/3rd_party/llvm/lib/Target/X86/X86InstrArithmetic.td
Unknown | 1395 lines | 1248 code | 147 blank | 0 comment | 0 complexity | e7802e0f7cd11df209074edc0307cabd MD5 | raw file
Possible License(s): LGPL-2.1, BSD-3-Clause, JSON, MPL-2.0-no-copyleft-exception, GPL-2.0, GPL-3.0, LGPL-3.0, BSD-2-Clause
Large files files are truncated, but you can click here to view the full file
1//===-- X86InstrArithmetic.td - Integer Arithmetic Instrs --*- tablegen -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file describes the integer arithmetic instructions in the X86 11// architecture. 12// 13//===----------------------------------------------------------------------===// 14 15//===----------------------------------------------------------------------===// 16// LEA - Load Effective Address 17let SchedRW = [WriteLEA] in { 18let neverHasSideEffects = 1 in 19def LEA16r : I<0x8D, MRMSrcMem, 20 (outs GR16:$dst), (ins i32mem:$src), 21 "lea{w}\t{$src|$dst}, {$dst|$src}", [], IIC_LEA_16>, OpSize; 22let isReMaterializable = 1 in 23def LEA32r : I<0x8D, MRMSrcMem, 24 (outs GR32:$dst), (ins i32mem:$src), 25 "lea{l}\t{$src|$dst}, {$dst|$src}", 26 [(set GR32:$dst, lea32addr:$src)], IIC_LEA>, 27 Requires<[In32BitMode]>; 28 29def LEA64_32r : I<0x8D, MRMSrcMem, 30 (outs GR32:$dst), (ins lea64_32mem:$src), 31 "lea{l}\t{$src|$dst}, {$dst|$src}", 32 [(set GR32:$dst, lea64_32addr:$src)], IIC_LEA>, 33 Requires<[In64BitMode]>; 34 35let isReMaterializable = 1 in 36def LEA64r : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins lea64mem:$src), 37 "lea{q}\t{$src|$dst}, {$dst|$src}", 38 [(set GR64:$dst, lea64addr:$src)], IIC_LEA>; 39} // SchedRW 40 41//===----------------------------------------------------------------------===// 42// Fixed-Register Multiplication and Division Instructions. 43// 44 45// SchedModel info for instruction that loads one value and gets the second 46// (and possibly third) value from a register. 47// This is used for instructions that put the memory operands before other 48// uses. 49class SchedLoadReg<SchedWrite SW> : Sched<[SW, 50 // Memory operand. 51 ReadDefault, ReadDefault, ReadDefault, ReadDefault, ReadDefault, 52 // Register reads (implicit or explicit). 53 ReadAfterLd, ReadAfterLd]>; 54 55// Extra precision multiplication 56 57// AL is really implied by AX, but the registers in Defs must match the 58// SDNode results (i8, i32). 59// AL,AH = AL*GR8 60let Defs = [AL,EFLAGS,AX], Uses = [AL] in 61def MUL8r : I<0xF6, MRM4r, (outs), (ins GR8:$src), "mul{b}\t$src", 62 // FIXME: Used for 8-bit mul, ignore result upper 8 bits. 63 // This probably ought to be moved to a def : Pat<> if the 64 // syntax can be accepted. 65 [(set AL, (mul AL, GR8:$src)), 66 (implicit EFLAGS)], IIC_MUL8>, Sched<[WriteIMul]>; 67// AX,DX = AX*GR16 68let Defs = [AX,DX,EFLAGS], Uses = [AX], neverHasSideEffects = 1 in 69def MUL16r : I<0xF7, MRM4r, (outs), (ins GR16:$src), 70 "mul{w}\t$src", 71 [], IIC_MUL16_REG>, OpSize, Sched<[WriteIMul]>; 72// EAX,EDX = EAX*GR32 73let Defs = [EAX,EDX,EFLAGS], Uses = [EAX], neverHasSideEffects = 1 in 74def MUL32r : I<0xF7, MRM4r, (outs), (ins GR32:$src), 75 "mul{l}\t$src", 76 [/*(set EAX, EDX, EFLAGS, (X86umul_flag EAX, GR32:$src))*/], 77 IIC_MUL32_REG>, Sched<[WriteIMul]>; 78// RAX,RDX = RAX*GR64 79let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in 80def MUL64r : RI<0xF7, MRM4r, (outs), (ins GR64:$src), 81 "mul{q}\t$src", 82 [/*(set RAX, RDX, EFLAGS, (X86umul_flag RAX, GR64:$src))*/], 83 IIC_MUL64>, Sched<[WriteIMul]>; 84// AL,AH = AL*[mem8] 85let Defs = [AL,EFLAGS,AX], Uses = [AL] in 86def MUL8m : I<0xF6, MRM4m, (outs), (ins i8mem :$src), 87 "mul{b}\t$src", 88 // FIXME: Used for 8-bit mul, ignore result upper 8 bits. 89 // This probably ought to be moved to a def : Pat<> if the 90 // syntax can be accepted. 91 [(set AL, (mul AL, (loadi8 addr:$src))), 92 (implicit EFLAGS)], IIC_MUL8>, SchedLoadReg<WriteIMulLd>; 93// AX,DX = AX*[mem16] 94let mayLoad = 1, neverHasSideEffects = 1 in { 95let Defs = [AX,DX,EFLAGS], Uses = [AX] in 96def MUL16m : I<0xF7, MRM4m, (outs), (ins i16mem:$src), 97 "mul{w}\t$src", 98 [], IIC_MUL16_MEM>, OpSize, SchedLoadReg<WriteIMulLd>; 99// EAX,EDX = EAX*[mem32] 100let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in 101def MUL32m : I<0xF7, MRM4m, (outs), (ins i32mem:$src), 102 "mul{l}\t$src", 103 [], IIC_MUL32_MEM>, SchedLoadReg<WriteIMulLd>; 104// RAX,RDX = RAX*[mem64] 105let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in 106def MUL64m : RI<0xF7, MRM4m, (outs), (ins i64mem:$src), 107 "mul{q}\t$src", [], IIC_MUL64>, SchedLoadReg<WriteIMulLd>; 108} 109 110let neverHasSideEffects = 1 in { 111// AL,AH = AL*GR8 112let Defs = [AL,EFLAGS,AX], Uses = [AL] in 113def IMUL8r : I<0xF6, MRM5r, (outs), (ins GR8:$src), "imul{b}\t$src", [], 114 IIC_IMUL8>, Sched<[WriteIMul]>; 115// AX,DX = AX*GR16 116let Defs = [AX,DX,EFLAGS], Uses = [AX] in 117def IMUL16r : I<0xF7, MRM5r, (outs), (ins GR16:$src), "imul{w}\t$src", [], 118 IIC_IMUL16_RR>, OpSize, Sched<[WriteIMul]>; 119// EAX,EDX = EAX*GR32 120let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in 121def IMUL32r : I<0xF7, MRM5r, (outs), (ins GR32:$src), "imul{l}\t$src", [], 122 IIC_IMUL32_RR>, Sched<[WriteIMul]>; 123// RAX,RDX = RAX*GR64 124let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in 125def IMUL64r : RI<0xF7, MRM5r, (outs), (ins GR64:$src), "imul{q}\t$src", [], 126 IIC_IMUL64_RR>, Sched<[WriteIMul]>; 127 128let mayLoad = 1 in { 129// AL,AH = AL*[mem8] 130let Defs = [AL,EFLAGS,AX], Uses = [AL] in 131def IMUL8m : I<0xF6, MRM5m, (outs), (ins i8mem :$src), 132 "imul{b}\t$src", [], IIC_IMUL8>, SchedLoadReg<WriteIMulLd>; 133// AX,DX = AX*[mem16] 134let Defs = [AX,DX,EFLAGS], Uses = [AX] in 135def IMUL16m : I<0xF7, MRM5m, (outs), (ins i16mem:$src), 136 "imul{w}\t$src", [], IIC_IMUL16_MEM>, OpSize, 137 SchedLoadReg<WriteIMulLd>; 138// EAX,EDX = EAX*[mem32] 139let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in 140def IMUL32m : I<0xF7, MRM5m, (outs), (ins i32mem:$src), 141 "imul{l}\t$src", [], IIC_IMUL32_MEM>, SchedLoadReg<WriteIMulLd>; 142// RAX,RDX = RAX*[mem64] 143let Defs = [RAX,RDX,EFLAGS], Uses = [RAX] in 144def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src), 145 "imul{q}\t$src", [], IIC_IMUL64>, SchedLoadReg<WriteIMulLd>; 146} 147} // neverHasSideEffects 148 149 150let Defs = [EFLAGS] in { 151let Constraints = "$src1 = $dst" in { 152 153let isCommutable = 1, SchedRW = [WriteIMul] in { 154// X = IMUL Y, Z --> X = IMUL Z, Y 155// Register-Register Signed Integer Multiply 156def IMUL16rr : I<0xAF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1,GR16:$src2), 157 "imul{w}\t{$src2, $dst|$dst, $src2}", 158 [(set GR16:$dst, EFLAGS, 159 (X86smul_flag GR16:$src1, GR16:$src2))], IIC_IMUL16_RR>, 160 TB, OpSize; 161def IMUL32rr : I<0xAF, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1,GR32:$src2), 162 "imul{l}\t{$src2, $dst|$dst, $src2}", 163 [(set GR32:$dst, EFLAGS, 164 (X86smul_flag GR32:$src1, GR32:$src2))], IIC_IMUL32_RR>, 165 TB; 166def IMUL64rr : RI<0xAF, MRMSrcReg, (outs GR64:$dst), 167 (ins GR64:$src1, GR64:$src2), 168 "imul{q}\t{$src2, $dst|$dst, $src2}", 169 [(set GR64:$dst, EFLAGS, 170 (X86smul_flag GR64:$src1, GR64:$src2))], IIC_IMUL64_RR>, 171 TB; 172} // isCommutable, SchedRW 173 174// Register-Memory Signed Integer Multiply 175let SchedRW = [WriteIMulLd, ReadAfterLd] in { 176def IMUL16rm : I<0xAF, MRMSrcMem, (outs GR16:$dst), 177 (ins GR16:$src1, i16mem:$src2), 178 "imul{w}\t{$src2, $dst|$dst, $src2}", 179 [(set GR16:$dst, EFLAGS, 180 (X86smul_flag GR16:$src1, (load addr:$src2)))], 181 IIC_IMUL16_RM>, 182 TB, OpSize; 183def IMUL32rm : I<0xAF, MRMSrcMem, (outs GR32:$dst), 184 (ins GR32:$src1, i32mem:$src2), 185 "imul{l}\t{$src2, $dst|$dst, $src2}", 186 [(set GR32:$dst, EFLAGS, 187 (X86smul_flag GR32:$src1, (load addr:$src2)))], 188 IIC_IMUL32_RM>, 189 TB; 190def IMUL64rm : RI<0xAF, MRMSrcMem, (outs GR64:$dst), 191 (ins GR64:$src1, i64mem:$src2), 192 "imul{q}\t{$src2, $dst|$dst, $src2}", 193 [(set GR64:$dst, EFLAGS, 194 (X86smul_flag GR64:$src1, (load addr:$src2)))], 195 IIC_IMUL64_RM>, 196 TB; 197} // SchedRW 198} // Constraints = "$src1 = $dst" 199 200} // Defs = [EFLAGS] 201 202// Surprisingly enough, these are not two address instructions! 203let Defs = [EFLAGS] in { 204let SchedRW = [WriteIMul] in { 205// Register-Integer Signed Integer Multiply 206def IMUL16rri : Ii16<0x69, MRMSrcReg, // GR16 = GR16*I16 207 (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), 208 "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", 209 [(set GR16:$dst, EFLAGS, 210 (X86smul_flag GR16:$src1, imm:$src2))], 211 IIC_IMUL16_RRI>, OpSize; 212def IMUL16rri8 : Ii8<0x6B, MRMSrcReg, // GR16 = GR16*I8 213 (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), 214 "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", 215 [(set GR16:$dst, EFLAGS, 216 (X86smul_flag GR16:$src1, i16immSExt8:$src2))], 217 IIC_IMUL16_RRI>, 218 OpSize; 219def IMUL32rri : Ii32<0x69, MRMSrcReg, // GR32 = GR32*I32 220 (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), 221 "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", 222 [(set GR32:$dst, EFLAGS, 223 (X86smul_flag GR32:$src1, imm:$src2))], 224 IIC_IMUL32_RRI>; 225def IMUL32rri8 : Ii8<0x6B, MRMSrcReg, // GR32 = GR32*I8 226 (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), 227 "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", 228 [(set GR32:$dst, EFLAGS, 229 (X86smul_flag GR32:$src1, i32immSExt8:$src2))], 230 IIC_IMUL32_RRI>; 231def IMUL64rri32 : RIi32<0x69, MRMSrcReg, // GR64 = GR64*I32 232 (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), 233 "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", 234 [(set GR64:$dst, EFLAGS, 235 (X86smul_flag GR64:$src1, i64immSExt32:$src2))], 236 IIC_IMUL64_RRI>; 237def IMUL64rri8 : RIi8<0x6B, MRMSrcReg, // GR64 = GR64*I8 238 (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2), 239 "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", 240 [(set GR64:$dst, EFLAGS, 241 (X86smul_flag GR64:$src1, i64immSExt8:$src2))], 242 IIC_IMUL64_RRI>; 243} // SchedRW 244 245// Memory-Integer Signed Integer Multiply 246let SchedRW = [WriteIMulLd] in { 247def IMUL16rmi : Ii16<0x69, MRMSrcMem, // GR16 = [mem16]*I16 248 (outs GR16:$dst), (ins i16mem:$src1, i16imm:$src2), 249 "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", 250 [(set GR16:$dst, EFLAGS, 251 (X86smul_flag (load addr:$src1), imm:$src2))], 252 IIC_IMUL16_RMI>, 253 OpSize; 254def IMUL16rmi8 : Ii8<0x6B, MRMSrcMem, // GR16 = [mem16]*I8 255 (outs GR16:$dst), (ins i16mem:$src1, i16i8imm :$src2), 256 "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", 257 [(set GR16:$dst, EFLAGS, 258 (X86smul_flag (load addr:$src1), 259 i16immSExt8:$src2))], IIC_IMUL16_RMI>, 260 OpSize; 261def IMUL32rmi : Ii32<0x69, MRMSrcMem, // GR32 = [mem32]*I32 262 (outs GR32:$dst), (ins i32mem:$src1, i32imm:$src2), 263 "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", 264 [(set GR32:$dst, EFLAGS, 265 (X86smul_flag (load addr:$src1), imm:$src2))], 266 IIC_IMUL32_RMI>; 267def IMUL32rmi8 : Ii8<0x6B, MRMSrcMem, // GR32 = [mem32]*I8 268 (outs GR32:$dst), (ins i32mem:$src1, i32i8imm: $src2), 269 "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", 270 [(set GR32:$dst, EFLAGS, 271 (X86smul_flag (load addr:$src1), 272 i32immSExt8:$src2))], 273 IIC_IMUL32_RMI>; 274def IMUL64rmi32 : RIi32<0x69, MRMSrcMem, // GR64 = [mem64]*I32 275 (outs GR64:$dst), (ins