code> will
  be preserved, but other attributes are lost.
 
  <p>Any node in <code>Tree</code> whose node type is
  <code>variable</code> (cf. <code>type/1</code>), and whose list of
  annotations (cf. <code>get_ann/1</code>) contains the atom
  <code>meta_var</code>, will remain unchanged in the resulting tree,
  except that exactly one occurrence of <code>meta_var</code> is
  removed from its annotation list.</p>
 
  <p>The main use of the function <code>meta/1</code> is to transform a
  data structure <code>Tree</code>, which represents a piece of program
  code, into a form that is <em>representation independent when
  printed</em>. E.g., suppose <code>Tree</code> represents a variable
  named "V". Then (assuming a function <code>print/1</code> for
  printing syntax trees), evaluating <code>print(abstract(Tree))</code>
  - simply using <code>abstract/1</code> to map the actual data
  structure onto a syntax tree representation - would output a string
  that might look something like "<code>{tree, variable, ..., "V",
  ...}</code>", which is obviously dependent on the implementation of
  the abstract syntax trees. This could e.g. be useful for caching a
  syntax tree in a file. However, in some situations like in a program
  generator generator (with two "generator"), it may be unacceptable.
  Using <code>print(meta(Tree))</code> instead would output a
  <em>representation independent</em> syntax tree generating
  expression; in the above case, something like
  "<code>erl_syntax:variable("V")</code>".</p>
 </p>
<p><b>See also:</b> <a href="#abstract-1">abstract/1</a>, <a href="#get_ann-1">get_ann/1</a>, <a href="#type-1">type/1</a>.</p>

<h3><a name="module_qualifier-2">module_qualifier/2</a></h3>
<p><tt>module_qualifier(Module::<a href="#type-syntaxTree">syntaxTree()</a>, Body::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract module qualifier. The result represents
  "<code><em>Module</em>:<em>Body</em></code>".
 </p>
<p><b>See also:</b> <a href="#module_qualifier_argument-1">module_qualifier_argument/1</a>, <a href="#module_qualifier_body-1">module_qualifier_body/1</a>.</p>

<h3><a name="module_qualifier_argument-1">module_qualifier_argument/1</a></h3>
<p><tt>module_qualifier_argument(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the argument (the module) subtree of a
  <code>module_qualifier</code> node.
 </p>
<p><b>See also:</b> <a href="#module_qualifier-2">module_qualifier/2</a>.</p>

<h3><a name="module_qualifier_body-1">module_qualifier_body/1</a></h3>
<p><tt>module_qualifier_body(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the body subtree of a <code>module_qualifier</code>
  node.
 </p>
<p><b>See also:</b> <a href="#module_qualifier-2">module_qualifier/2</a>.</p>

<h3><a name="nil-0">nil/0</a></h3>
<p><tt>nil() -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract empty list. The result represents
  "<code>[]</code>". The empty list is traditionally called "nil".
 </p>
<p><b>See also:</b> <a href="#is_list_skeleton-1">is_list_skeleton/1</a>, <a href="#list-2">list/2</a>.</p>

<h3><a name="normalize_list-1">normalize_list/1</a></h3>
<p><tt>normalize_list(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Expands an abstract list skeleton to its most explicit form. If
  <code>Node</code> represents "<code>[<em>E1</em>, ..., <em>En</em> |
  <em>Tail</em>]</code>", the result represents "<code>[<em>E1</em> |
  ... [<em>En</em> | <em>Tail1</em>] ... ]</code>", where
  <code>Tail1</code> is the result of
  <code>normalize_list(Tail)</code>. If <code>Node</code> represents
  "<code>[<em>E1</em>, ..., <em>En</em>]</code>", the result simply
  represents "<code>[<em>E1</em> | ... [<em>En</em> | []] ...
  ]</code>". If <code>Node</code> does not represent a list skeleton,
  <code>Node</code> itself is returned.
 </p>
<p><b>See also:</b> <a href="#compact_list-1">compact_list/1</a>, <a href="#list-2">list/2</a>.</p>

<h3><a name="operator-1">operator/1</a></h3>
<p><tt>operator(Name) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt>
<ul><li><tt>Name = atom() | string()</tt></li></ul></p>
<p>Creates an abstract operator. The name of the operator is the
  character sequence represented by <code>Name</code>. This is
  analogous to the print name of an atom, but an operator is never
  written within single-quotes; e.g., the result of
  <code>operator('++')</code> represents "<code>++</code>" rather
  than "<code>'++'</code>".
 </p>
<p><b>See also:</b> <a href="#atom-1">atom/1</a>, <a href="#operator_literal-1">operator_literal/1</a>, <a href="#operator_name-1">operator_name/1</a>.</p>

<h3><a name="operator_literal-1">operator_literal/1</a></h3>
<p><tt>operator_literal(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; string()</tt></p>
<p>Returns the literal string represented by an
  <code>operator</code> node. This is simply the operator name as a
  string.
 </p>
<p><b>See also:</b> <a href="#operator-1">operator/1</a>.</p>

<h3><a name="operator_name-1">operator_name/1</a></h3>
<p><tt>operator_name(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; atom()</tt></p>
<p>Returns the name of an <code>operator</code> node. Note that
  the name is returned as an atom.
 </p>
<p><b>See also:</b> <a href="#operator-1">operator/1</a>.</p>

<h3><a name="parentheses-1">parentheses/1</a></h3>
<p><tt>parentheses(Body::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract parenthesised expression. The result
  represents "<code>(<em>Body</em>)</code>", independently of the
  context.
 </p>
<p><b>See also:</b> <a href="#parentheses_body-1">parentheses_body/1</a>.</p>

<h3><a name="parentheses_body-1">parentheses_body/1</a></h3>
<p><tt>parentheses_body(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the body subtree of a <code>parentheses</code> node.
 </p>
<p><b>See also:</b> <a href="#parentheses-1">parentheses/1</a>.</p>

<h3><a name="prefix_expr-2">prefix_expr/2</a></h3>
<p><tt>prefix_expr(Operator::<a href="#type-syntaxTree">syntaxTree()</a>, Argument::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract prefix operator expression. The result
  represents "<code><em>Operator</em> <em>Argument</em></code>".
 </p>
<p><b>See also:</b> <a href="#infix_expr-3">infix_expr/3</a>, <a href="#prefix_expr_argument-1">prefix_expr_argument/1</a>, <a href="#prefix_expr_operator-1">prefix_expr_operator/1</a>.</p>

