/3rd_party/llvm/lib/Bitcode/Reader/BitcodeReader.cpp

https://code.google.com/p/softart/ · C++ · 3351 lines · 2729 code · 351 blank · 271 comment · 828 complexity · 047c2444de5bfa66801c5f22cbfe7456 MD5 · raw file

Large files are truncated click here to view the full file

  1. //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. #include "llvm/Bitcode/ReaderWriter.h"
  10. #include "BitcodeReader.h"
  11. #include "llvm/ADT/SmallString.h"
  12. #include "llvm/ADT/SmallVector.h"
  13. #include "llvm/AutoUpgrade.h"
  14. #include "llvm/Bitcode/LLVMBitCodes.h"
  15. #include "llvm/IR/Constants.h"
  16. #include "llvm/IR/DerivedTypes.h"
  17. #include "llvm/IR/InlineAsm.h"
  18. #include "llvm/IR/IntrinsicInst.h"
  19. #include "llvm/IR/LLVMContext.h"
  20. #include "llvm/IR/Module.h"
  21. #include "llvm/IR/OperandTraits.h"
  22. #include "llvm/IR/Operator.h"
  23. #include "llvm/Support/DataStream.h"
  24. #include "llvm/Support/MathExtras.h"
  25. #include "llvm/Support/MemoryBuffer.h"
  26. #include "llvm/Support/raw_ostream.h"
  27. using namespace llvm;
  28. enum {
  29. SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
  30. };
  31. void BitcodeReader::materializeForwardReferencedFunctions() {
  32. while (!BlockAddrFwdRefs.empty()) {
  33. Function *F = BlockAddrFwdRefs.begin()->first;
  34. F->Materialize();
  35. }
  36. }
  37. void BitcodeReader::FreeState() {
  38. if (BufferOwned)
  39. delete Buffer;
  40. Buffer = 0;
  41. std::vector<Type*>().swap(TypeList);
  42. ValueList.clear();
  43. MDValueList.clear();
  44. std::vector<AttributeSet>().swap(MAttributes);
  45. std::vector<BasicBlock*>().swap(FunctionBBs);
  46. std::vector<Function*>().swap(FunctionsWithBodies);
  47. DeferredFunctionInfo.clear();
  48. MDKindMap.clear();
  49. assert(BlockAddrFwdRefs.empty() && "Unresolved blockaddress fwd references");
  50. }
  51. //===----------------------------------------------------------------------===//
  52. // Helper functions to implement forward reference resolution, etc.
  53. //===----------------------------------------------------------------------===//
  54. /// ConvertToString - Convert a string from a record into an std::string, return
  55. /// true on failure.
  56. template<typename StrTy>
  57. static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
  58. StrTy &Result) {
  59. if (Idx > Record.size())
  60. return true;
  61. for (unsigned i = Idx, e = Record.size(); i != e; ++i)
  62. Result += (char)Record[i];
  63. return false;
  64. }
  65. static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
  66. switch (Val) {
  67. default: // Map unknown/new linkages to external
  68. case 0: return GlobalValue::ExternalLinkage;
  69. case 1: return GlobalValue::WeakAnyLinkage;
  70. case 2: return GlobalValue::AppendingLinkage;
  71. case 3: return GlobalValue::InternalLinkage;
  72. case 4: return GlobalValue::LinkOnceAnyLinkage;
  73. case 5: return GlobalValue::DLLImportLinkage;
  74. case 6: return GlobalValue::DLLExportLinkage;
  75. case 7: return GlobalValue::ExternalWeakLinkage;
  76. case 8: return GlobalValue::CommonLinkage;
  77. case 9: return GlobalValue::PrivateLinkage;
  78. case 10: return GlobalValue::WeakODRLinkage;
  79. case 11: return GlobalValue::LinkOnceODRLinkage;
  80. case 12: return GlobalValue::AvailableExternallyLinkage;
  81. case 13: return GlobalValue::LinkerPrivateLinkage;
  82. case 14: return GlobalValue::LinkerPrivateWeakLinkage;
  83. }
  84. }
  85. static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
  86. switch (Val) {
  87. default: // Map unknown visibilities to default.
  88. case 0: return GlobalValue::DefaultVisibility;
  89. case 1: return GlobalValue::HiddenVisibility;
  90. case 2: return GlobalValue::ProtectedVisibility;
  91. }
  92. }
  93. static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
  94. switch (Val) {
  95. case 0: return GlobalVariable::NotThreadLocal;
  96. default: // Map unknown non-zero value to general dynamic.
  97. case 1: return GlobalVariable::GeneralDynamicTLSModel;
  98. case 2: return GlobalVariable::LocalDynamicTLSModel;
  99. case 3: return GlobalVariable::InitialExecTLSModel;
  100. case 4: return GlobalVariable::LocalExecTLSModel;
  101. }
  102. }
  103. static int GetDecodedCastOpcode(unsigned Val) {
  104. switch (Val) {
  105. default: return -1;
  106. case bitc::CAST_TRUNC : return Instruction::Trunc;
  107. case bitc::CAST_ZEXT : return Instruction::ZExt;
  108. case bitc::CAST_SEXT : return Instruction::SExt;
  109. case bitc::CAST_FPTOUI : return Instruction::FPToUI;
  110. case bitc::CAST_FPTOSI : return Instruction::FPToSI;
  111. case bitc::CAST_UITOFP : return Instruction::UIToFP;
  112. case bitc::CAST_SITOFP : return Instruction::SIToFP;
  113. case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
  114. case bitc::CAST_FPEXT : return Instruction::FPExt;
  115. case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
  116. case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
  117. case bitc::CAST_BITCAST : return Instruction::BitCast;
  118. case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
  119. }
  120. }
  121. static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
  122. switch (Val) {
  123. default: return -1;
  124. case bitc::BINOP_ADD:
  125. return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
  126. case bitc::BINOP_SUB:
  127. return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
  128. case bitc::BINOP_MUL:
  129. return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
  130. case bitc::BINOP_UDIV: return Instruction::UDiv;
  131. case bitc::BINOP_SDIV:
  132. return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
  133. case bitc::BINOP_UREM: return Instruction::URem;
  134. case bitc::BINOP_SREM:
  135. return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
  136. case bitc::BINOP_SHL: return Instruction::Shl;
  137. case bitc::BINOP_LSHR: return Instruction::LShr;
  138. case bitc::BINOP_ASHR: return Instruction::AShr;
  139. case bitc::BINOP_AND: return Instruction::And;
  140. case bitc::BINOP_OR: return Instruction::Or;
  141. case bitc::BINOP_XOR: return Instruction::Xor;
  142. }
  143. }
  144. static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
  145. switch (Val) {
  146. default: return AtomicRMWInst::BAD_BINOP;
  147. case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
  148. case bitc::RMW_ADD: return AtomicRMWInst::Add;
  149. case bitc::RMW_SUB: return AtomicRMWInst::Sub;
  150. case bitc::RMW_AND: return AtomicRMWInst::And;
  151. case bitc::RMW_NAND: return AtomicRMWInst::Nand;
  152. case bitc::RMW_OR: return AtomicRMWInst::Or;
  153. case bitc::RMW_XOR: return AtomicRMWInst::Xor;
  154. case bitc::RMW_MAX: return AtomicRMWInst::Max;
  155. case bitc::RMW_MIN: return AtomicRMWInst::Min;
  156. case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
  157. case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
  158. }
  159. }
  160. static AtomicOrdering GetDecodedOrdering(unsigned Val) {
  161. switch (Val) {
  162. case bitc::ORDERING_NOTATOMIC: return NotAtomic;
  163. case bitc::ORDERING_UNORDERED: return Unordered;
  164. case bitc::ORDERING_MONOTONIC: return Monotonic;
  165. case bitc::ORDERING_ACQUIRE: return Acquire;
  166. case bitc::ORDERING_RELEASE: return Release;
  167. case bitc::ORDERING_ACQREL: return AcquireRelease;
  168. default: // Map unknown orderings to sequentially-consistent.