i64mem:$src1, i64i32imm:$src2), 276 "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", 277 [(set GR64:$dst, EFLAGS, 278 (X86smul_flag (load addr:$src1), 279 i64immSExt32:$src2))], 280 IIC_IMUL64_RMI>; 281def IMUL64rmi8 : RIi8<0x6B, MRMSrcMem, // GR64 = [mem64]*I8 282 (outs GR64:$dst), (ins i64mem:$src1, i64i8imm: $src2), 283 "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", 284 [(set GR64:$dst, EFLAGS, 285 (X86smul_flag (load addr:$src1), 286 i64immSExt8:$src2))], 287 IIC_IMUL64_RMI>; 288} // SchedRW 289} // Defs = [EFLAGS] 290 291 292 293 294// unsigned division/remainder 295let hasSideEffects = 1 in { // so that we don't speculatively execute 296let SchedRW = [WriteIDiv] in { 297let Defs = [AL,AH,EFLAGS], Uses = [AX] in 298def DIV8r : I<0xF6, MRM6r, (outs), (ins GR8:$src), // AX/r8 = AL,AH 299 "div{b}\t$src", [], IIC_DIV8_REG>; 300let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in 301def DIV16r : I<0xF7, MRM6r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX 302 "div{w}\t$src", [], IIC_DIV16>, OpSize; 303let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in 304def DIV32r : I<0xF7, MRM6r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX 305 "div{l}\t$src", [], IIC_DIV32>; 306// RDX:RAX/r64 = RAX,RDX 307let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in 308def DIV64r : RI<0xF7, MRM6r, (outs), (ins GR64:$src), 309 "div{q}\t$src", [], IIC_DIV64>; 310} // SchedRW 311 312let mayLoad = 1 in { 313let Defs = [AL,AH,EFLAGS], Uses = [AX] in 314def DIV8m : I<0xF6, MRM6m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH 315 "div{b}\t$src", [], IIC_DIV8_MEM>, 316 SchedLoadReg<WriteIDivLd>; 317let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in 318def DIV16m : I<0xF7, MRM6m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX 319 "div{w}\t$src", [], IIC_DIV16>, OpSize, 320 SchedLoadReg<WriteIDivLd>; 321let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX 322def DIV32m : I<0xF7, MRM6m, (outs), (ins i32mem:$src), 323 "div{l}\t$src", [], IIC_DIV32>, 324 SchedLoadReg<WriteIDivLd>; 325// RDX:RAX/[mem64] = RAX,RDX 326let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in 327def DIV64m : RI<0xF7, MRM6m, (outs), (ins i64mem:$src), 328 "div{q}\t$src", [], IIC_DIV64>, 329 SchedLoadReg<WriteIDivLd>; 330} 331 332// Signed division/remainder. 333let SchedRW = [WriteIDiv] in { 334let Defs = [AL,AH,EFLAGS], Uses = [AX] in 335def IDIV8r : I<0xF6, MRM7r, (outs), (ins GR8:$src), // AX/r8 = AL,AH 336 "idiv{b}\t$src", [], IIC_IDIV8>; 337let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in 338def IDIV16r: I<0xF7, MRM7r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX 339 "idiv{w}\t$src", [], IIC_IDIV16>, OpSize; 340let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in 341def IDIV32r: I<0xF7, MRM7r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX 342 "idiv{l}\t$src", [], IIC_IDIV32>; 343// RDX:RAX/r64 = RAX,RDX 344let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in 345def IDIV64r: RI<0xF7, MRM7r, (outs), (ins GR64:$src), 346 "idiv{q}\t$src", [], IIC_IDIV64>; 347} // SchedRW 348 349let mayLoad = 1 in { 350let Defs = [AL,AH,EFLAGS], Uses = [AX] in 351def IDIV8m : I<0xF6, MRM7m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH 352 "idiv{b}\t$src", [], IIC_IDIV8>, 353 SchedLoadReg<WriteIDivLd>; 354let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in 355def IDIV16m: I<0xF7, MRM7m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX 356 "idiv{w}\t$src", [], IIC_IDIV16>, OpSize, 357 SchedLoadReg<WriteIDivLd>; 358let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX 359def IDIV32m: I<0xF7, MRM7m, (outs), (ins i32mem:$src), 360 "idiv{l}\t$src", [], IIC_IDIV32>, 361 SchedLoadReg<WriteIDivLd>; 362let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in // RDX:RAX/[mem64] = RAX,RDX 363def IDIV64m: RI<0xF7, MRM7m, (outs), (ins i64mem:$src), 364 "idiv{q}\t$src", [], IIC_IDIV64>, 365 SchedLoadReg<WriteIDivLd>; 366} 367} // hasSideEffects = 0 368 369//===----------------------------------------------------------------------===// 370// Two address Instructions. 371// 372 373// unary instructions 374let CodeSize = 2 in { 375let Defs = [EFLAGS] in { 376let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in { 377def NEG8r : I<0xF6, MRM3r, (outs GR8 :$dst), (ins GR8 :$src1), 378 "neg{b}\t$dst", 379 [(set GR8:$dst, (ineg GR8:$src1)), 380 (implicit EFLAGS)], IIC_UNARY_REG>; 381def NEG16r : I<0xF7, MRM3r, (outs GR16:$dst), (ins GR16:$src1), 382 "neg{w}\t$dst", 383 [(set GR16:$dst, (ineg GR16:$src1)), 384 (implicit EFLAGS)], IIC_UNARY_REG>, OpSize; 385def NEG32r : I<0xF7, MRM3r, (outs GR32:$dst), (ins GR32:$src1), 386 "neg{l}\t$dst", 387 [(set GR32:$dst, (ineg GR32:$src1)), 388 (implicit EFLAGS)], IIC_UNARY_REG>; 389def NEG64r : RI<0xF7, MRM3r, (outs GR64:$dst), (ins GR64:$src1), "neg{q}\t$dst", 390 [(set GR64:$dst, (ineg GR64:$src1)), 391 (implicit EFLAGS)], IIC_UNARY_REG>; 392} // Constraints = "$src1 = $dst", SchedRW 393 394// Read-modify-write negate. 395let SchedRW = [WriteALULd, WriteRMW] in { 396def NEG8m : I<0xF6, MRM3m, (outs), (ins i8mem :$dst), 397 "neg{b}\t$dst", 398 [(store (ineg (loadi8 addr:$dst)), addr:$dst), 399 (implicit EFLAGS)], IIC_UNARY_MEM>; 400def NEG16m : I<0xF7, MRM3m, (outs), (ins i16mem:$dst), 401 "neg{w}\t$dst", 402 [(store (ineg (loadi16 addr:$dst)), addr:$dst), 403 (implicit EFLAGS)], IIC_UNARY_MEM>, OpSize; 404def NEG32m : I<0xF7, MRM3m, (outs), (ins i32mem:$dst), 405 "neg{l}\t$dst", 406 [(store (ineg (loadi32 addr:$dst)), addr:$dst), 407 (implicit EFLAGS)], IIC_UNARY_MEM>; 408def NEG64m : RI<0xF7, MRM3m, (outs), (ins i64mem:$dst), "neg{q}\t$dst", 409 [(store (ineg (loadi64 addr:$dst)), addr:$dst), 410 (implicit EFLAGS)], IIC_UNARY_MEM>; 411} // SchedRW 412} // Defs = [EFLAGS] 413 414 415// Note: NOT does not set EFLAGS! 