<h3><a name="prefix_expr_argument-1">prefix_expr_argument/1</a></h3>
<p><tt>prefix_expr_argument(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the argument subtree of a <code>prefix_expr</code>
  node.
 </p>
<p><b>See also:</b> <a href="#prefix_expr-2">prefix_expr/2</a>.</p>

<h3><a name="prefix_expr_operator-1">prefix_expr_operator/1</a></h3>
<p><tt>prefix_expr_operator(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the operator subtree of a <code>prefix_expr</code>
  node.
 </p>
<p><b>See also:</b> <a href="#prefix_expr-2">prefix_expr/2</a>.</p>

<h3><a name="qualified_name-1">qualified_name/1</a></h3>
<p><tt>qualified_name(Segments::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract qualified name. The result represents
  "<code><em>S1</em>.<em>S2</em>. ... .<em>Sn</em></code>", if
  <code>Segments</code> is <code>[S1, S2, ..., Sn]</code>.
 </p>
<p><b>See also:</b> <a href="#qualified_name_segments-1">qualified_name_segments/1</a>.</p>

<h3><a name="qualified_name_segments-1">qualified_name_segments/1</a></h3>
<p><tt>qualified_name_segments(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Returns the list of name segments of a
  <code>qualified_name</code> node.
 </p>
<p><b>See also:</b> <a href="#qualified_name-1">qualified_name/1</a>.</p>

<h3><a name="query_expr-1">query_expr/1</a></h3>
<p><tt>query_expr(Body::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract Mnemosyne query expression. The result
  represents "<code>query <em>Body</em> end</code>".
 </p>
<p><b>See also:</b> <a href="#query_expr_body-1">query_expr_body/1</a>, <a href="#record_access-2">record_access/2</a>, <a href="#rule-2">rule/2</a>.</p>

<h3><a name="query_expr_body-1">query_expr_body/1</a></h3>
<p><tt>query_expr_body(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the body subtree of a <code>query_expr</code> node.
 </p>
<p><b>See also:</b> <a href="#query_expr-1">query_expr/1</a>.</p>

<h3><a name="receive_expr-1">receive_expr/1</a></h3>
<p><tt>receive_expr(Clauses) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Equivalent to <a href="#receive_expr-3"><tt>receive_expr(Clauses, none, [])</tt></a>.</p>


<h3><a name="receive_expr-3">receive_expr/3</a></h3>
<p><tt>receive_expr(Clauses::[<a href="#type-syntaxTree">syntaxTree()</a>], Timeout, Action::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt>
<ul><li><tt>Timeout = none | <a href="#type-syntaxTree">syntaxTree()</a></tt></li></ul></p>
<p>Creates an abstract receive-expression. If <code>Timeout</code>
  is <code>none</code>, the result represents "<code>receive
  <em>C1</em>; ...; <em>Cn</em> end</code>" (the <code>Action</code>
  argument is ignored). Otherwise, if <code>Clauses</code> is
  <code>[C1, ..., Cn]</code> and <code>Action</code> is <code>[A1, ...,
  Am]</code>, the result represents "<code>receive <em>C1</em>; ...;
  <em>Cn</em> after <em>Timeout</em> -&gt; <em>A1</em>, ..., <em>Am</em>
  end</code>". More exactly, if each <code>Ci</code> represents
  "<code>(<em>Pi</em>) <em>Gi</em> -&gt; <em>Bi</em></code>", then the
  result represents "<code>receive <em>P1</em> <em>G1</em> -&gt;
  <em>B1</em>; ...; <em>Pn</em> <em>Gn</em> -&gt; <em>Bn</em> ...
  end</code>".
 
  <p>Note that in Erlang, a receive-expression must have at least one
  clause if no timeout part is specified.</p>
 </p>
<p><b>See also:</b> <a href="#case_expr-2">case_expr/2</a>, <a href="#clause-3">clause/3</a>, <a href="#receive_expr-1">receive_expr/1</a>, <a href="#receive_expr_action-1">receive_expr_action/1</a>, <a href="#receive_expr_clauses-1">receive_expr_clauses/1</a>, <a href="#receive_expr_timeout-1">receive_expr_timeout/1</a>.</p>

<h3><a name="receive_expr_action-1">receive_expr_action/1</a></h3>
<p><tt>receive_expr_action(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Returns the list of action body subtrees of a
  <code>receive_expr</code> node. If <code>Node</code> represents
  "<code>receive <em>C1</em>; ...; <em>Cn</em> end</code>", this is the
  empty list.
 </p>
<p><b>See also:</b> <a href="#receive_expr-3">receive_expr/3</a>.</p>

<h3><a name="receive_expr_clauses-1">receive_expr_clauses/1</a></h3>
<p><tt>receive_expr_clauses(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [<a href="#type-syntaxTree">syntaxTree()</a>]</tt>
<ul><li><tt><a name="type-type">type(Node)</a> = receive_expr</tt></li></ul></p>
<p>Returns the list of clause subtrees of a
  <code>receive_expr</code> node.
 </p>
<p><b>See also:</b> <a href="#receive_expr-3">receive_expr/3</a>.</p>

<h3><a name="receive_expr_timeout-1">receive_expr_timeout/1</a></h3>
<p><tt>receive_expr_timeout(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; Timeout</tt>
<ul><li><tt>Timeout = none | <a href="#type-syntaxTree">syntaxTree()</a></tt></li></ul></p>
<p>Returns the timeout subtree of a <code>receive_expr</code> node,
  if any. If <code>Node</code> represents "<code>receive <em>C1</em>;
  ...; <em>Cn</em> end</code>", <code>none</code> is returned.
  Otherwise, if <code>Node</code> represents "<code>receive
  <em>C1</em>; ...; <em>Cn</em> after <em>Timeout</em> -&gt; <em>A1</em>,
  ..., <em>Am</em> end</code>", <code>[A1, ..., Am]</code> is returned.
 </p>
<p><b>See also:</b> <a href="#receive_expr-3">receive_expr/3</a>.</p>

<h3><a name="record_access-2">record_access/2</a></h3>
<p><tt>record_access(Argument, Field) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Equivalent to <a href="#record_access-3"><tt>record_access(Argument, none, Field)</tt></a>.</p>


<h3><a name="record_access-3">record_access/3</a></h3>
<p><tt>record_access(Argument::<a href="#type-syntaxTree">syntaxTree()</a>, Type, Field::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt>
<ul><li><tt>Type = none | <a href="#type-syntaxTree">syntaxTree()</a></tt></li></ul></p>
<p>Creates an abstract record field access expression. If
  <code>Type</code> is not <code>none</code>, the result represents
  "<code><em>Argument</em>#<em>Type</em>.<em>Field</em></code>".
 