  169. case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
  170. }
  171. }
  172. static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
  173. switch (Val) {
  174. case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
  175. default: // Map unknown scopes to cross-thread.
  176. case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
  177. }
  178. }
  179. namespace llvm {
  180. namespace {
  181. /// @brief A class for maintaining the slot number definition
  182. /// as a placeholder for the actual definition for forward constants defs.
  183. class ConstantPlaceHolder : public ConstantExpr {
  184. void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION;
  185. public:
  186. // allocate space for exactly one operand
  187. void *operator new(size_t s) {
  188. return User::operator new(s, 1);
  189. }
  190. explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
  191. : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
  192. Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
  193. }
  194. /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
  195. static bool classof(const Value *V) {
  196. return isa<ConstantExpr>(V) &&
  197. cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
  198. }
  199. /// Provide fast operand accessors
  200. //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
  201. };
  202. }
  203. // FIXME: can we inherit this from ConstantExpr?
  204. template <>
  205. struct OperandTraits<ConstantPlaceHolder> :
  206. public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
  207. };
  208. }
  209. void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
  210. if (Idx == size()) {
  211. push_back(V);
  212. return;
  213. }
  214. if (Idx >= size())
  215. resize(Idx+1);
  216. WeakVH &OldV = ValuePtrs[Idx];
  217. if (OldV == 0) {
  218. OldV = V;
  219. return;
  220. }
  221. // Handle constants and non-constants (e.g. instrs) differently for
  222. // efficiency.
  223. if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
  224. ResolveConstants.push_back(std::make_pair(PHC, Idx));
  225. OldV = V;
  226. } else {
  227. // If there was a forward reference to this value, replace it.
  228. Value *PrevVal = OldV;
  229. OldV->replaceAllUsesWith(V);
  230. delete PrevVal;
  231. }
  232. }
  233. Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
  234. Type *Ty) {
  235. if (Idx >= size())
  236. resize(Idx + 1);
  237. if (Value *V = ValuePtrs[Idx]) {
  238. assert(Ty == V->getType() && "Type mismatch in constant table!");
  239. return cast<Constant>(V);
  240. }
  241. // Create and return a placeholder, which will later be RAUW'd.
  242. Constant *C = new ConstantPlaceHolder(Ty, Context);
  243. ValuePtrs[Idx] = C;
  244. return C;
  245. }
  246. Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
  247. if (Idx >= size())
  248. resize(Idx + 1);
  249. if (Value *V = ValuePtrs[Idx]) {
  250. assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
  251. return V;
  252. }
  253. // No type specified, must be invalid reference.
  254. if (Ty == 0) return 0;
  255. // Create and return a placeholder, which will later be RAUW'd.
  256. Value *V = new Argument(Ty);
  257. ValuePtrs[Idx] = V;
  258. return V;
  259. }
  260. /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
  261. /// resolves any forward references. The idea behind this is that we sometimes
  262. /// get constants (such as large arrays) which reference *many* forward ref
  263. /// constants. Replacing each of these causes a lot of thrashing when
  264. /// building/reuniquing the constant. Instead of doing this, we look at all the
  265. /// uses and rewrite all the place holders at once for any constant that uses
  266. /// a placeholder.
  267. void BitcodeReaderValueList::ResolveConstantForwardRefs() {
  268. // Sort the values by-pointer so that they are efficient to look up with a
  269. // binary search.
  270. std::sort(ResolveConstants.begin(), ResolveConstants.end());
  271. SmallVector<Constant*, 64> NewOps;
  272. while (!ResolveConstants.empty()) {
  273. Value *RealVal = operator[](ResolveConstants.back().second);
  274. Constant *Placeholder = ResolveConstants.back().first;
  275. ResolveConstants.pop_back();
  276. // Loop over all users of the placeholder, updating them to reference the
  277. // new value. If they reference more than one placeholder, update them all
  278. // at once.
  279. while (!Placeholder->use_empty()) {
  280. Value::use_iterator UI = Placeholder->use_begin();
  281. User *U = *UI;
  282. // If the using object isn't uniqued, just update the operands. This
  283. // handles instructions and initializers for global variables.
  284. if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
  285. UI.getUse().set(RealVal);
  286. continue;
  287. }
  288. // Otherwise, we have a constant that uses the placeholder. Replace that
  289. // constant with a new constant that has *all* placeholder uses updated.
  290. Constant *UserC = cast<Constant>(U);
  291. for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
  292. I != E; ++I) {
  293. Value *NewOp;
  294. if (!isa<ConstantPlaceHolder>(*I)) {
  295. // Not a placeholder reference.
  296. NewOp = *I;
  297. } else if (*I == Placeholder) {
  298. // Common case is that it just references this one placeholder.
  299. NewOp = RealVal;
  300. } else {
  301. // Otherwise, look up the placeholder in ResolveConstants.
  302. ResolveConstantsTy::iterator It =
  303. std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
  304. std::pair<Constant*, unsigned>(cast<Constant>(*I),
  305. 0));
  306. assert(It != ResolveConstants.end() && It->first == *I);
  307. NewOp = operator[](It->second);
  308. }
  309. NewOps.push_back(cast<Constant>(NewOp));
  310. }
  311. // Make the new constant.