416 417let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in { 418// Match xor -1 to not. Favors these over a move imm + xor to save code size. 419let AddedComplexity = 15 in { 420def NOT8r : I<0xF6, MRM2r, (outs GR8 :$dst), (ins GR8 :$src1), 421 "not{b}\t$dst", 422 [(set GR8:$dst, (not GR8:$src1))], IIC_UNARY_REG>; 423def NOT16r : I<0xF7, MRM2r, (outs GR16:$dst), (ins GR16:$src1), 424 "not{w}\t$dst", 425 [(set GR16:$dst, (not GR16:$src1))], IIC_UNARY_REG>, OpSize; 426def NOT32r : I<0xF7, MRM2r, (outs GR32:$dst), (ins GR32:$src1), 427 "not{l}\t$dst", 428 [(set GR32:$dst, (not GR32:$src1))], IIC_UNARY_REG>; 429def NOT64r : RI<0xF7, MRM2r, (outs GR64:$dst), (ins GR64:$src1), "not{q}\t$dst", 430 [(set GR64:$dst, (not GR64:$src1))], IIC_UNARY_REG>; 431} 432} // Constraints = "$src1 = $dst", SchedRW 433 434let SchedRW = [WriteALULd, WriteRMW] in { 435def NOT8m : I<0xF6, MRM2m, (outs), (ins i8mem :$dst), 436 "not{b}\t$dst", 437 [(store (not (loadi8 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>; 438def NOT16m : I<0xF7, MRM2m, (outs), (ins i16mem:$dst), 439 "not{w}\t$dst", 440 [(store (not (loadi16 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>, 441 OpSize; 442def NOT32m : I<0xF7, MRM2m, (outs), (ins i32mem:$dst), 443 "not{l}\t$dst", 444 [(store (not (loadi32 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>; 445def NOT64m : RI<0xF7, MRM2m, (outs), (ins i64mem:$dst), "not{q}\t$dst", 446 [(store (not (loadi64 addr:$dst)), addr:$dst)], IIC_UNARY_MEM>; 447} // SchedRW 448} // CodeSize 449 450// TODO: inc/dec is slow for P4, but fast for Pentium-M. 451let Defs = [EFLAGS] in { 452let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in { 453let CodeSize = 2 in 454def INC8r : I<0xFE, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1), 455 "inc{b}\t$dst", 456 [(set GR8:$dst, EFLAGS, (X86inc_flag GR8:$src1))], 457 IIC_UNARY_REG>; 458 459let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA. 460def INC16r : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1), 461 "inc{w}\t$dst", 462 [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))], IIC_UNARY_REG>, 463 OpSize, Requires<[In32BitMode]>; 464def INC32r : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1), 465 "inc{l}\t$dst", 466 [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))], 467 IIC_UNARY_REG>, 468 Requires<[In32BitMode]>; 469def INC64r : RI<0xFF, MRM0r, (outs GR64:$dst), (ins GR64:$src1), "inc{q}\t$dst", 470 [(set GR64:$dst, EFLAGS, (X86inc_flag GR64:$src1))], 471 IIC_UNARY_REG>; 472} // isConvertibleToThreeAddress = 1, CodeSize = 1 473 474 475// In 64-bit mode, single byte INC and DEC cannot be encoded. 476let isConvertibleToThreeAddress = 1, CodeSize = 2 in { 477// Can transform into LEA. 478def INC64_16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src1), 479 "inc{w}\t$dst", 480 [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))], 481 IIC_UNARY_REG>, 482 OpSize, Requires<[In64BitMode]>; 483def INC64_32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src1), 484 "inc{l}\t$dst", 485 [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))], 486 IIC_UNARY_REG>, 487 Requires<[In64BitMode]>; 488def DEC64_16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src1), 489 "dec{w}\t$dst", 490 [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))], 491 IIC_UNARY_REG>, 492 OpSize, Requires<[In64BitMode]>; 493def DEC64_32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src1), 494 "dec{l}\t$dst", 495 [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))], 496 IIC_UNARY_REG>, 497 Requires<[In64BitMode]>; 498} // isConvertibleToThreeAddress = 1, CodeSize = 2 499 500let isCodeGenOnly = 1, CodeSize = 2 in { 501def INC32_16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src1), 502 "inc{w}\t$dst", [], IIC_UNARY_REG>, 503 OpSize, Requires<[In32BitMode]>; 504def INC32_32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src1), 505 "inc{l}\t$dst", [], IIC_UNARY_REG>, 506 Requires<[In32BitMode]>; 507def DEC32_16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src1), 508 "dec{w}\t$dst", [], IIC_UNARY_REG>, 509 OpSize, Requires<[In32BitMode]>; 510def DEC32_32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src1), 511 "dec{l}\t$dst", [], IIC_UNARY_REG>, 512 Requires<[In32BitMode]>; 513} // isCodeGenOnly = 1, CodeSize = 2 514 515} // Constraints = "$src1 = $dst", SchedRW 516 517let CodeSize = 2, SchedRW = [WriteALULd, WriteRMW] in { 518 def INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst), "inc{b}\t$dst", 519 [(store (add (loadi8 addr:$dst), 1), addr:$dst), 520 (implicit EFLAGS)], IIC_UNARY_MEM>; 521 def INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst", 522 [(store (add (loadi16 addr:$dst), 1), addr:$dst), 523 (implicit EFLAGS)], IIC_UNARY_MEM>, 524 OpSize, Requires<[In32BitMode]>; 525 def INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst", 526 [(store (add (loadi32 addr:$dst), 1), addr:$dst), 527 (implicit EFLAGS)], IIC_UNARY_MEM>, 528 Requires<[In32BitMode]>; 529 def INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "inc{q}\t$dst", 530 [(store (add (loadi64 addr:$dst), 1), addr:$dst), 531 (implicit EFLAGS)], IIC_UNARY_MEM>; 532 533// These are duplicates of their 32-bit counterparts. Only needed so X86 knows 534// how to unfold them. 535// FIXME: What is this for?? 536def INC64_16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst", 537 [(store (add (loadi16 addr:$dst), 1), addr:$dst), 538 (implicit EFLAGS)], IIC_UNARY_MEM>, 539 OpSize, Requires<[In64BitMode]>; 540def INC64_32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst", 541 [(store (add (loadi32 addr:$dst), 1), addr:$dst), 542 (implicit EFLAGS)], IIC_UNARY_MEM>, 543 Requires<[In64BitMode]>; 544def DEC64_16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst", 545 [(store (add (loadi16 addr:$dst), -1), addr:$dst), 546 (implicit EFLAGS)], IIC_UNARY_MEM>, 547 OpSize, Requires<[In64BitMode]>; 548def DEC64_32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst", 549 [(store (add (loadi32 addr:$dst), -1), addr:$dst), 550 (implicit EFLAGS)], IIC_UNARY_MEM>, 551 Requires<[In64BitMode]>; 552} // CodeSize = 2, SchedRW 553 554let Constraints = "$src1 = $dst", SchedRW = [WriteALU] in { 555let CodeSize = 2 in 556def DEC8r : I<0xFE, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1), 557 "dec{b}\t$dst", 558 [(set GR8:$dst, EFLAGS, (X86dec_flag GR8:$src1))], 559 IIC_UNARY_REG>; 560let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA. 561def DEC16r : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1), 562 "dec{w}\t$dst", 563 [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))], 564 IIC_UNARY_REG>, 565 OpSize, Requires<[In32BitMode]>; 566def DEC32r : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1), 567 "dec{l}\t$dst", 568 [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))], 569 IIC_UNARY_REG>, 570 Requires<[In32BitMode]>; 571def DEC64r : RI<0xFF, MRM1r, (outs GR64:$dst), (ins GR64:$src1), "dec{q}\t$dst", 572 [(set GR64:$dst, EFLAGS, (X86dec_flag GR64:$src1))], 573 IIC_UNARY_REG>; 574} // CodeSize = 2 575} // Constraints = "$src1 = $dst", SchedRW 576 577 578let CodeSize = 2, SchedRW = [WriteALULd, WriteRMW] in { 579 def DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst), "dec{b}\t$dst", 580 [(store (add (loadi8 addr:$dst), -1), addr:$dst), 581 (implicit EFLAGS)], IIC_UNARY_MEM>; 582 def DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst", 583 [(store (add (loadi16 addr:$dst), -1), addr:$dst), 584 (implicit EFLAGS)], IIC_UNARY_MEM>, 585 OpSize, Requires<[In32BitMode]>; 586 def DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst", 587 [(store (add (loadi32 addr:$dst), -1), addr:$dst), 588 (implicit EFLAGS)], IIC_UNARY_MEM>, 589 Requires<[In32BitMode]>; 590 def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", 591 [(store (add (loadi64 addr:$dst), -1), addr:$dst), 592 (implicit EFLAGS)], IIC_UNARY_MEM>; 593} // CodeSize = 2, SchedRW 594} // Defs = [EFLAGS] 595 596/// X86TypeInfo - This is a bunch of information that describes relevant X86 597/// information about value types. For example, it can tell you what the 598/// register class and preferred load to use. 599class X86TypeInfo<ValueType vt, string instrsuffix, RegisterClass regclass, 600 PatFrag loadnode, X86MemOperand memoperand, ImmType immkind, 601 Operand immoperand, SDPatternOperator immoperator, 602 Operand imm8operand, SDPatternOperator imm8operator, 603 bit hasOddOpcode, bit hasOpSizePrefix, bit hasREX_WPrefix> { 604 /// VT - This is the value type itself. 605 ValueType VT = vt; 606 607 /// InstrSuffix - This is the suffix used on instructions with this type. For 608 /// example, i8 -> "b", i16 -> "w", i32 -> "l", i64 -> "q". 609 string InstrSuffix = instrsuffix; 610 611 /// RegClass - This is the register class associated with this type. For 612 /// example, i8 -> GR8, i16 -> GR16, i32 -> GR32, i64 -> GR64. 613 RegisterClass RegClass = regclass; 614 615 /// LoadNode - This is the load node associated with this type. For 616 /// example, i8 -> loadi8, i16 -> loadi16, i32 -> loadi32, i64 -> loadi64. 617 PatFrag LoadNode = loadnode; 618 619 /// MemOperand - This is the memory operand associated with this type. For 620 /// example, i8 -> i8mem, i16 -> i16mem, i32 -> i32mem, i64 -> i64mem. 621 X86MemOperand MemOperand = memoperand; 622 623 /// ImmEncoding - This is the encoding of an immediate of this type. For 624 /// example, i8 -> Imm8, i16 -> Imm16, i32 -> Imm32. Note that i64 -> Imm32 625 /// since the immediate fields of i64 instructions is a 32-bit sign extended 626 /// value. 627 ImmType ImmEncoding = immkind; 628 629 /// ImmOperand - This is the operand kind of an immediate of this type. For 630 /// example, i8 -> i8imm, i16 -> i16imm, i32 -> i32imm. Note that i64 -> 631 /// i64i32imm since the immediate fields of i64 instructions is a 32-bit sign 632 /// extended value. 633 Operand ImmOperand = immoperand; 634 635 /// ImmOperator - This is the operator that should be used to match an 636 /// immediate of this kind in a pattern (e.g. imm, or i64immSExt32). 637 SDPatternOperator ImmOperator = immoperator; 638 639 /// Imm8Operand - This is the operand kind to use for an imm8 of this type. 640 /// For example, i8 -> <invalid>, i16 -> i16i8imm, i32 -> i32i8imm. This is 641 /// only used for instructions that have a sign-extended imm8 field form. 642 Operand Imm8Operand = imm8operand; 643 644 /// Imm8Operator - This is the operator that should be used to match an 8-bit 645 /// sign extended immediate of this kind in a pattern (e.g. imm16immSExt8). 646 SDPatternOperator Imm8Operator = imm8operator; 647 648 /// HasOddOpcode - This bit is true if the instruction should have an odd (as 649 /// opposed to even) opcode. Operations on i8 are usually even, operations on 650 /// other datatypes are odd. 651 bit HasOddOpcode = hasOddOpcode; 652 653 /// HasOpSizePrefix - This bit is set to true if the instruction should have 654 /// the 0x66 operand size prefix. This is set for i16 types. 655 bit HasOpSizePrefix = hasOpSizePrefix; 656 657 /// HasREX_WPrefix - This bit is set to true if the instruction should have 658 /// the 0x40 REX prefix. This is set for i64 types. 