  <p>If <code>Type</code> is <code>none</code>, the result represents
  "<code><em>Argument</em>.<em>Field</em></code>". This is a special
  form only allowed within Mnemosyne queries.</p>
 </p>
<p><b>See also:</b> <a href="#query_expr-1">query_expr/1</a>, <a href="#record_access-2">record_access/2</a>, <a href="#record_access_argument-1">record_access_argument/1</a>, <a href="#record_access_field-1">record_access_field/1</a>, <a href="#record_access_type-1">record_access_type/1</a>, <a href="#record_expr-3">record_expr/3</a>.</p>

<h3><a name="record_access_argument-1">record_access_argument/1</a></h3>
<p><tt>record_access_argument(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the argument subtree of a <code>record_access</code>
  node.
 </p>
<p><b>See also:</b> <a href="#record_access-3">record_access/3</a>.</p>

<h3><a name="record_access_field-1">record_access_field/1</a></h3>
<p><tt>record_access_field(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the field subtree of a <code>record_access</code>
  node.
 </p>
<p><b>See also:</b> <a href="#record_access-3">record_access/3</a>.</p>

<h3><a name="record_access_type-1">record_access_type/1</a></h3>
<p><tt>record_access_type(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; none | <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the type subtree of a <code>record_access</code> node,
  if any. If <code>Node</code> represents
  "<code><em>Argument</em>.<em>Field</em></code>", <code>none</code>
  is returned, otherwise if <code>Node</code> represents
  "<code><em>Argument</em>#<em>Type</em>.<em>Field</em></code>",
  <code>Type</code> is returned.
 </p>
<p><b>See also:</b> <a href="#record_access-3">record_access/3</a>.</p>

<h3><a name="record_expr-2">record_expr/2</a></h3>
<p><tt>record_expr(Type, Fields) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Equivalent to <a href="#record_expr-3"><tt>record_expr(none, Type, Fields)</tt></a>.</p>


<h3><a name="record_expr-3">record_expr/3</a></h3>
<p><tt>record_expr(Argument, Type::<a href="#type-syntaxTree">syntaxTree()</a>, Fields::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt>
<ul><li><tt>Argument = none | <a href="#type-syntaxTree">syntaxTree()</a></tt></li></ul></p>
<p>Creates an abstract record expression. If <code>Fields</code> is
  <code>[F1, ..., Fn]</code>, then if <code>Argument</code> is
  <code>none</code>, the result represents
  "<code>#<em>Type</em>{<em>F1</em>, ..., <em>Fn</em>}</code>",
  otherwise it represents
  "<code><em>Argument</em>#<em>Type</em>{<em>F1</em>, ...,
  <em>Fn</em>}</code>".
 </p>
<p><b>See also:</b> <a href="#record_access-3">record_access/3</a>, <a href="#record_expr-2">record_expr/2</a>, <a href="#record_expr_argument-1">record_expr_argument/1</a>, <a href="#record_expr_fields-1">record_expr_fields/1</a>, <a href="#record_expr_type-1">record_expr_type/1</a>, <a href="#record_field-2">record_field/2</a>, <a href="#record_index_expr-2">record_index_expr/2</a>.</p>

<h3><a name="record_expr_argument-1">record_expr_argument/1</a></h3>
<p><tt>record_expr_argument(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; none | <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the argument subtree of a <code>record_expr</code> node,
  if any. If <code>Node</code> represents
  "<code>#<em>Type</em>{...}</code>", <code>none</code> is returned.
  Otherwise, if <code>Node</code> represents
  "<code><em>Argument</em>#<em>Type</em>{...}</code>",
  <code>Argument</code> is returned.
 </p>
<p><b>See also:</b> <a href="#record_expr-3">record_expr/3</a>.</p>

<h3><a name="record_expr_fields-1">record_expr_fields/1</a></h3>
<tt>record_expr_fields(Node) -&gt; term()
</tt><p>Returns the list of field subtrees of a
  <code>record_expr</code> node.
 </p>
<p><b>See also:</b> <a href="#record_expr-3">record_expr/3</a>.</p>

<h3><a name="record_expr_type-1">record_expr_type/1</a></h3>
<tt>record_expr_type(Node) -&gt; term()
</tt><p>Returns the type subtree of a <code>record_expr</code> node.
 </p>
<p><b>See also:</b> <a href="#record_expr-3">record_expr/3</a>.</p>

<h3><a name="record_field-1">record_field/1</a></h3>
<p><tt>record_field(Name) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Equivalent to <a href="#record_field-2"><tt>record_field(Name, none)</tt></a>.</p>


<h3><a name="record_field-2">record_field/2</a></h3>
<p><tt>record_field(Name::<a href="#type-syntaxTree">syntaxTree()</a>, Value) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt>
<ul><li><tt>Value = none | <a href="#type-syntaxTree">syntaxTree()</a></tt></li></ul></p>
<p>Creates an abstract record field specification. If
  <code>Value</code> is <code>none</code>, the result represents
  simply "<code><em>Name</em></code>", otherwise it represents
  "<code><em>Name</em> = <em>Value</em></code>".
 </p>
<p><b>See also:</b> <a href="#record_expr-3">record_expr/3</a>, <a href="#record_field_name-1">record_field_name/1</a>, <a href="#record_field_value-1">record_field_value/1</a>.</p>

<h3><a name="record_field_name-1">record_field_name/1</a></h3>
<p><tt>record_field_name(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the name subtree of a <code>record_field</code> node.
 </p>
<p><b>See also:</b> <a href="#record_field-2">record_field/2</a>.</p>

<h3><a name="record_field_value-1">record_field_value/1</a></h3>
<p><tt>record_field_value(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; none | <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the value subtree of a <code>record_field</code> node,
  if any. If <code>Node</code> represents
  "<code><em>Name</em></code>", <code>none</code> is
  returned. Otherwise, if <code>Node</code> represents
  "<code><em>Name</em> = <em>Value</em></code>", <code>Value</code>
  is returned.
 </p>
<p><b>See also:</b> <a href="#record_field-2">record_field/2</a>.</p>

<h3><a name="record_index_expr-2">record_index_expr/2</a></h3>
<p><tt>record_index_expr(Type::<a href="#type-syntaxTree">syntaxTree()</a>, Field::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract record field index expression. The result
  represents "<code>#<em>Type</em>.<em>Field</em></code>".
 