  312. Constant *NewC;
  313. if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
  314. NewC = ConstantArray::get(UserCA->getType(), NewOps);
  315. } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
  316. NewC = ConstantStruct::get(UserCS->getType(), NewOps);
  317. } else if (isa<ConstantVector>(UserC)) {
  318. NewC = ConstantVector::get(NewOps);
  319. } else {
  320. assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
  321. NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
  322. }
  323. UserC->replaceAllUsesWith(NewC);
  324. UserC->destroyConstant();
  325. NewOps.clear();
  326. }
  327. // Update all ValueHandles, they should be the only users at this point.
  328. Placeholder->replaceAllUsesWith(RealVal);
  329. delete Placeholder;
  330. }
  331. }
  332. void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
  333. if (Idx == size()) {
  334. push_back(V);
  335. return;
  336. }
  337. if (Idx >= size())
  338. resize(Idx+1);
  339. WeakVH &OldV = MDValuePtrs[Idx];
  340. if (OldV == 0) {
  341. OldV = V;
  342. return;
  343. }
  344. // If there was a forward reference to this value, replace it.
  345. MDNode *PrevVal = cast<MDNode>(OldV);
  346. OldV->replaceAllUsesWith(V);
  347. MDNode::deleteTemporary(PrevVal);
  348. // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
  349. // value for Idx.
  350. MDValuePtrs[Idx] = V;
  351. }
  352. Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
  353. if (Idx >= size())
  354. resize(Idx + 1);
  355. if (Value *V = MDValuePtrs[Idx]) {
  356. assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
  357. return V;
  358. }
  359. // Create and return a placeholder, which will later be RAUW'd.
  360. Value *V = MDNode::getTemporary(Context, None);
  361. MDValuePtrs[Idx] = V;
  362. return V;
  363. }
  364. Type *BitcodeReader::getTypeByID(unsigned ID) {
  365. // The type table size is always specified correctly.
  366. if (ID >= TypeList.size())
  367. return 0;
  368. if (Type *Ty = TypeList[ID])
  369. return Ty;
  370. // If we have a forward reference, the only possible case is when it is to a
  371. // named struct. Just create a placeholder for now.
  372. return TypeList[ID] = StructType::create(Context);
  373. }
  374. //===----------------------------------------------------------------------===//
  375. // Functions for parsing blocks from the bitcode file
  376. //===----------------------------------------------------------------------===//
  377. /// \brief This fills an AttrBuilder object with the LLVM attributes that have
  378. /// been decoded from the given integer. This function must stay in sync with
  379. /// 'encodeLLVMAttributesForBitcode'.
  380. static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
  381. uint64_t EncodedAttrs) {
  382. // FIXME: Remove in 4.0.
  383. // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
  384. // the bits above 31 down by 11 bits.
  385. unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
  386. assert((!Alignment || isPowerOf2_32(Alignment)) &&
  387. "Alignment must be a power of two.");
  388. if (Alignment)
  389. B.addAlignmentAttr(Alignment);
  390. B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
  391. (EncodedAttrs & 0xffff));
  392. }
  393. error_code BitcodeReader::ParseAttributeBlock() {
  394. if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
  395. return Error(InvalidRecord);
  396. if (!MAttributes.empty())
  397. return Error(InvalidMultipleBlocks);
  398. SmallVector<uint64_t, 64> Record;
  399. SmallVector<AttributeSet, 8> Attrs;
  400. // Read all the records.
  401. while (1) {
  402. BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
  403. switch (Entry.Kind) {
  404. case BitstreamEntry::SubBlock: // Handled for us already.
  405. case BitstreamEntry::Error:
  406. return Error(MalformedBlock);
  407. case BitstreamEntry::EndBlock:
  408. return error_code::success();
  409. case BitstreamEntry::Record:
  410. // The interesting case.
  411. break;
  412. }
  413. // Read a record.
  414. Record.clear();
  415. switch (Stream.readRecord(Entry.ID, Record)) {
  416. default: // Default behavior: ignore.
  417. break;
  418. case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
  419. // FIXME: Remove in 4.0.
  420. if (Record.size() & 1)
  421. return Error(InvalidRecord);
  422. for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
  423. AttrBuilder B;
  424. decodeLLVMAttributesForBitcode(B, Record[i+1]);
  425. Attrs.push_back(AttributeSet::get(Context, Record[i], B));
  426. }
  427. MAttributes.push_back(AttributeSet::get(Context, Attrs));
  428. Attrs.clear();
  429. break;
  430. }
  431. case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
  432. for (unsigned i = 0, e = Record.size(); i != e; ++i)
  433. Attrs.push_back(MAttributeGroups[Record[i]]);
  434. MAttributes.push_back(AttributeSet::get(Context, Attrs));
  435. Attrs.clear();
  436. break;
  437. }
  438. }
  439. }
  440. }
  441. // Returns Attribute::None on unrecognized codes.