659 bit HasREX_WPrefix = hasREX_WPrefix; 660} 661 662def invalid_node : SDNode<"<<invalid_node>>", SDTIntLeaf,[],"<<invalid_node>>">; 663 664 665def Xi8 : X86TypeInfo<i8 , "b", GR8 , loadi8 , i8mem , 666 Imm8 , i8imm , imm, i8imm , invalid_node, 667 0, 0, 0>; 668def Xi16 : X86TypeInfo<i16, "w", GR16, loadi16, i16mem, 669 Imm16, i16imm, imm, i16i8imm, i16immSExt8, 670 1, 1, 0>; 671def Xi32 : X86TypeInfo<i32, "l", GR32, loadi32, i32mem, 672 Imm32, i32imm, imm, i32i8imm, i32immSExt8, 673 1, 0, 0>; 674def Xi64 : X86TypeInfo<i64, "q", GR64, loadi64, i64mem, 675 Imm32, i64i32imm, i64immSExt32, i64i8imm, i64immSExt8, 676 1, 0, 1>; 677 678/// ITy - This instruction base class takes the type info for the instruction. 679/// Using this, it: 680/// 1. Concatenates together the instruction mnemonic with the appropriate 681/// suffix letter, a tab, and the arguments. 682/// 2. Infers whether the instruction should have a 0x66 prefix byte. 683/// 3. Infers whether the instruction should have a 0x40 REX_W prefix. 684/// 4. Infers whether the low bit of the opcode should be 0 (for i8 operations) 685/// or 1 (for i16,i32,i64 operations). 686class ITy<bits<8> opcode, Format f, X86TypeInfo typeinfo, dag outs, dag ins, 687 string mnemonic, string args, list<dag> pattern, 688 InstrItinClass itin = IIC_BIN_NONMEM> 689 : I<{opcode{7}, opcode{6}, opcode{5}, opcode{4}, 690 opcode{3}, opcode{2}, opcode{1}, typeinfo.HasOddOpcode }, 691 f, outs, ins, 692 !strconcat(mnemonic, "{", typeinfo.InstrSuffix, "}\t", args), pattern, 693 itin> { 694 695 // Infer instruction prefixes from type info. 696 let hasOpSizePrefix = typeinfo.HasOpSizePrefix; 697 let hasREX_WPrefix = typeinfo.HasREX_WPrefix; 698} 699 700// BinOpRR - Instructions like "add reg, reg, reg". 701class BinOpRR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 702 dag outlist, list<dag> pattern, InstrItinClass itin, 703 Format f = MRMDestReg> 704 : ITy<opcode, f, typeinfo, outlist, 705 (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2), 706 mnemonic, "{$src2, $src1|$src1, $src2}", pattern, itin>, 707 Sched<[WriteALU]>; 708 709// BinOpRR_R - Instructions like "add reg, reg, reg", where the pattern has 710// just a regclass (no eflags) as a result. 711class BinOpRR_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 712 SDNode opnode> 713 : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), 714 [(set typeinfo.RegClass:$dst, 715 (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))], 716 IIC_BIN_NONMEM>; 717 718// BinOpRR_F - Instructions like "cmp reg, Reg", where the pattern has 719// just a EFLAGS as a result. 720class BinOpRR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 721 SDPatternOperator opnode, Format f = MRMDestReg> 722 : BinOpRR<opcode, mnemonic, typeinfo, (outs), 723 [(set EFLAGS, 724 (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))], 725 IIC_BIN_NONMEM, f>; 726 727// BinOpRR_RF - Instructions like "add reg, reg, reg", where the pattern has 728// both a regclass and EFLAGS as a result. 729class BinOpRR_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 730 SDNode opnode> 731 : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), 732 [(set typeinfo.RegClass:$dst, EFLAGS, 733 (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))], 734 IIC_BIN_NONMEM>; 735 736// BinOpRR_RFF - Instructions like "adc reg, reg, reg", where the pattern has 737// both a regclass and EFLAGS as a result, and has EFLAGS as input. 738class BinOpRR_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 739 SDNode opnode> 740 : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), 741 [(set typeinfo.RegClass:$dst, EFLAGS, 742 (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2, 743 EFLAGS))], IIC_BIN_CARRY_NONMEM>; 744 745// BinOpRR_Rev - Instructions like "add reg, reg, reg" (reversed encoding). 746class BinOpRR_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 747 InstrItinClass itin = IIC_BIN_NONMEM> 748 : ITy<opcode, MRMSrcReg, typeinfo, 749 (outs typeinfo.RegClass:$dst), 750 (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2), 751 mnemonic, "{$src2, $dst|$dst, $src2}", [], itin>, 752 Sched<[WriteALU]> { 753 // The disassembler should know about this, but not the asmparser. 754 let isCodeGenOnly = 1; 755 let hasSideEffects = 0; 756} 757 758// BinOpRR_RDD_Rev - Instructions like "adc reg, reg, reg" (reversed encoding). 759class BinOpRR_RFF_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo> 760 : BinOpRR_Rev<opcode, mnemonic, typeinfo, IIC_BIN_CARRY_NONMEM>; 761 762// BinOpRR_F_Rev - Instructions like "cmp reg, reg" (reversed encoding). 763class BinOpRR_F_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo> 764 : ITy<opcode, MRMSrcReg, typeinfo, (outs), 765 (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2), 766 mnemonic, "{$src2, $src1|$src1, $src2}", [], IIC_BIN_NONMEM>, 767 Sched<[WriteALU]> { 768 // The disassembler should know about this, but not the asmparser. 769 let isCodeGenOnly = 1; 770 let hasSideEffects = 0; 771} 772 773// BinOpRM - Instructions like "add reg, reg, [mem]". 774class BinOpRM<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 775 dag outlist, list<dag> pattern, 776 InstrItinClass itin = IIC_BIN_MEM> 777 : ITy<opcode, MRMSrcMem, typeinfo, outlist, 778 (ins typeinfo.RegClass:$src1, typeinfo.MemOperand:$src2), 779 mnemonic, "{$src2, $src1|$src1, $src2}", pattern, itin>, 780 Sched<[WriteALULd, ReadAfterLd]>; 781 782// BinOpRM_R - Instructions like "add reg, reg, [mem]". 783class BinOpRM_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 784 SDNode opnode> 785 : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), 786 [(set typeinfo.RegClass:$dst, 787 (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>; 788 789// BinOpRM_F - Instructions like "cmp reg, [mem]". 