/3rd_party/llvm/lib/Transforms/Scalar/Sink.cpp
https://code.google.com/p/softart/ · C++ · 270 lines · 163 code · 41 blank · 66 comment · 48 complexity · cbbb94ecdf77cdcbd3452280720ed720 MD5 · raw file
- //===-- Sink.cpp - Code Sinking -------------------------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass moves instructions into successor blocks, when possible, so that
- // they aren't executed on paths where their results aren't needed.
- //
- //===----------------------------------------------------------------------===//
- #define DEBUG_TYPE "sink"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/Dominators.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Assembly/Writer.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/Support/CFG.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace llvm;
- STATISTIC(NumSunk, "Number of instructions sunk");
- STATISTIC(NumSinkIter, "Number of sinking iterations");
- namespace {
- class Sinking : public FunctionPass {
- DominatorTree *DT;
- LoopInfo *LI;
- AliasAnalysis *AA;
- public:
- static char ID; // Pass identification
- Sinking() : FunctionPass(ID) {
- initializeSinkingPass(*PassRegistry::getPassRegistry());
- }
- virtual bool runOnFunction(Function &F);
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
- FunctionPass::getAnalysisUsage(AU);
- AU.addRequired<AliasAnalysis>();
- AU.addRequired<DominatorTree>();
- AU.addRequired<LoopInfo>();
- AU.addPreserved<DominatorTree>();
- AU.addPreserved<LoopInfo>();
- }
- private:
- bool ProcessBlock(BasicBlock &BB);
- bool SinkInstruction(Instruction *I, SmallPtrSet<Instruction *, 8> &Stores);
- bool AllUsesDominatedByBlock(Instruction *Inst, BasicBlock *BB) const;
- bool IsAcceptableTarget(Instruction *Inst, BasicBlock *SuccToSinkTo) const;
- };
- } // end anonymous namespace
- char Sinking::ID = 0;
- INITIALIZE_PASS_BEGIN(Sinking, "sink", "Code sinking", false, false)
- INITIALIZE_PASS_DEPENDENCY(LoopInfo)
- INITIALIZE_PASS_DEPENDENCY(DominatorTree)
- INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
- INITIALIZE_PASS_END(Sinking, "sink", "Code sinking", false, false)
- FunctionPass *llvm::createSinkingPass() { return new Sinking(); }
- /// AllUsesDominatedByBlock - Return true if all uses of the specified value
- /// occur in blocks dominated by the specified block.
- bool Sinking::AllUsesDominatedByBlock(Instruction *Inst,
- BasicBlock *BB) const {
- // Ignoring debug uses is necessary so debug info doesn't affect the code.
- // This may leave a referencing dbg_value in the original block, before
- // the definition of the vreg. Dwarf generator handles this although the
- // user might not get the right info at runtime.
- for (Value::use_iterator I = Inst->use_begin(),
- E = Inst->use_end(); I != E; ++I) {
- // Determine the block of the use.
- Instruction *UseInst = cast<Instruction>(*I);
- BasicBlock *UseBlock = UseInst->getParent();
- if (PHINode *PN = dyn_cast<PHINode>(UseInst)) {
- // PHI nodes use the operand in the predecessor block, not the block with
- // the PHI.
- unsigned Num = PHINode::getIncomingValueNumForOperand(I.getOperandNo());
- UseBlock = PN->getIncomingBlock(Num);
- }
- // Check that it dominates.
- if (!DT->dominates(BB, UseBlock))
- return false;
- }
- return true;
- }
- bool Sinking::runOnFunction(Function &F) {
- DT = &getAnalysis<DominatorTree>();
- LI = &getAnalysis<LoopInfo>();
- AA = &getAnalysis<AliasAnalysis>();
- bool MadeChange, EverMadeChange = false;
- do {
- MadeChange = false;
- DEBUG(dbgs() << "Sinking iteration " << NumSinkIter << "\n");
- // Process all basic blocks.
- for (Function::iterator I = F.begin(), E = F.end();
- I != E; ++I)
- MadeChange |= ProcessBlock(*I);
- EverMadeChange |= MadeChange;
- NumSinkIter++;
- } while (MadeChange);
- return EverMadeChange;
- }
- bool Sinking::ProcessBlock(BasicBlock &BB) {
- // Can't sink anything out of a block that has less than two successors.
- if (BB.getTerminator()->getNumSuccessors() <= 1 || BB.empty()) return false;
- // Don't bother sinking code out of unreachable blocks. In addition to being
- // unprofitable, it can also lead to infinite looping, because in an
- // unreachable loop there may be nowhere to stop.
- if (!DT->isReachableFromEntry(&BB)) return false;
- bool MadeChange = false;
- // Walk the basic block bottom-up. Remember if we saw a store.
- BasicBlock::iterator I = BB.end();
- --I;
- bool ProcessedBegin = false;
- SmallPtrSet<Instruction *, 8> Stores;
- do {
- Instruction *Inst = I; // The instruction to sink.
- // Predecrement I (if it's not begin) so that it isn't invalidated by
- // sinking.