  442. static Attribute::AttrKind GetAttrFromCode(uint64_t Code) {
  443. switch (Code) {
  444. default:
  445. return Attribute::None;
  446. case bitc::ATTR_KIND_ALIGNMENT:
  447. return Attribute::Alignment;
  448. case bitc::ATTR_KIND_ALWAYS_INLINE:
  449. return Attribute::AlwaysInline;
  450. case bitc::ATTR_KIND_BUILTIN:
  451. return Attribute::Builtin;
  452. case bitc::ATTR_KIND_BY_VAL:
  453. return Attribute::ByVal;
  454. case bitc::ATTR_KIND_COLD:
  455. return Attribute::Cold;
  456. case bitc::ATTR_KIND_INLINE_HINT:
  457. return Attribute::InlineHint;
  458. case bitc::ATTR_KIND_IN_REG:
  459. return Attribute::InReg;
  460. case bitc::ATTR_KIND_MIN_SIZE:
  461. return Attribute::MinSize;
  462. case bitc::ATTR_KIND_NAKED:
  463. return Attribute::Naked;
  464. case bitc::ATTR_KIND_NEST:
  465. return Attribute::Nest;
  466. case bitc::ATTR_KIND_NO_ALIAS:
  467. return Attribute::NoAlias;
  468. case bitc::ATTR_KIND_NO_BUILTIN:
  469. return Attribute::NoBuiltin;
  470. case bitc::ATTR_KIND_NO_CAPTURE:
  471. return Attribute::NoCapture;
  472. case bitc::ATTR_KIND_NO_DUPLICATE:
  473. return Attribute::NoDuplicate;
  474. case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
  475. return Attribute::NoImplicitFloat;
  476. case bitc::ATTR_KIND_NO_INLINE:
  477. return Attribute::NoInline;
  478. case bitc::ATTR_KIND_NON_LAZY_BIND:
  479. return Attribute::NonLazyBind;
  480. case bitc::ATTR_KIND_NO_RED_ZONE:
  481. return Attribute::NoRedZone;
  482. case bitc::ATTR_KIND_NO_RETURN:
  483. return Attribute::NoReturn;
  484. case bitc::ATTR_KIND_NO_UNWIND:
  485. return Attribute::NoUnwind;
  486. case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
  487. return Attribute::OptimizeForSize;
  488. case bitc::ATTR_KIND_OPTIMIZE_NONE:
  489. return Attribute::OptimizeNone;
  490. case bitc::ATTR_KIND_READ_NONE:
  491. return Attribute::ReadNone;
  492. case bitc::ATTR_KIND_READ_ONLY:
  493. return Attribute::ReadOnly;
  494. case bitc::ATTR_KIND_RETURNED:
  495. return Attribute::Returned;
  496. case bitc::ATTR_KIND_RETURNS_TWICE:
  497. return Attribute::ReturnsTwice;
  498. case bitc::ATTR_KIND_S_EXT:
  499. return Attribute::SExt;
  500. case bitc::ATTR_KIND_STACK_ALIGNMENT:
  501. return Attribute::StackAlignment;
  502. case bitc::ATTR_KIND_STACK_PROTECT:
  503. return Attribute::StackProtect;
  504. case bitc::ATTR_KIND_STACK_PROTECT_REQ:
  505. return Attribute::StackProtectReq;
  506. case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
  507. return Attribute::StackProtectStrong;
  508. case bitc::ATTR_KIND_STRUCT_RET:
  509. return Attribute::StructRet;
  510. case bitc::ATTR_KIND_SANITIZE_ADDRESS:
  511. return Attribute::SanitizeAddress;
  512. case bitc::ATTR_KIND_SANITIZE_THREAD:
  513. return Attribute::SanitizeThread;
  514. case bitc::ATTR_KIND_SANITIZE_MEMORY:
  515. return Attribute::SanitizeMemory;
  516. case bitc::ATTR_KIND_UW_TABLE:
  517. return Attribute::UWTable;
  518. case bitc::ATTR_KIND_Z_EXT:
  519. return Attribute::ZExt;
  520. }
  521. }
  522. error_code BitcodeReader::ParseAttrKind(uint64_t Code,
  523. Attribute::AttrKind *Kind) {
  524. *Kind = GetAttrFromCode(Code);
  525. if (*Kind == Attribute::None)
  526. return Error(InvalidValue);
  527. return error_code::success();
  528. }
  529. error_code BitcodeReader::ParseAttributeGroupBlock() {
  530. if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
  531. return Error(InvalidRecord);
  532. if (!MAttributeGroups.empty())
  533. return Error(InvalidMultipleBlocks);
  534. SmallVector<uint64_t, 64> Record;
  535. // Read all the records.
  536. while (1) {
  537. BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
  538. switch (Entry.Kind) {
  539. case BitstreamEntry::SubBlock: // Handled for us already.
  540. case BitstreamEntry::Error:
  541. return Error(MalformedBlock);
  542. case BitstreamEntry::EndBlock:
  543. return error_code::success();
  544. case BitstreamEntry::Record:
  545. // The interesting case.
  546. break;
  547. }
  548. // Read a record.
  549. Record.clear();
  550. switch (Stream.readRecord(Entry.ID, Record)) {
  551. default: // Default behavior: ignore.
  552. break;
  553. case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
  554. if (Record.size() < 3)
  555. return Error(InvalidRecord);
  556. uint64_t GrpID = Record[0];
  557. uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
  558. AttrBuilder B;
  559. for (unsigned i = 2, e = Record.size(); i != e; ++i) {
  560. if (Record[i] == 0) { // Enum attribute
  561. Attribute::AttrKind Kind;
  562. if (error_code EC = ParseAttrKind(Record[++i], &Kind))
  563. return EC;
  564. B.addAttribute(Kind);
  565. } else if (Record[i] == 1) { // Align attribute
  566. Attribute::AttrKind Kind;
  567. if (error_code EC = ParseAttrKind(Record[++i], &Kind))
  568. return EC;
  569. if (Kind == Attribute::Alignment)
  570. B.addAlignmentAttr(Record[++i]);
  571. else
  572. B.addStackAlignmentAttr(Record[++i]);
  573. } else { // String attribute
  574. assert((Record[i] == 3 || Record[i] == 4) &&
  575. "Invalid attribute group entry");
  576. bool HasValue = (Record[i++] == 4);
  577. SmallString<64> KindStr;
  578. SmallString<64> ValStr;
  579. while (Record[i] != 0 && i != e)
  580. KindStr += Record[i++];
  581. assert(Record[i] == 0 && "Kind string not null terminated");
  582. if (HasValue) {
  583. // Has a value associated with it.
  584. ++i; // Skip the '0' that terminates the "kind" string.
  585. while (Record[i] != 0 && i != e)
  586. ValStr += Record[i++];
  587. assert(Record[i] == 0 && "Value string not null terminated");
  588. }
  589. B.addAttribute(KindStr.str(), ValStr.str());
  590. }
  591. }
  592. MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
  593. break;
  594. }
  595. }
  596. }
  597. }
  598. error_code BitcodeReader::ParseTypeTable() {
  599. if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
  600. return Error(InvalidRecord);
  601. return ParseTypeTableBody();
  602. }
  603. error_code BitcodeReader::ParseTypeTableBody() {
  604. if (!TypeList.empty())
  605. return Error(InvalidMultipleBlocks);
  606. SmallVector<uint64_t, 64> Record;
  607. unsigned NumRecords = 0;
  608. SmallString<64> TypeName;
  609. // Read all the records for this type table.
  610. while (1) {
  611. BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
  612. switch (Entry.Kind) {
  613. case BitstreamEntry::SubBlock: // Handled for us already.
  614. case BitstreamEntry::Error:
  615. return Error(MalformedBlock);
  616. case BitstreamEntry::EndBlock:
  617. if (NumRecords != TypeList.size())
  618. return Error(MalformedBlock);
  619. return error_code::success();
  620. case BitstreamEntry::Record:
  621. // The interesting case.