790class BinOpRM_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 791 SDPatternOperator opnode> 792 : BinOpRM<opcode, mnemonic, typeinfo, (outs), 793 [(set EFLAGS, 794 (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>; 795 796// BinOpRM_RF - Instructions like "add reg, reg, [mem]". 797class BinOpRM_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 798 SDNode opnode> 799 : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), 800 [(set typeinfo.RegClass:$dst, EFLAGS, 801 (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>; 802 803// BinOpRM_RFF - Instructions like "adc reg, reg, [mem]". 804class BinOpRM_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 805 SDNode opnode> 806 : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), 807 [(set typeinfo.RegClass:$dst, EFLAGS, 808 (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2), 809 EFLAGS))], IIC_BIN_CARRY_MEM>; 810 811// BinOpRI - Instructions like "add reg, reg, imm". 812class BinOpRI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 813 Format f, dag outlist, list<dag> pattern, 814 InstrItinClass itin = IIC_BIN_NONMEM> 815 : ITy<opcode, f, typeinfo, outlist, 816 (ins typeinfo.RegClass:$src1, typeinfo.ImmOperand:$src2), 817 mnemonic, "{$src2, $src1|$src1, $src2}", pattern, itin>, 818 Sched<[WriteALU]> { 819 let ImmT = typeinfo.ImmEncoding; 820} 821 822// BinOpRI_R - Instructions like "add reg, reg, imm". 823class BinOpRI_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 824 SDNode opnode, Format f> 825 : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), 826 [(set typeinfo.RegClass:$dst, 827 (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>; 828 829// BinOpRI_F - Instructions like "cmp reg, imm". 830class BinOpRI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 831 SDPatternOperator opnode, Format f> 832 : BinOpRI<opcode, mnemonic, typeinfo, f, (outs), 833 [(set EFLAGS, 834 (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>; 835 836// BinOpRI_RF - Instructions like "add reg, reg, imm". 837class BinOpRI_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 838 SDNode opnode, Format f> 839 : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), 840 [(set typeinfo.RegClass:$dst, EFLAGS, 841 (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>; 842// BinOpRI_RFF - Instructions like "adc reg, reg, imm". 843class BinOpRI_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 844 SDNode opnode, Format f> 845 : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), 846 [(set typeinfo.RegClass:$dst, EFLAGS, 847 (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2, 848 EFLAGS))], IIC_BIN_CARRY_NONMEM>; 849 850// BinOpRI8 - Instructions like "add reg, reg, imm8". 851class BinOpRI8<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 852 Format f, dag outlist, list<dag> pattern, 853 InstrItinClass itin = IIC_BIN_NONMEM> 854 : ITy<opcode, f, typeinfo, outlist, 855 (ins typeinfo.RegClass:$src1, typeinfo.Imm8Operand:$src2), 856 mnemonic, "{$src2, $src1|$src1, $src2}", pattern, itin>, 857 Sched<[WriteALU]> { 858 let ImmT = Imm8; // Always 8-bit immediate. 859} 860 861// BinOpRI8_R - Instructions like "add reg, reg, imm8". 862class BinOpRI8_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 863 SDNode opnode, Format f> 864 : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), 865 [(set typeinfo.RegClass:$dst, 866 (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>; 867 868// BinOpRI8_F - Instructions like "cmp reg, imm8". 869class BinOpRI8_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 870 SDNode opnode, Format f> 871 : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs), 872 [(set EFLAGS, 873 (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>; 874 875// BinOpRI8_RF - Instructions like "add reg, reg, imm8". 876class BinOpRI8_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 877 SDNode opnode, Format f> 878 : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), 879 [(set typeinfo.RegClass:$dst, EFLAGS, 880 (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>; 881 882// BinOpRI8_RFF - Instructions like "adc reg, reg, imm8". 883class BinOpRI8_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 884 SDNode opnode, Format f> 885 : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), 886 [(set typeinfo.RegClass:$dst, EFLAGS, 887 (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2, 888 EFLAGS))], IIC_BIN_CARRY_NONMEM>; 889 890// BinOpMR - Instructions like "add [mem], reg". 891class BinOpMR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 892 list<dag> pattern, InstrItinClass itin = IIC_BIN_MEM> 893 : ITy<opcode, MRMDestMem, typeinfo, 894 (outs), (ins typeinfo.MemOperand:$dst, typeinfo.RegClass:$src), 895 mnemonic, "{$src, $dst|$dst, $src}", pattern, itin>, 896 Sched<[WriteALULd, WriteRMW]>; 897 898// BinOpMR_RMW - Instructions like "add [mem], reg". 899class BinOpMR_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 900 SDNode opnode> 901 : BinOpMR<opcode, mnemonic, typeinfo, 902 [(store (opnode (load addr:$dst), typeinfo.RegClass:$src), addr:$dst), 903 (implicit EFLAGS)]>; 904 905// BinOpMR_RMW_FF - Instructions like "adc [mem], reg". 906class BinOpMR_RMW_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 907 SDNode opnode> 908 : BinOpMR<opcode, mnemonic, typeinfo, 909 [(store (opnode (load addr:$dst), typeinfo.RegClass:$src, EFLAGS), 910 addr:$dst), 911 (implicit EFLAGS)], IIC_BIN_CARRY_MEM>; 912 913// BinOpMR_F - Instructions like "cmp [mem], reg". 914class BinOpMR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 915 SDNode opnode> 916 : BinOpMR<opcode, mnemonic, typeinfo, 917 [(set EFLAGS, (opnode (load addr:$dst), typeinfo.RegClass:$src))]>; 918 919// BinOpMI - Instructions like "add [mem], imm". 