- ProcessedBegin = I == BB.begin();
- if (!ProcessedBegin)
- --I;
- if (isa<DbgInfoIntrinsic>(Inst))
- continue;
- if (SinkInstruction(Inst, Stores))
- ++NumSunk, MadeChange = true;
- // If we just processed the first instruction in the block, we're done.
- } while (!ProcessedBegin);
- return MadeChange;
- }
- static bool isSafeToMove(Instruction *Inst, AliasAnalysis *AA,
- SmallPtrSet<Instruction *, 8> &Stores) {
- if (Inst->mayWriteToMemory()) {
- Stores.insert(Inst);
- return false;
- }
- if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
- AliasAnalysis::Location Loc = AA->getLocation(L);
- for (SmallPtrSet<Instruction *, 8>::iterator I = Stores.begin(),
- E = Stores.end(); I != E; ++I)
- if (AA->getModRefInfo(*I, Loc) & AliasAnalysis::Mod)
- return false;
- }
- if (isa<TerminatorInst>(Inst) || isa<PHINode>(Inst))
- return false;
- return true;
- }
- /// IsAcceptableTarget - Return true if it is possible to sink the instruction
- /// in the specified basic block.
- bool Sinking::IsAcceptableTarget(Instruction *Inst,
- BasicBlock *SuccToSinkTo) const {
- assert(Inst && "Instruction to be sunk is null");
- assert(SuccToSinkTo && "Candidate sink target is null");
- // It is not possible to sink an instruction into its own block. This can
- // happen with loops.
- if (Inst->getParent() == SuccToSinkTo)
- return false;
- // If the block has multiple predecessors, this would introduce computation
- // on different code paths. We could split the critical edge, but for now we
- // just punt.
- // FIXME: Split critical edges if not backedges.
- if (SuccToSinkTo->getUniquePredecessor() != Inst->getParent()) {
- // We cannot sink a load across a critical edge - there may be stores in
- // other code paths.
- if (!isSafeToSpeculativelyExecute(Inst))
- return false;
- // We don't want to sink across a critical edge if we don't dominate the
- // successor. We could be introducing calculations to new code paths.
- if (!DT->dominates(Inst->getParent(), SuccToSinkTo))
- return false;
- // Don't sink instructions into a loop.
- Loop *succ = LI->getLoopFor(SuccToSinkTo);
- Loop *cur = LI->getLoopFor(Inst->getParent());
- if (succ != 0 && succ != cur)
- return false;
- }
- // Finally, check that all the uses of the instruction are actually
- // dominated by the candidate
- return AllUsesDominatedByBlock(Inst, SuccToSinkTo);
- }
- /// SinkInstruction - Determine whether it is safe to sink the specified machine
- /// instruction out of its current block into a successor.
- bool Sinking::SinkInstruction(Instruction *Inst,
- SmallPtrSet<Instruction *, 8> &Stores) {
- // Check if it's safe to move the instruction.
- if (!isSafeToMove(Inst, AA, Stores))
- return false;
- // FIXME: This should include support for sinking instructions within the
- // block they are currently in to shorten the live ranges. We often get
- // instructions sunk into the top of a large block, but it would be better to
- // also sink them down before their first use in the block. This xform has to
- // be careful not to *increase* register pressure though, e.g. sinking
- // "x = y + z" down if it kills y and z would increase the live ranges of y
- // and z and only shrink the live range of x.
- // SuccToSinkTo - This is the successor to sink this instruction to, once we
- // decide.
- BasicBlock *SuccToSinkTo = 0;
- // Instructions can only be sunk if all their uses are in blocks
- // dominated by one of the successors.
- // Look at all the postdominators and see if we can sink it in one.
- DomTreeNode *DTN = DT->getNode(Inst->getParent());
- for (DomTreeNode::iterator I = DTN->begin(), E = DTN->end();
- I != E && SuccToSinkTo == 0; ++I) {
- BasicBlock *Candidate = (*I)->getBlock();
- if ((*I)->getIDom()->getBlock() == Inst->getParent() &&
- IsAcceptableTarget(Inst, Candidate))
- SuccToSinkTo = Candidate;
- }
- // If no suitable postdominator was found, look at all the successors and
- // decide which one we should sink to, if any.
- for (succ_iterator I = succ_begin(Inst->getParent()),
- E = succ_end(Inst->getParent()); I != E && SuccToSinkTo == 0; ++I) {
- if (IsAcceptableTarget(Inst, *I))
- SuccToSinkTo = *I;
- }
- // If we couldn't find a block to sink to, ignore this instruction.
- if (SuccToSinkTo == 0)
- return false;
- DEBUG(dbgs() << "Sink" << *Inst << " (";
- WriteAsOperand(dbgs(), Inst->getParent(), false);
- dbgs() << " -> ";
- WriteAsOperand(dbgs(), SuccToSinkTo, false);
- dbgs() << ")\n");
- // Move the instruction.
- Inst->moveBefore(SuccToSinkTo->getFirstInsertionPt());
- return true;
- }