  <p>(Note: the function name <code>record_index/2</code> is reserved
  by the Erlang compiler, which is why that name could not be used
  for this constructor.)</p>
 </p>
<p><b>See also:</b> <a href="#record_expr-3">record_expr/3</a>, <a href="#record_index_expr_field-1">record_index_expr_field/1</a>, <a href="#record_index_expr_type-1">record_index_expr_type/1</a>.</p>

<h3><a name="record_index_expr_field-1">record_index_expr_field/1</a></h3>
<p><tt>record_index_expr_field(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the field subtree of a <code>record_index_expr</code>
  node.
 </p>
<p><b>See also:</b> <a href="#record_index_expr-2">record_index_expr/2</a>.</p>

<h3><a name="record_index_expr_type-1">record_index_expr_type/1</a></h3>
<p><tt>record_index_expr_type(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the type subtree of a <code>record_index_expr</code>
  node.
 </p>
<p><b>See also:</b> <a href="#record_index_expr-2">record_index_expr/2</a>.</p>

<h3><a name="remove_comments-1">remove_comments/1</a></h3>
<p><tt>remove_comments(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Clears the associated comments of <code>Node</code>.
 
  <p>Note: This is equivalent to
  <code>set_precomments(set_postcomments(Node, []), [])</code>, but
  potentially more efficient.</p>
 </p>
<p><b>See also:</b> <a href="#set_postcomments-2">set_postcomments/2</a>, <a href="#set_precomments-2">set_precomments/2</a>.</p>

<h3><a name="revert-1">revert/1</a></h3>
<p><tt>revert(Tree::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns an <code>erl_parse</code>-compatible representation of a
  syntax tree, if possible. If <code>Tree</code> represents a
  well-formed Erlang program or expression, the conversion should work
  without problems. Typically, <code>is_tree/1</code> yields
  <code>true</code> if conversion failed (i.e., the result is still an
  abstract syntax tree), and <code>false</code> otherwise.
 
  <p>The <code>is_tree/1</code> test is not completely foolproof. For a
  few special node types (e.g. <code>arity_qualifier</code>), if such a
  node occurs in a context where it is not expected, it will be left
  unchanged as a non-reverted subtree of the result. This can only
  happen if <code>Tree</code> does not actually represent legal Erlang
  code.</p>
 </p>
<p><b>See also:</b> <a href="/usr/local/home/richardc/hipe/otp/lib/stdlib/doc/erl_parse.html">erl_parse</a>, <a href="#revert_forms-1">revert_forms/1</a>.</p>

<h3><a name="revert_forms-1">revert_forms/1</a></h3>
<p><tt>revert_forms(L::Forms) -&gt; [<a href="#type-erl_parse">erl_parse()</a>]</tt>
<ul><li><tt>Forms = <a href="#type-syntaxTree">syntaxTree()</a> | [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></li></ul></p>
<p>Reverts a sequence of Erlang source code forms. The sequence can
  be given either as a <code>form_list</code> syntax tree (possibly
  nested), or as a list of "program form" syntax trees. If successful,
  the corresponding flat list of <code>erl_parse</code>-compatible
  syntax trees is returned (cf. <code>revert/1</code>). If some program
  form could not be reverted, <code>{error, Form}</code> is thrown.
  Standalone comments in the form sequence are discarded.
 </p>
<p><b>See also:</b> <a href="#form_list-1">form_list/1</a>, <a href="#is_form-1">is_form/1</a>, <a href="#revert-1">revert/1</a>.</p>

<h3><a name="rule-2">rule/2</a></h3>
<p><tt>rule(Name::<a href="#type-syntaxTree">syntaxTree()</a>, Clauses::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract Mnemosyne rule. If <code>Clauses</code> is
  <code>[C1, ..., Cn]</code>, the results represents
  "<code><em>Name</em> <em>C1</em>; ...; <em>Name</em>
  <em>Cn</em>.</code>". More exactly, if each <code>Ci</code>
  represents "<code>(<em>Pi1</em>, ..., <em>Pim</em>) <em>Gi</em> -&gt;
  <em>Bi</em></code>", then the result represents
  "<code><em>Name</em>(<em>P11</em>, ..., <em>P1m</em>) <em>G1</em> :-
  <em>B1</em>; ...; <em>Name</em>(<em>Pn1</em>, ..., <em>Pnm</em>)
  <em>Gn</em> :- <em>Bn</em>.</code>". Rules are source code forms.
 </p>
<p><b>See also:</b> <a href="#function-2">function/2</a>, <a href="#is_form-1">is_form/1</a>, <a href="#rule_arity-1">rule_arity/1</a>, <a href="#rule_clauses-1">rule_clauses/1</a>, <a href="#rule_name-1">rule_name/1</a>.</p>

<h3><a name="rule_arity-1">rule_arity/1</a></h3>
<p><tt>rule_arity(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; integer()</tt></p>
<p>Returns the arity of a <code>rule</code> node. The result is the
  number of parameter patterns in the first clause of the rule;
  subsequent clauses are ignored.
 
  <p>An exception is thrown if <code>rule_clauses(Node)</code> returns
  an empty list, or if the first element of that list is not a syntax
  tree <code>C</code> of type <code>clause</code> such that
  <code>clause_patterns(C)</code> is a nonempty list.</p>
 </p>
<p><b>See also:</b> <a href="#clause-3">clause/3</a>, <a href="#clause_patterns-1">clause_patterns/1</a>, <a href="#rule-2">rule/2</a>, <a href="#rule_clauses-1">rule_clauses/1</a>.</p>

<h3><a name="rule_clauses-1">rule_clauses/1</a></h3>
<p><tt>rule_clauses(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Returns the list of clause subtrees of a <code>rule</code> node.
 </p>
<p><b>See also:</b> <a href="#rule-2">rule/2</a>.</p>

<h3><a name="rule_name-1">rule_name/1</a></h3>
<p><tt>rule_name(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the name subtree of a <code>rule</code> node.
 </p>
<p><b>See also:</b> <a href="#rule-2">rule/2</a>.</p>