  622. break;
  623. }
  624. // Read a record.
  625. Record.clear();
  626. Type *ResultTy = 0;
  627. switch (Stream.readRecord(Entry.ID, Record)) {
  628. default:
  629. return Error(InvalidValue);
  630. case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
  631. // TYPE_CODE_NUMENTRY contains a count of the number of types in the
  632. // type list. This allows us to reserve space.
  633. if (Record.size() < 1)
  634. return Error(InvalidRecord);
  635. TypeList.resize(Record[0]);
  636. continue;
  637. case bitc::TYPE_CODE_VOID: // VOID
  638. ResultTy = Type::getVoidTy(Context);
  639. break;
  640. case bitc::TYPE_CODE_HALF: // HALF
  641. ResultTy = Type::getHalfTy(Context);
  642. break;
  643. case bitc::TYPE_CODE_FLOAT: // FLOAT
  644. ResultTy = Type::getFloatTy(Context);
  645. break;
  646. case bitc::TYPE_CODE_DOUBLE: // DOUBLE
  647. ResultTy = Type::getDoubleTy(Context);
  648. break;
  649. case bitc::TYPE_CODE_X86_FP80: // X86_FP80
  650. ResultTy = Type::getX86_FP80Ty(Context);
  651. break;
  652. case bitc::TYPE_CODE_FP128: // FP128
  653. ResultTy = Type::getFP128Ty(Context);
  654. break;
  655. case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
  656. ResultTy = Type::getPPC_FP128Ty(Context);
  657. break;
  658. case bitc::TYPE_CODE_LABEL: // LABEL
  659. ResultTy = Type::getLabelTy(Context);
  660. break;
  661. case bitc::TYPE_CODE_METADATA: // METADATA
  662. ResultTy = Type::getMetadataTy(Context);
  663. break;
  664. case bitc::TYPE_CODE_X86_MMX: // X86_MMX
  665. ResultTy = Type::getX86_MMXTy(Context);
  666. break;
  667. case bitc::TYPE_CODE_INTEGER: // INTEGER: [width]
  668. if (Record.size() < 1)
  669. return Error(InvalidRecord);
  670. ResultTy = IntegerType::get(Context, Record[0]);
  671. break;
  672. case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
  673. // [pointee type, address space]
  674. if (Record.size() < 1)
  675. return Error(InvalidRecord);
  676. unsigned AddressSpace = 0;
  677. if (Record.size() == 2)
  678. AddressSpace = Record[1];
  679. ResultTy = getTypeByID(Record[0]);
  680. if (ResultTy == 0)
  681. return Error(InvalidType);
  682. ResultTy = PointerType::get(ResultTy, AddressSpace);
  683. break;
  684. }
  685. case bitc::TYPE_CODE_FUNCTION_OLD: {
  686. // FIXME: attrid is dead, remove it in LLVM 4.0
  687. // FUNCTION: [vararg, attrid, retty, paramty x N]
  688. if (Record.size() < 3)
  689. return Error(InvalidRecord);
  690. SmallVector<Type*, 8> ArgTys;
  691. for (unsigned i = 3, e = Record.size(); i != e; ++i) {
  692. if (Type *T = getTypeByID(Record[i]))
  693. ArgTys.push_back(T);
  694. else
  695. break;
  696. }
  697. ResultTy = getTypeByID(Record[2]);
  698. if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
  699. return Error(InvalidType);
  700. ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
  701. break;
  702. }
  703. case bitc::TYPE_CODE_FUNCTION: {
  704. // FUNCTION: [vararg, retty, paramty x N]
  705. if (Record.size() < 2)
  706. return Error(InvalidRecord);
  707. SmallVector<Type*, 8> ArgTys;
  708. for (unsigned i = 2, e = Record.size(); i != e; ++i) {
  709. if (Type *T = getTypeByID(Record[i]))
  710. ArgTys.push_back(T);
  711. else
  712. break;
  713. }
  714. ResultTy = getTypeByID(Record[1]);
  715. if (ResultTy == 0 || ArgTys.size() < Record.size()-2)
  716. return Error(InvalidType);
  717. ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
  718. break;
  719. }
  720. case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
  721. if (Record.size() < 1)
  722. return Error(InvalidRecord);
  723. SmallVector<Type*, 8> EltTys;
  724. for (unsigned i = 1, e = Record.size(); i != e; ++i) {
  725. if (Type *T = getTypeByID(Record[i]))
  726. EltTys.push_back(T);
  727. else
  728. break;
  729. }
  730. if (EltTys.size() != Record.size()-1)
  731. return Error(InvalidType);
  732. ResultTy = StructType::get(Context, EltTys, Record[0]);
  733. break;
  734. }
  735. case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
  736. if (ConvertToString(Record, 0, TypeName))
  737. return Error(InvalidRecord);
  738. continue;
  739. case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
  740. if (Record.size() < 1)
  741. return Error(InvalidRecord);
  742. if (NumRecords >= TypeList.size())
  743. return Error(InvalidTYPETable);
  744. // Check to see if this was forward referenced, if so fill in the temp.
  745. StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
  746. if (Res) {
  747. Res->setName(TypeName);
  748. TypeList[NumRecords] = 0;
  749. } else // Otherwise, create a new struct.
  750. Res = StructType::create(Context, TypeName);
  751. TypeName.clear();
  752. SmallVector<Type*, 8> EltTys;
  753. for (unsigned i = 1, e = Record.size(); i != e; ++i) {
  754. if (Type *T = getTypeByID(Record[i]))
  755. EltTys.push_back(T);
  756. else
  757. break;
  758. }
  759. if (EltTys.size() != Record.size()-1)
  760. return Error(InvalidRecord);
  761. Res->setBody(EltTys, Record[0]);
  762. ResultTy = Res;
  763. break;
  764. }
  765. case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
  766. if (Record.size() != 1)
  767. return Error(InvalidRecord);
  768. if (NumRecords >= TypeList.size())
  769. return Error(InvalidTYPETable);
  770. // Check to see if this was forward referenced, if so fill in the temp.
  771. StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
  772. if (Res) {
  773. Res->setName(TypeName);
  774. TypeList[NumRecords] = 0;
  775. } else // Otherwise, create a new struct with no body.