920class BinOpMI<string mnemonic, X86TypeInfo typeinfo, 921 Format f, list<dag> pattern, bits<8> opcode = 0x80, 922 InstrItinClass itin = IIC_BIN_MEM> 923 : ITy<opcode, f, typeinfo, 924 (outs), (ins typeinfo.MemOperand:$dst, typeinfo.ImmOperand:$src), 925 mnemonic, "{$src, $dst|$dst, $src}", pattern, itin>, 926 Sched<[WriteALULd, WriteRMW]> { 927 let ImmT = typeinfo.ImmEncoding; 928} 929 930// BinOpMI_RMW - Instructions like "add [mem], imm". 931class BinOpMI_RMW<string mnemonic, X86TypeInfo typeinfo, 932 SDNode opnode, Format f> 933 : BinOpMI<mnemonic, typeinfo, f, 934 [(store (opnode (typeinfo.VT (load addr:$dst)), 935 typeinfo.ImmOperator:$src), addr:$dst), 936 (implicit EFLAGS)]>; 937// BinOpMI_RMW_FF - Instructions like "adc [mem], imm". 938class BinOpMI_RMW_FF<string mnemonic, X86TypeInfo typeinfo, 939 SDNode opnode, Format f> 940 : BinOpMI<mnemonic, typeinfo, f, 941 [(store (opnode (typeinfo.VT (load addr:$dst)), 942 typeinfo.ImmOperator:$src, EFLAGS), addr:$dst), 943 (implicit EFLAGS)], 0x80, IIC_BIN_CARRY_MEM>; 944 945// BinOpMI_F - Instructions like "cmp [mem], imm". 946class BinOpMI_F<string mnemonic, X86TypeInfo typeinfo, 947 SDPatternOperator opnode, Format f, bits<8> opcode = 0x80> 948 : BinOpMI<mnemonic, typeinfo, f, 949 [(set EFLAGS, (opnode (typeinfo.VT (load addr:$dst)), 950 typeinfo.ImmOperator:$src))], 951 opcode>; 952 953// BinOpMI8 - Instructions like "add [mem], imm8". 954class BinOpMI8<string mnemonic, X86TypeInfo typeinfo, 955 Format f, list<dag> pattern, 956 InstrItinClass itin = IIC_BIN_MEM> 957 : ITy<0x82, f, typeinfo, 958 (outs), (ins typeinfo.MemOperand:$dst, typeinfo.Imm8Operand:$src), 959 mnemonic, "{$src, $dst|$dst, $src}", pattern, itin>, 960 Sched<[WriteALULd, WriteRMW]> { 961 let ImmT = Imm8; // Always 8-bit immediate. 962} 963 964// BinOpMI8_RMW - Instructions like "add [mem], imm8". 965class BinOpMI8_RMW<string mnemonic, X86TypeInfo typeinfo, 966 SDNode opnode, Format f> 967 : BinOpMI8<mnemonic, typeinfo, f, 968 [(store (opnode (load addr:$dst), 969 typeinfo.Imm8Operator:$src), addr:$dst), 970 (implicit EFLAGS)]>; 971 972// BinOpMI8_RMW_FF - Instructions like "adc [mem], imm8". 973class BinOpMI8_RMW_FF<string mnemonic, X86TypeInfo typeinfo, 974 SDNode opnode, Format f> 975 : BinOpMI8<mnemonic, typeinfo, f, 976 [(store (opnode (load addr:$dst), 977 typeinfo.Imm8Operator:$src, EFLAGS), addr:$dst), 978 (implicit EFLAGS)], IIC_BIN_CARRY_MEM>; 979 980// BinOpMI8_F - Instructions like "cmp [mem], imm8". 981class BinOpMI8_F<string mnemonic, X86TypeInfo typeinfo, 982 SDNode opnode, Format f> 983 : BinOpMI8<mnemonic, typeinfo, f, 984 [(set EFLAGS, (opnode (load addr:$dst), 985 typeinfo.Imm8Operator:$src))]>; 986 987// BinOpAI - Instructions like "add %eax, %eax, imm", that imp-def EFLAGS. 988class BinOpAI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 989 Register areg, string operands, 990 InstrItinClass itin = IIC_BIN_NONMEM> 991 : ITy<opcode, RawFrm, typeinfo, 992 (outs), (ins typeinfo.ImmOperand:$src), 993 mnemonic, operands, [], itin>, Sched<[WriteALU]> { 994 let ImmT = typeinfo.ImmEncoding; 995 let Uses = [areg]; 996 let Defs = [areg, EFLAGS]; 997 let hasSideEffects = 0; 998} 999 1000// BinOpAI_FF - Instructions like "adc %eax, %eax, imm", that implicitly define 1001// and use EFLAGS. 1002class BinOpAI_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, 1003 Register areg, string operands> 1004 : BinOpAI<opcode, mnemonic, typeinfo, areg, operands, 1005 IIC_BIN_CARRY_NONMEM> { 1006 let Uses = [areg, EFLAGS]; 1007} 1008 1009/// ArithBinOp_RF - This is an arithmetic binary operator where the pattern is 1010/// defined with "(set GPR:$dst, EFLAGS, (...". 1011/// 1012/// It would be nice to get rid of the second and third argument here, but 1013/// tblgen can't handle dependent type references aggressively enough: PR8330 1014multiclass ArithBinOp_RF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4, 1015 string mnemonic, Format RegMRM, Format MemMRM, 1016 SDNode opnodeflag, SDNode opnode, 1017 bit CommutableRR, bit ConvertibleToThreeAddress> { 1018 let Defs = [EFLAGS] in { 1019 let Constraints = "$src1 = $dst" in { 1020 let isCommutable = CommutableRR, 1021 isConvertibleToThreeAddress = ConvertibleToThreeAddress in { 1022 def NAME#8rr : BinOpRR_RF<BaseOpc, mnemonic, Xi8 , opnodeflag>; 1023 def NAME#16rr : BinOpRR_RF<BaseOpc, mnemonic, Xi16, opnodeflag>; 1024 def NAME#32rr : BinOpRR_RF<BaseOpc, mnemonic, Xi32, opnodeflag>; 1025 def NAME#64rr : BinOpRR_RF<BaseOpc, mnemonic, Xi64, opnodeflag>; 1026 } // isCommutable 1027 1028 def NAME#8rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>; 1029 def NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>; 1030 def NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>; 1031 def NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>; 1032 1033 def NAME#8rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi8 , opnodeflag>; 1034 def NAME#16rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi16, opnodeflag>; 1035 def NAME#32rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi32, opnodeflag>; 1036 def NAME#64rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi64, opnodeflag>; 1037 1038 let isConvertibleToThreeAddress = ConvertibleToThreeAddress in { 1039 // NOTE: These are order specific, we want the ri8 forms to be listed 1040 // first so that they are slightly preferred to the ri forms. 1041 def NAME#16ri8 : BinOpRI8_RF<0x82, mnemonic, Xi16, opnodeflag, RegMRM>; 1042 def NAME#32ri8 : BinOpRI8_RF<0x82, mnemonic, Xi32, opnodeflag, RegMRM>; 1043 def NAME#64ri8 : BinOpRI8_RF<0x82, mnemonic, Xi64, opnodeflag, RegMRM>; 1044 1045…
Large files files are truncated, but you can click here to view the full file