<h3><a name="set_ann-2">set_ann/2</a></h3>
<p><tt>set_ann(Node::<a href="#type-syntaxTree">syntaxTree()</a>, Annotations::[term()]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Sets the list of user annotations of <code>Node</code> to
  <code>Annotations</code>.
 </p>
<p><b>See also:</b> <a href="#add_ann-2">add_ann/2</a>, <a href="#copy_ann-2">copy_ann/2</a>, <a href="#get_ann-1">get_ann/1</a>.</p>

<h3><a name="set_attrs-2">set_attrs/2</a></h3>
<p><tt>set_attrs(Node::<a href="#type-syntaxTree">syntaxTree()</a>, Attributes::<a href="#type-syntaxTreeAttributes">syntaxTreeAttributes()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Sets the attributes of <code>Node</code> to
  <code>Attributes</code>.
 </p>
<p><b>See also:</b> <a href="#copy_attrs-2">copy_attrs/2</a>, <a href="#get_attrs-1">get_attrs/1</a>.</p>

<h3><a name="set_pos-2">set_pos/2</a></h3>
<p><tt>set_pos(Node::<a href="#type-syntaxTree">syntaxTree()</a>, Pos::term()) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Sets the position information of <code>Node</code> to
  <code>Pos</code>.
 </p>
<p><b>See also:</b> <a href="#copy_pos-2">copy_pos/2</a>, <a href="#get_pos-1">get_pos/1</a>.</p>

<h3><a name="set_postcomments-2">set_postcomments/2</a></h3>
<p><tt>set_postcomments(Node::<a href="#type-syntaxTree">syntaxTree()</a>, Comments::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Sets the post-comments of <code>Node</code> to
  <code>Comments</code>. <code>Comments</code> should be a possibly
  empty list of abstract comments, in top-down textual order
 </p>
<p><b>See also:</b> <a href="#add_postcomments-2">add_postcomments/2</a>, <a href="#comment-2">comment/2</a>, <a href="#copy_comments-2">copy_comments/2</a>, <a href="#get_postcomments-1">get_postcomments/1</a>, <a href="#join_comments-2">join_comments/2</a>, <a href="#remove_comments-1">remove_comments/1</a>, <a href="#set_precomments-2">set_precomments/2</a>.</p>

<h3><a name="set_precomments-2">set_precomments/2</a></h3>
<p><tt>set_precomments(Node::<a href="#type-syntaxTree">syntaxTree()</a>, Comments::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Sets the pre-comments of <code>Node</code> to
  <code>Comments</code>. <code>Comments</code> should be a possibly
  empty list of abstract comments, in top-down textual order.
 </p>
<p><b>See also:</b> <a href="#add_precomments-2">add_precomments/2</a>, <a href="#comment-2">comment/2</a>, <a href="#copy_comments-2">copy_comments/2</a>, <a href="#get_precomments-1">get_precomments/1</a>, <a href="#join_comments-2">join_comments/2</a>, <a href="#remove_comments-1">remove_comments/1</a>, <a href="#set_postcomments-2">set_postcomments/2</a>.</p>

<h3><a name="size_qualifier-2">size_qualifier/2</a></h3>
<p><tt>size_qualifier(Body::<a href="#type-syntaxTree">syntaxTree()</a>, Size::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract size qualifier. The result represents
  "<code><em>Body</em>:<em>Size</em></code>".
 </p>
<p><b>See also:</b> <a href="#size_qualifier_argument-1">size_qualifier_argument/1</a>, <a href="#size_qualifier_body-1">size_qualifier_body/1</a>.</p>

<h3><a name="size_qualifier_argument-1">size_qualifier_argument/1</a></h3>
<p><tt>size_qualifier_argument(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the argument subtree (the size) of a
  <code>size_qualifier</code> node.
 </p>
<p><b>See also:</b> <a href="#size_qualifier-2">size_qualifier/2</a>.</p>

<h3><a name="size_qualifier_body-1">size_qualifier_body/1</a></h3>
<p><tt>size_qualifier_body(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Returns the body subtree of a <code>size_qualifier</code>
  node.
 </p>
<p><b>See also:</b> <a href="#size_qualifier-2">size_qualifier/2</a>.</p>

<h3><a name="string-1">string/1</a></h3>
<p><tt>string(Value::string()) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract string literal. The result represents
  <code>"<em>Text</em>"</code> (including the surrounding
  double-quotes), where <code>Text</code> corresponds to the sequence
  of characters in <code>Value</code>, but not representing a
  <em>specific</em> string literal. E.g., the result of
  <code>string("x\ny")</code> represents any and all of
  <code>"x\ny"</code>, <code>"x\12y"</code>, <code>"x\012y"</code> and
  <code>"x\^Jy"</code>; cf. <code>char/1</code>.
 </p>
<p><b>See also:</b> <a href="#char-1">char/1</a>, <a href="#is_string-2">is_string/2</a>, <a href="#string_literal-1">string_literal/1</a>, <a href="#string_value-1">string_value/1</a>.</p>

<h3><a name="string_literal-1">string_literal/1</a></h3>
<p><tt>string_literal(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; string()</tt></p>
<p>Returns the literal string represented by a <code>string</code>
  node. This includes surrounding double-quote characters.
 </p>
<p><b>See also:</b> <a href="#string-1">string/1</a>.</p>

<h3><a name="string_value-1">string_value/1</a></h3>
<p><tt>string_value(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; string()</tt></p>
<p>Returns the value represented by a <code>string</code> node.
 </p>
<p><b>See also:</b> <a href="#string-1">string/1</a>.</p>

<h3><a name="subtrees-1">subtrees/1</a></h3>
<p><tt>subtrees(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [[<a href="#type-syntaxTree">syntaxTree()</a>]]</tt></p>
<p>Returns the grouped list of all subtrees of a syntax tree. If
  <code>Node</code> is a leaf node (cf. <code>is_leaf/1</code>), this
  is the empty list, otherwise the result is always a nonempty list,
  containing the lists of subtrees of <code>Node</code>, in
  left-to-right order as they occur in the printed program text, and
  grouped by category. Often, each group contains only a single
  subtree.
 