  776. Res = StructType::create(Context, TypeName);
  777. TypeName.clear();
  778. ResultTy = Res;
  779. break;
  780. }
  781. case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
  782. if (Record.size() < 2)
  783. return Error(InvalidRecord);
  784. if ((ResultTy = getTypeByID(Record[1])))
  785. ResultTy = ArrayType::get(ResultTy, Record[0]);
  786. else
  787. return Error(InvalidType);
  788. break;
  789. case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
  790. if (Record.size() < 2)
  791. return Error(InvalidRecord);
  792. if ((ResultTy = getTypeByID(Record[1])))
  793. ResultTy = VectorType::get(ResultTy, Record[0]);
  794. else
  795. return Error(InvalidType);
  796. break;
  797. }
  798. if (NumRecords >= TypeList.size())
  799. return Error(InvalidTYPETable);
  800. assert(ResultTy && "Didn't read a type?");
  801. assert(TypeList[NumRecords] == 0 && "Already read type?");
  802. TypeList[NumRecords++] = ResultTy;
  803. }
  804. }
  805. error_code BitcodeReader::ParseValueSymbolTable() {
  806. if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
  807. return Error(InvalidRecord);
  808. SmallVector<uint64_t, 64> Record;
  809. // Read all the records for this value table.
  810. SmallString<128> ValueName;
  811. while (1) {
  812. BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
  813. switch (Entry.Kind) {
  814. case BitstreamEntry::SubBlock: // Handled for us already.
  815. case BitstreamEntry::Error:
  816. return Error(MalformedBlock);
  817. case BitstreamEntry::EndBlock:
  818. return error_code::success();
  819. case BitstreamEntry::Record:
  820. // The interesting case.
  821. break;
  822. }
  823. // Read a record.
  824. Record.clear();
  825. switch (Stream.readRecord(Entry.ID, Record)) {
  826. default: // Default behavior: unknown type.
  827. break;
  828. case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N]
  829. if (ConvertToString(Record, 1, ValueName))
  830. return Error(InvalidRecord);
  831. unsigned ValueID = Record[0];
  832. if (ValueID >= ValueList.size())
  833. return Error(InvalidRecord);
  834. Value *V = ValueList[ValueID];
  835. V->setName(StringRef(ValueName.data(), ValueName.size()));
  836. ValueName.clear();
  837. break;
  838. }
  839. case bitc::VST_CODE_BBENTRY: {
  840. if (ConvertToString(Record, 1, ValueName))
  841. return Error(InvalidRecord);
  842. BasicBlock *BB = getBasicBlock(Record[0]);
  843. if (BB == 0)
  844. return Error(InvalidRecord);
  845. BB->setName(StringRef(ValueName.data(), ValueName.size()));
  846. ValueName.clear();
  847. break;
  848. }
  849. }
  850. }
  851. }
  852. error_code BitcodeReader::ParseMetadata() {
  853. unsigned NextMDValueNo = MDValueList.size();
  854. if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
  855. return Error(InvalidRecord);
  856. SmallVector<uint64_t, 64> Record;
  857. // Read all the records.
  858. while (1) {
  859. BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
  860. switch (Entry.Kind) {
  861. case BitstreamEntry::SubBlock: // Handled for us already.
  862. case BitstreamEntry::Error:
  863. return Error(MalformedBlock);
  864. case BitstreamEntry::EndBlock:
  865. return error_code::success();
  866. case BitstreamEntry::Record:
  867. // The interesting case.
  868. break;
  869. }
  870. bool IsFunctionLocal = false;
  871. // Read a record.
  872. Record.clear();
  873. unsigned Code = Stream.readRecord(Entry.ID, Record);
  874. switch (Code) {
  875. default: // Default behavior: ignore.
  876. break;
  877. case bitc::METADATA_NAME: {
  878. // Read name of the named metadata.
  879. SmallString<8> Name(Record.begin(), Record.end());
  880. Record.clear();
  881. Code = Stream.ReadCode();
  882. // METADATA_NAME is always followed by METADATA_NAMED_NODE.
  883. unsigned NextBitCode = Stream.readRecord(Code, Record);
  884. assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
  885. // Read named metadata elements.
  886. unsigned Size = Record.size();
  887. NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
  888. for (unsigned i = 0; i != Size; ++i) {
  889. MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
  890. if (MD == 0)
  891. return Error(InvalidRecord);
  892. NMD->addOperand(MD);
  893. }
  894. break;
  895. }
  896. case bitc::METADATA_FN_NODE:
  897. IsFunctionLocal = true;
  898. // fall-through
  899. case bitc::METADATA_NODE: {
  900. if (Record.size() % 2 == 1)
  901. return Error(InvalidRecord);
  902. unsigned Size = Record.size();
  903. SmallVector<Value*, 8> Elts;
  904. for (unsigned i = 0; i != Size; i += 2) {
  905. Type *Ty = getTypeByID(Record[i]);
  906. if (!Ty)
  907. return Error(InvalidRecord);
  908. if (Ty->isMetadataTy())
  909. Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
  910. else if (!Ty->isVoidTy())
  911. Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
  912. else
  913. Elts.push_back(NULL);
  914. }
  915. Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
  916. IsFunctionLocal = false;
  917. MDValueList.AssignValue(V, NextMDValueNo++);
  918. break;
  919. }
  920. case bitc::METADATA_STRING: {
  921. SmallString<8> String(Record.begin(), Record.end());
  922. Value *V = MDString::get(Context, String);
  923. MDValueList.AssignValue(V, NextMDValueNo++);
  924. break;
  925. }
  926. case bitc::METADATA_KIND: {
  927. if (Record.size() < 2)
  928. return Error(InvalidRecord);
  929. unsigned Kind = Record[0];
  930. SmallString<8> Name(Record.begin()+1, Record.end());
  931. unsigned NewKind = TheModule->getMDKindID(Name.str());
  932. if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
  933. return Error(ConflictingMETADATA_KINDRecords);
  934. break;
  935. }
  936. }
  937. }
  938. }
  939. /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
  940. /// the LSB for dense VBR encoding.
  941. uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
  942. if ((V & 1) == 0)
  943. return V >> 1;
  944. if (V != 1)
  945. return -(V >> 1);
  946. // There is no such thing as -0 with integers. "-0" really means MININT.
  947. return 1ULL << 63;
  948. }
  949. /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
  950. /// values and aliases that we can.
  951. error_code BitcodeReader::ResolveGlobalAndAliasInits() {
  952. std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
  953. std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
  954. std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
  955. GlobalInitWorklist.swap(GlobalInits);
  956. AliasInitWorklist.swap(AliasInits);
  957. FunctionPrefixWorklist.swap(FunctionPrefixes);
  958. while (!GlobalInitWorklist.empty()) {
  959. unsigned ValID = GlobalInitWorklist.back().second;
  960. if (ValID >= ValueList.size()) {
  961. // Not ready to resolve this yet, it requires something later in the file.