  <p>Depending on the type of <code>Node</code>, the size of some
  groups may be variable (e.g., the group consisting of all the
  elements of a tuple), while others always contain the same number of
  elements - usually exactly one (e.g., the group containing the
  argument expression of a case-expression). Note, however, that the
  exact structure of the returned list (for a given node type) should
  in general not be depended upon, since it might be subject to change
  without notice.</p>
 
  <p>The function <code>subtrees/1</code> and the constructor functions
  <code>make_tree/2</code> and <code>update_tree/2</code> can be a
  great help if one wants to traverse a syntax tree, visiting all its
  subtrees, but treat nodes of the tree in a uniform way in most or all
  cases. Using these functions makes this simple, and also assures that
  your code is not overly sensitive to extensions of the syntax tree
  data type, because any node types not explicitly handled by your code
  can be left to a default case.</p>
 
  <p>For example:
  <pre>
    postorder(F, Tree) -&gt;
        F(case subtrees(Tree) of
            [] -&gt; Tree;
            List -&gt; update_tree(Tree,
                                [[postorder(F, Subtree)
                                  || Subtree &lt;- Group]
                                 || Group &lt;- List])
          end).
  </pre>
  maps the function <code>F</code> on <code>Tree</code> and all its
  subtrees, doing a post-order traversal of the syntax tree. (Note the
  use of <code>update_tree/2</code> to preserve node attributes.) For a
  simple function like:
  <pre>
    f(Node) -&gt;
        case type(Node) of
            atom -&gt; atom("a_" ++ atom_name(Node));
            _ -&gt; Node
        end.
  </pre>
  the call <code>postorder(fun f/1, Tree)</code> will yield a new
  representation of <code>Tree</code> in which all atom names have been
  extended with the prefix "a_", but nothing else (including comments,
  annotations and line numbers) has been changed.</p>
 </p>
<p><b>See also:</b> <a href="#copy_attrs-2">copy_attrs/2</a>, <a href="#is_leaf-1">is_leaf/1</a>, <a href="#make_tree-2">make_tree/2</a>, <a href="#type-1">type/1</a>.</p>

<h3><a name="text-1">text/1</a></h3>
<p><tt>text(String::string()) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract piece of source code text. The result
  represents exactly the sequence of characters in <code>String</code>.
  This is useful in cases when one wants full control of the resulting
  output, e.g., for the appearance of floating-point numbers or macro
  definitions.
 </p>
<p><b>See also:</b> <a href="#text_string-1">text_string/1</a>.</p>

<h3><a name="text_string-1">text_string/1</a></h3>
<p><tt>text_string(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; string()</tt></p>
<p>Returns the character sequence represented by a
  <code>text</code> node.
 </p>
<p><b>See also:</b> <a href="#text-1">text/1</a>.</p>

<h3><a name="tree-1">tree/1</a></h3>
<p><tt>tree(Type) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Equivalent to <a href="#tree-2"><tt>tree(Type, [])</tt></a>.</p>


<h3><a name="tree-2">tree/2</a></h3>
<p><tt>tree(Type::atom(), Data::term()) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p><em>For special purposes only</em>. Creates an abstract syntax
  tree node with type tag <code>Type</code> and associated data
  <code>Data</code>.
 
  <p>This function and the related <code>is_tree/1</code> and
  <code>data/1</code> provide a uniform way to extend the set of
  <code>erl_parse</code> node types. The associated data is any term,
  whose format may depend on the type tag.</p>
 
  <h4>Notes:</h4>
  <ul>
   <li>Any nodes created outside of this module must have type tags
       distinct from those currently defined by this module; see
       <code>type/1</code> for a complete list.</li>
   <li>The type tag of a syntax tree node may also be used
       as a primary tag by the <code>erl_parse</code> representation;
       in that case, the selector functions for that node type
       <em>must</em> handle both the abstract syntax tree and the
       <code>erl_parse</code> form. The function <code>type(T)</code>
       should return the correct type tag regardless of the
       representation of <code>T</code>, so that the user sees no
       difference between <code>erl_syntax</code> and
       <code>erl_parse</code> nodes.</li>
  </ul></p>
<p><b>See also:</b> <a href="#data-1">data/1</a>, <a href="#is_tree-1">is_tree/1</a>, <a href="#type-1">type/1</a>.</p>

<h3><a name="try_after_expr-2">try_after_expr/2</a></h3>
<p><tt>try_after_expr(Body::<a href="#type-syntaxTree">syntaxTree()</a>, After::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Equivalent to <a href="#try_expr-4"><tt>try_expr(Body, [], [], After)</tt></a>.</p>


<h3><a name="try_expr-2">try_expr/2</a></h3>
<p><tt>try_expr(Body::<a href="#type-syntaxTree">syntaxTree()</a>, Handlers::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Equivalent to <a href="#try_expr-3"><tt>try_expr(Body, [], Handlers)</tt></a>.</p>


<h3><a name="try_expr-3">try_expr/3</a></h3>
<p><tt>try_expr(Body::<a href="#type-syntaxTree">syntaxTree()</a>, Clauses::[<a href="#type-syntaxTree">syntaxTree()</a>], Handlers::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Equivalent to <a href="#try_expr-4"><tt>try_expr(Body, Clauses, Handlers, [])</tt></a>.</p>


<h3><a name="try_expr-4">try_expr/4</a></h3>
<p><tt>try_expr(Body::[<a href="#type-syntaxTree">syntaxTree()</a>], Clauses::[<a href="#type-syntaxTree">syntaxTree()</a>], Handlers::[<a href="#type-syntaxTree">syntaxTree()</a>], After::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract try-expression. If <code>Body</code> is
  <code>[B1, ..., Bn]</code>, <code>Clauses</code> is <code>[C1, ...,
  Cj]</code>, <code>Handlers</code> is <code>[H1, ..., Hk]</code>, and
  <code>After</code> is <code>[A1, ..., Am]</code>, the result
  represents "<code>try <em>B1</em>, ..., <em>Bn</em> of <em>C1</em>;
  ...; <em>Cj</em> catch <em>H1</em>; ...; <em>Hk</em> after
  <em>A1</em>, ..., <em>Am</em> end</code>". More exactly, if each
  <code>Ci</code> represents "<code>(<em>CPi</em>) <em>CGi</em> -&gt;
  <em>CBi</em></code>", and each <code>Hi</code> represents
  "<code>(<em>HPi</em>) <em>HGi</em> -&gt; <em>HBi</em></code>", then the
  result represents "<code>try <em>B1</em>, ..., <em>Bn</em> of
  <em>CP1</em> <em>CG1</em> -&gt; <em>CB1</em>; ...; <em>CPj</em>
  <em>CGj</em> -&gt; <em>CBj</em> catch <em>HP1</em> <em>HG1</em> -&gt;
  <em>HB1</em>; ...; <em>HPk</em> <em>HGk</em> -&gt; <em>HBk</em> after
  <em>A1</em>, ..., <em>Am</em> end</code>"; cf.
  <code>case_expr/2</code>. If <code>Clauses</code> is the empty list,
  the <code>of ...</code> section is left out. If <code>After</code> is
  the empty list, the <code>after ...</code> section is left out. If
  <code>Handlers</code> is the empty list, and <code>After</code> is
  nonempty, the <code>catch ...</code> section is left out.
 </p>
<p><b>See also:</b> <a href="#case_expr-2">case_expr/2</a>, <a href="#class_qualifier-2">class_qualifier/2</a>, <a href="#clause-3">clause/3</a>, <a href="#try_after_expr-2">try_after_expr/2</a>, <a href="#try_expr-2">try_expr/2</a>, <a href="#try_expr-3">try_expr/3</a>, <a href="#try_expr_after-1">try_expr_after/1</a>, <a href="#try_expr_body-1">try_expr_body/1</a>, <a href="#try_expr_clauses-1">try_expr_clauses/1</a>, <a href="#try_expr_handlers-1">try_expr_handlers/1</a>.</p>