  962. GlobalInits.push_back(GlobalInitWorklist.back());
  963. } else {
  964. if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
  965. GlobalInitWorklist.back().first->setInitializer(C);
  966. else
  967. return Error(ExpectedConstant);
  968. }
  969. GlobalInitWorklist.pop_back();
  970. }
  971. while (!AliasInitWorklist.empty()) {
  972. unsigned ValID = AliasInitWorklist.back().second;
  973. if (ValID >= ValueList.size()) {
  974. AliasInits.push_back(AliasInitWorklist.back());
  975. } else {
  976. if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
  977. AliasInitWorklist.back().first->setAliasee(C);
  978. else
  979. return Error(ExpectedConstant);
  980. }
  981. AliasInitWorklist.pop_back();
  982. }
  983. while (!FunctionPrefixWorklist.empty()) {
  984. unsigned ValID = FunctionPrefixWorklist.back().second;
  985. if (ValID >= ValueList.size()) {
  986. FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
  987. } else {
  988. if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
  989. FunctionPrefixWorklist.back().first->setPrefixData(C);
  990. else
  991. return Error(ExpectedConstant);
  992. }
  993. FunctionPrefixWorklist.pop_back();
  994. }
  995. return error_code::success();
  996. }
  997. static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
  998. SmallVector<uint64_t, 8> Words(Vals.size());
  999. std::transform(Vals.begin(), Vals.end(), Words.begin(),
  1000. BitcodeReader::decodeSignRotatedValue);
  1001. return APInt(TypeBits, Words);
  1002. }
  1003. error_code BitcodeReader::ParseConstants() {
  1004. if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
  1005. return Error(InvalidRecord);
  1006. SmallVector<uint64_t, 64> Record;
  1007. // Read all the records for this value table.
  1008. Type *CurTy = Type::getInt32Ty(Context);
  1009. unsigned NextCstNo = ValueList.size();
  1010. while (1) {
  1011. BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
  1012. switch (Entry.Kind) {
  1013. case BitstreamEntry::SubBlock: // Handled for us already.
  1014. case BitstreamEntry::Error:
  1015. return Error(MalformedBlock);
  1016. case BitstreamEntry::EndBlock:
  1017. if (NextCstNo != ValueList.size())
  1018. return Error(InvalidConstantReference);
  1019. // Once all the constants have been read, go through and resolve forward
  1020. // references.
  1021. ValueList.ResolveConstantForwardRefs();
  1022. return error_code::success();
  1023. case BitstreamEntry::Record:
  1024. // The interesting case.
  1025. break;
  1026. }
  1027. // Read a record.
  1028. Record.clear();
  1029. Value *V = 0;
  1030. unsigned BitCode = Stream.readRecord(Entry.ID, Record);
  1031. switch (BitCode) {
  1032. default: // Default behavior: unknown constant
  1033. case bitc::CST_CODE_UNDEF: // UNDEF
  1034. V = UndefValue::get(CurTy);
  1035. break;
  1036. case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
  1037. if (Record.empty())
  1038. return Error(InvalidRecord);
  1039. if (Record[0] >= TypeList.size())
  1040. return Error(InvalidRecord);
  1041. CurTy = TypeList[Record[0]];
  1042. continue; // Skip the ValueList manipulation.
  1043. case bitc::CST_CODE_NULL: // NULL
  1044. V = Constant::getNullValue(CurTy);
  1045. break;
  1046. case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
  1047. if (!CurTy->isIntegerTy() || Record.empty())
  1048. return Error(InvalidRecord);
  1049. V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
  1050. break;
  1051. case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
  1052. if (!CurTy->isIntegerTy() || Record.empty())
  1053. return Error(InvalidRecord);
  1054. APInt VInt = ReadWideAPInt(Record,
  1055. cast<IntegerType>(CurTy)->getBitWidth());
  1056. V = ConstantInt::get(Context, VInt);
  1057. break;
  1058. }
  1059. case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
  1060. if (Record.empty())
  1061. return Error(InvalidRecord);
  1062. if (CurTy->isHalfTy())
  1063. V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
  1064. APInt(16, (uint16_t)Record[0])));
  1065. else if (CurTy->isFloatTy())
  1066. V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
  1067. APInt(32, (uint32_t)Record[0])));
  1068. else if (CurTy->isDoubleTy())
  1069. V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
  1070. APInt(64, Record[0])));
  1071. else if (CurTy->isX86_FP80Ty()) {
  1072. // Bits are not stored the same way as a normal i80 APInt, compensate.
  1073. uint64_t Rearrange[2];
  1074. Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
  1075. Rearrange[1] = Record[0] >> 48;
  1076. V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
  1077. APInt(80, Rearrange)));
  1078. } else if (CurTy->isFP128Ty())
  1079. V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
  1080. APInt(128, Record)));
  1081. else if (CurTy->isPPC_FP128Ty())
  1082. V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
  1083. APInt(128, Record)));
  1084. else
  1085. V = UndefValue::get(CurTy);
  1086. break;
  1087. }
  1088. case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
  1089. if (Record.empty())
  1090. return Error(InvalidRecord);
  1091. unsigned Size = Record.size();
  1092. SmallVector<Constant*, 16> Elts;
  1093. if (StructType *STy = dyn_cast<StructType>(CurTy)) {
  1094. for (unsigned i = 0; i != Size; ++i)
  1095. Elts.push_back(ValueList.getConstantFwdRef(Record[i],
  1096. STy->getElementType(i)));
  1097. V = ConstantStruct::get(STy, Elts);
  1098. } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
  1099. Type *EltTy = ATy->getElementType();
  1100. for (unsigned i = 0; i != Size; ++i)
  1101. Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
  1102. V = ConstantArray::get(ATy, Elts);
  1103. } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
  1104. Type *EltTy = VTy->getElementType();
  1105. for (unsigned i = 0; i != Size; ++i)
  1106. Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
  1107. V = ConstantVector::get(Elts);
  1108. } else {
  1109. V = UndefValue::get(CurTy);
  1110. }
  1111. break;
  1112. }
  1113. case bitc::CST_CODE_STRING: // STRING: [values]
  1114. case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
  1115. if (Record.empty())
  1116. return Error(InvalidRecord);
  1117. SmallString<16> Elts(Record.begin(), Record.end());
  1118. V = ConstantDataArray::getString(Context, Elts,
  1119. BitCode == bitc::CST_CODE_CSTRING);
  1120. break;
  1121. }
  1122. case bitc::CST_CODE_DATA: {// DATA: [n x value]
  1123. if (Record.empty())
  1124. return Error(InvalidRecord);
  1125. Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