<h3><a name="try_expr_after-1">try_expr_after/1</a></h3>
<p><tt>try_expr_after(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Returns the list of "after" subtrees of a <code>try_expr</code>
  node.
 </p>
<p><b>See also:</b> <a href="#try_expr-4">try_expr/4</a>.</p>

<h3><a name="try_expr_body-1">try_expr_body/1</a></h3>
<p><tt>try_expr_body(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Returns the list of body subtrees of a <code>try_expr</code>
  node.
 </p>
<p><b>See also:</b> <a href="#try_expr-4">try_expr/4</a>.</p>

<h3><a name="try_expr_clauses-1">try_expr_clauses/1</a></h3>
<p><tt>try_expr_clauses(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Returns the list of case-clause subtrees of a
  <code>try_expr</code> node. If <code>Node</code> represents
  "<code>try <em>Body</em> catch <em>H1</em>; ...; <em>Hn</em>
  end</code>", the result is the empty list.
 </p>
<p><b>See also:</b> <a href="#try_expr-4">try_expr/4</a>.</p>

<h3><a name="try_expr_handlers-1">try_expr_handlers/1</a></h3>
<p><tt>try_expr_handlers(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Returns the list of handler-clause subtrees of a
  <code>try_expr</code> node.
 </p>
<p><b>See also:</b> <a href="#try_expr-4">try_expr/4</a>.</p>

<h3><a name="tuple-1">tuple/1</a></h3>
<p><tt>tuple(Elements::[<a href="#type-syntaxTree">syntaxTree()</a>]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract tuple. If <code>Elements</code> is
  <code>[X1, ..., Xn]</code>, the result represents
  "<code>{<em>X1</em>, ..., <em>Xn</em>}</code>".
 
  <p>Note: The Erlang language has distinct 1-tuples, i.e.,
  <code>{X}</code> is always distinct from <code>X</code> itself.</p>
 </p>
<p><b>See also:</b> <a href="#tuple_elements-1">tuple_elements/1</a>, <a href="#tuple_size-1">tuple_size/1</a>.</p>

<h3><a name="tuple_elements-1">tuple_elements/1</a></h3>
<p><tt>tuple_elements(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; [<a href="#type-syntaxTree">syntaxTree()</a>]</tt></p>
<p>Returns the list of element subtrees of a <code>tuple</code>
  node.
 </p>
<p><b>See also:</b> <a href="#tuple-1">tuple/1</a>.</p>

<h3><a name="tuple_size-1">tuple_size/1</a></h3>
<p><tt>tuple_size(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; integer()</tt></p>
<p>Returns the number of elements of a <code>tuple</code> node.
 
  <p>Note: this is equivalent to
  <code>length(tuple_elements(Node))</code>, but potentially more
  efficient.</p>
 </p>
<p><b>See also:</b> <a href="#tuple-1">tuple/1</a>, <a href="#tuple_elements-1">tuple_elements/1</a>.</p>

<h3><a name="type-1">type/1</a></h3>
<p><tt>type(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; atom()</tt></p>
<p>Returns the type tag of <code>Node</code>. If <code>Node</code>
  does not represent a syntax tree, evaluation fails with reason
  <code>badarg</code>. Node types currently defined by this module are:
  <p><center><table border="1">
   <tr>
    <td>application</td>
    <td>arity_qualifier</td>
    <td>atom</td>
    <td>attribute</td>
   </tr><tr>
    <td>binary</td>
    <td>binary_field</td>
    <td>block_expr</td>
    <td>case_expr</td>
   </tr><tr>
    <td>catch_expr</td>
    <td>char</td>
    <td>class_qualifier</td>
    <td>clause</td>
   </tr><tr>
    <td>comment</td>
    <td>cond_expr</td>
    <td>conjunction</td>
    <td>disjunction</td>
   </tr><tr>
    <td>eof_marker</td>
    <td>error_marker</td>
    <td>float</td>
    <td>form_list</td>
   </tr><tr>
    <td>fun_expr</td>
    <td>function</td>
    <td>generator</td>
    <td>if_expr</td>
   </tr><tr>
    <td>implicit_fun</td>
    <td>infix_expr</td>
    <td>integer</td>
    <td>list</td>
   </tr><tr>
    <td>list_comp</td>
    <td>macro</td>
    <td>match_expr</td>
    <td>module_qualifier</td>
   </tr><tr>
    <td>nil</td>
    <td>operator</td>
    <td>parentheses</td>
    <td>prefix_expr</td>
   </tr><tr>
    <td>qualified_name</td>
    <td>query_expr</td>
    <td>receive_expr</td>
    <td>record_access</td>
   </tr><tr>
    <td>record_expr</td>
    <td>record_field</td>
    <td>record_index_expr</td>
    <td>rule</td>
   </tr><tr>
    <td>size_qualifier</td>
    <td>string</td>
    <td>text</td>
    <td>try_expr</td>
   </tr><tr>
    <td>tuple</td>
    <td>underscore</td>
    <td>variable</td>
    <td>warning_marker</td>
   </tr>
  </table></center></p>
  <p>The user may (for special purposes) create additional nodes
  with other type tags, using the <code>tree/2</code> function.</p>
 