  1126. unsigned Size = Record.size();
  1127. if (EltTy->isIntegerTy(8)) {
  1128. SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
  1129. if (isa<VectorType>(CurTy))
  1130. V = ConstantDataVector::get(Context, Elts);
  1131. else
  1132. V = ConstantDataArray::get(Context, Elts);
  1133. } else if (EltTy->isIntegerTy(16)) {
  1134. SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
  1135. if (isa<VectorType>(CurTy))
  1136. V = ConstantDataVector::get(Context, Elts);
  1137. else
  1138. V = ConstantDataArray::get(Context, Elts);
  1139. } else if (EltTy->isIntegerTy(32)) {
  1140. SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
  1141. if (isa<VectorType>(CurTy))
  1142. V = ConstantDataVector::get(Context, Elts);
  1143. else
  1144. V = ConstantDataArray::get(Context, Elts);
  1145. } else if (EltTy->isIntegerTy(64)) {
  1146. SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
  1147. if (isa<VectorType>(CurTy))
  1148. V = ConstantDataVector::get(Context, Elts);
  1149. else
  1150. V = ConstantDataArray::get(Context, Elts);
  1151. } else if (EltTy->isFloatTy()) {
  1152. SmallVector<float, 16> Elts(Size);
  1153. std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat);
  1154. if (isa<VectorType>(CurTy))
  1155. V = ConstantDataVector::get(Context, Elts);
  1156. else
  1157. V = ConstantDataArray::get(Context, Elts);
  1158. } else if (EltTy->isDoubleTy()) {
  1159. SmallVector<double, 16> Elts(Size);
  1160. std::transform(Record.begin(), Record.end(), Elts.begin(),
  1161. BitsToDouble);
  1162. if (isa<VectorType>(CurTy))
  1163. V = ConstantDataVector::get(Context, Elts);
  1164. else
  1165. V = ConstantDataArray::get(Context, Elts);
  1166. } else {
  1167. return Error(InvalidTypeForValue);
  1168. }
  1169. break;
  1170. }
  1171. case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
  1172. if (Record.size() < 3)
  1173. return Error(InvalidRecord);
  1174. int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
  1175. if (Opc < 0) {
  1176. V = UndefValue::get(CurTy); // Unknown binop.
  1177. } else {
  1178. Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
  1179. Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
  1180. unsigned Flags = 0;
  1181. if (Record.size() >= 4) {
  1182. if (Opc == Instruction::Add ||
  1183. Opc == Instruction::Sub ||
  1184. Opc == Instruction::Mul ||
  1185. Opc == Instruction::Shl) {
  1186. if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
  1187. Flags |= OverflowingBinaryOperator::NoSignedWrap;
  1188. if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
  1189. Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
  1190. } else if (Opc == Instruction::SDiv ||
  1191. Opc == Instruction::UDiv ||
  1192. Opc == Instruction::LShr ||
  1193. Opc == Instruction::AShr) {
  1194. if (Record[3] & (1 << bitc::PEO_EXACT))
  1195. Flags |= SDivOperator::IsExact;
  1196. }
  1197. }
  1198. V = ConstantExpr::get(Opc, LHS, RHS, Flags);
  1199. }
  1200. break;
  1201. }
  1202. case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
  1203. if (Record.size() < 3)
  1204. return Error(InvalidRecord);
  1205. int Opc = GetDecodedCastOpcode(Record[0]);
  1206. if (Opc < 0) {
  1207. V = UndefValue::get(CurTy); // Unknown cast.
  1208. } else {
  1209. Type *OpTy = getTypeByID(Record[1]);
  1210. if (!OpTy)
  1211. return Error(InvalidRecord);
  1212. Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
  1213. V = UpgradeBitCastExpr(Opc, Op, CurTy);
  1214. if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
  1215. }
  1216. break;
  1217. }
  1218. case bitc::CST_CODE_CE_INBOUNDS_GEP:
  1219. case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands]
  1220. if (Record.size() & 1)
  1221. return Error(InvalidRecord);
  1222. SmallVector<Constant*, 16> Elts;
  1223. for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
  1224. Type *ElTy = getTypeByID(Record[i]);
  1225. if (!ElTy)
  1226. return Error(InvalidRecord);
  1227. Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
  1228. }
  1229. ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
  1230. V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
  1231. BitCode ==
  1232. bitc::CST_CODE_CE_INBOUNDS_GEP);
  1233. break;
  1234. }
  1235. case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
  1236. if (Record.size() < 3)
  1237. return Error(InvalidRecord);
  1238. Type *SelectorTy = Type::getInt1Ty(Context);
  1239. // If CurTy is a vector of length n, then Record[0] must be a <n x i1>
  1240. // vector. Otherwise, it must be a single bit.
  1241. if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
  1242. SelectorTy = VectorType::get(Type::getInt1Ty(Context),
  1243. VTy->getNumElements());
  1244. V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
  1245. SelectorTy),
  1246. ValueList.getConstantFwdRef(Record[1],CurTy),
  1247. ValueList.getConstantFwdRef(Record[2],CurTy));
  1248. break;
  1249. }
  1250. case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
  1251. if (Record.size() < 3)
  1252. return Error(InvalidRecord);
  1253. VectorType *OpTy =
  1254. dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
  1255. if (OpTy == 0)
  1256. return Error(InvalidRecord);
  1257. Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
  1258. Constant *Op1 = ValueList.getConstantFwdRef(Record[2],
  1259. Type::getInt32Ty(Context));
  1260. V = ConstantExpr::getExtractElement(Op0, Op1);
  1261. break;
  1262. }
  1263. case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
  1264. VectorType *OpTy = dyn_cast<VectorType>(CurTy);
  1265. if (Record.size() < 3 || OpTy == 0)
  1266. return Error(InvalidRecord);
  1267. Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
  1268. Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
  1269. OpTy->getElementType());
  1270. Constant *Op2 = ValueList.getConstantFwdRef(Record[2],
  1271. Type::getInt32Ty(Context));
  1272. V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
  1273. break;
  1274. }
  1275. case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
  1276. VectorType *OpTy = dyn_cast<VectorType>(CurTy);
  1277. if (Record.size() < 3 || OpTy == 0)
  1278. return Error(InvalidRecord);
  1279. Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
  1280. Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
  1281. Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
  1282. OpTy->getNumElements());
  1283. Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
  1284. V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
  1285. break;
  1286. }
  1287. case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, op…