  <p>Note: The primary constructor functions for a node type should
  always have the same name as the node type itself.</p>
 </p>
<p><b>See also:</b> <a href="#application-3">application/3</a>, <a href="#arity_qualifier-2">arity_qualifier/2</a>, <a href="#atom-1">atom/1</a>, <a href="#attribute-2">attribute/2</a>, <a href="#binary-1">binary/1</a>, <a href="#binary_field-2">binary_field/2</a>, <a href="#block_expr-1">block_expr/1</a>, <a href="#case_expr-2">case_expr/2</a>, <a href="#catch_expr-1">catch_expr/1</a>, <a href="#char-1">char/1</a>, <a href="#class_qualifier-2">class_qualifier/2</a>, <a href="#clause-3">clause/3</a>, <a href="#comment-2">comment/2</a>, <a href="#cond_expr-1">cond_expr/1</a>, <a href="#conjunction-1">conjunction/1</a>, <a href="#disjunction-1">disjunction/1</a>, <a href="#eof_marker-0">eof_marker/0</a>, <a href="#error_marker-1">error_marker/1</a>, <a href="#float-1">float/1</a>, <a href="#form_list-1">form_list/1</a>, <a href="#fun_expr-1">fun_expr/1</a>, <a href="#function-2">function/2</a>, <a href="#generator-2">generator/2</a>, <a href="#if_expr-1">if_expr/1</a>, <a href="#implicit_fun-2">implicit_fun/2</a>, <a href="#infix_expr-3">infix_expr/3</a>, <a href="#integer-1">integer/1</a>, <a href="#list-2">list/2</a>, <a href="#list_comp-2">list_comp/2</a>, <a href="#macro-2">macro/2</a>, <a href="#match_expr-2">match_expr/2</a>, <a href="#module_qualifier-2">module_qualifier/2</a>, <a href="#nil-0">nil/0</a>, <a href="#operator-1">operator/1</a>, <a href="#parentheses-1">parentheses/1</a>, <a href="#prefix_expr-2">prefix_expr/2</a>, <a href="#qualified_name-1">qualified_name/1</a>, <a href="#query_expr-1">query_expr/1</a>, <a href="#receive_expr-3">receive_expr/3</a>, <a href="#record_access-3">record_access/3</a>, <a href="#record_expr-2">record_expr/2</a>, <a href="#record_field-2">record_field/2</a>, <a href="#record_index_expr-2">record_index_expr/2</a>, <a href="#rule-2">rule/2</a>, <a href="#size_qualifier-2">size_qualifier/2</a>, <a href="#string-1">string/1</a>, <a href="#text-1">text/1</a>, <a href="#tree-2">tree/2</a>, <a href="#try_expr-3">try_expr/3</a>, <a href="#tuple-1">tuple/1</a>, <a href="#underscore-0">underscore/0</a>, <a href="#variable-1">variable/1</a>, <a href="#warning_marker-1">warning_marker/1</a>.</p>

<h3><a name="underscore-0">underscore/0</a></h3>
<p><tt>underscore() -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract universal pattern ("<code>_</code>"). The
  lexical representation is a single underscore character. Note that
  this is <em>not</em> a variable, lexically speaking.
 </p>
<p><b>See also:</b> <a href="#variable-1">variable/1</a>.</p>

<h3><a name="update_tree-2">update_tree/2</a></h3>
<p><tt>update_tree(Node::<a href="#type-syntaxTree">syntaxTree()</a>, Groups::[[<a href="#type-syntaxTree">syntaxTree()</a>]]) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates a syntax tree with the same type and attributes as the
  given tree. This is equivalent to <code>copy_attrs(Node,
  make_tree(type(Node), Groups))</code>.
 </p>
<p><b>See also:</b> <a href="#copy_attrs-2">copy_attrs/2</a>, <a href="#make_tree-2">make_tree/2</a>, <a href="#type-1">type/1</a>.</p>

<h3><a name="variable-1">variable/1</a></h3>
<p><tt>variable(Name) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt>
<ul><li><tt>Name = atom() | string()</tt></li></ul></p>
<p>Creates an abstract variable with the given name.
  <code>Name</code> may be any atom or string that represents a
  lexically valid variable name, but <em>not</em> a single underscore
  character; cf. <code>underscore/0</code>.
 
  <p>Note: no checking is done whether the character sequence
  represents a proper variable name, i.e., whether or not its first
  character is an uppercase Erlang character, or whether it does not
  contain control characters, whitespace, etc.</p>
 </p>
<p><b>See also:</b> <a href="#underscore-0">underscore/0</a>, <a href="#variable_literal-1">variable_literal/1</a>, <a href="#variable_name-1">variable_name/1</a>.</p>

<h3><a name="variable_literal-1">variable_literal/1</a></h3>
<p><tt>variable_literal(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; string()</tt></p>
<p>Returns the name of a <code>variable</code> node as a string.
 </p>
<p><b>See also:</b> <a href="#variable-1">variable/1</a>.</p>

<h3><a name="variable_name-1">variable_name/1</a></h3>
<p><tt>variable_name(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; atom()</tt></p>
<p>Returns the name of a <code>variable</code> node as an atom.
 </p>
<p><b>See also:</b> <a href="#variable-1">variable/1</a>.</p>

<h3><a name="warning_marker-1">warning_marker/1</a></h3>
<p><tt>warning_marker(Error::term()) -&gt; <a href="#type-syntaxTree">syntaxTree()</a></tt></p>
<p>Creates an abstract warning marker. The result represents an
  occurrence of a possible problem in the source code, with an
  associated Erlang I/O ErrorInfo structure given by <code>Error</code>
  (see module <code>io</code> for details). Warning markers are
  regarded as source code forms, but have no defined lexical form.
 
  <p>Note: this is supported only for backwards compatibility with
  existing parsers and tools.</p>
 </p>
<p><b>See also:</b> <a href="/usr/local/home/richardc/hipe/otp/lib/stdlib/doc/io.html">io</a>, <a href="#eof_marker-0">eof_marker/0</a>, <a href="#error_marker-1">error_marker/1</a>, <a href="#is_form-1">is_form/1</a>, <a href="#warning_marker_info-1">warning_marker_info/1</a>.</p>

<h3><a name="warning_marker_info-1">warning_marker_info/1</a></h3>
<p><tt>warning_marker_info(Node::<a href="#type-syntaxTree">syntaxTree()</a>) -&gt; term()</tt></p>
<p>Returns the ErrorInfo structure of a <code>warning_marker</code>
  node.
 </p>
<p><b>See also:</b> <a href="#warning_marker-1">warning_marker/1</a>.</p>
</body>
</html>
Back to Top