/3rd_party/llvm/utils/TableGen/CodeGenDAGPatterns.cpp
https://code.google.com/p/softart/ · C++ · 3598 lines · 2441 code · 551 blank · 606 comment · 992 complexity · 50d18ca4d9763c33a656f73137f5068a MD5 · raw file
Large files are truncated click here to view the full file
- //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the CodeGenDAGPatterns class, which is used to read and
- // represent the patterns present in a .td file for instructions.
- //
- //===----------------------------------------------------------------------===//
- #include "CodeGenDAGPatterns.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/ADT/Twine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/TableGen/Error.h"
- #include "llvm/TableGen/Record.h"
- #include <algorithm>
- #include <cstdio>
- #include <set>
- using namespace llvm;
- //===----------------------------------------------------------------------===//
- // EEVT::TypeSet Implementation
- //===----------------------------------------------------------------------===//
- static inline bool isInteger(MVT::SimpleValueType VT) {
- return MVT(VT).isInteger();
- }
- static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
- return MVT(VT).isFloatingPoint();
- }
- static inline bool isVector(MVT::SimpleValueType VT) {
- return MVT(VT).isVector();
- }
- static inline bool isScalar(MVT::SimpleValueType VT) {
- return !MVT(VT).isVector();
- }
- EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
- if (VT == MVT::iAny)
- EnforceInteger(TP);
- else if (VT == MVT::fAny)
- EnforceFloatingPoint(TP);
- else if (VT == MVT::vAny)
- EnforceVector(TP);
- else {
- assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
- VT == MVT::iPTRAny) && "Not a concrete type!");
- TypeVec.push_back(VT);
- }
- }
- EEVT::TypeSet::TypeSet(ArrayRef<MVT::SimpleValueType> VTList) {
- assert(!VTList.empty() && "empty list?");
- TypeVec.append(VTList.begin(), VTList.end());
- if (!VTList.empty())
- assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
- VTList[0] != MVT::fAny);
- // Verify no duplicates.
- array_pod_sort(TypeVec.begin(), TypeVec.end());
- assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
- }
- /// FillWithPossibleTypes - Set to all legal types and return true, only valid
- /// on completely unknown type sets.
- bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
- bool (*Pred)(MVT::SimpleValueType),
- const char *PredicateName) {
- assert(isCompletelyUnknown());
- ArrayRef<MVT::SimpleValueType> LegalTypes =
- TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
- if (TP.hasError())
- return false;
- for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i)
- if (Pred == 0 || Pred(LegalTypes[i]))
- TypeVec.push_back(LegalTypes[i]);
- // If we have nothing that matches the predicate, bail out.
- if (TypeVec.empty()) {
- TP.error("Type inference contradiction found, no " +
- std::string(PredicateName) + " types found");
- return false;
- }
- // No need to sort with one element.
- if (TypeVec.size() == 1) return true;
- // Remove duplicates.
- array_pod_sort(TypeVec.begin(), TypeVec.end());
- TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
- return true;
- }
- /// hasIntegerTypes - Return true if this TypeSet contains iAny or an
- /// integer value type.
- bool EEVT::TypeSet::hasIntegerTypes() const {
- for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
- if (isInteger(TypeVec[i]))
- return true;
- return false;
- }
- /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
- /// a floating point value type.
- bool EEVT::TypeSet::hasFloatingPointTypes() const {
- for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
- if (isFloatingPoint(TypeVec[i]))
- return true;
- return false;
- }
- /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
- /// value type.
- bool EEVT::TypeSet::hasVectorTypes() const {
- for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
- if (isVector(TypeVec[i]))
- return true;
- return false;
- }
- std::string EEVT::TypeSet::getName() const {
- if (TypeVec.empty()) return "<empty>";
- std::string Result;
- for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
- std::string VTName = llvm::getEnumName(TypeVec[i]);
- // Strip off MVT:: prefix if present.
- if (VTName.substr(0,5) == "MVT::")
- VTName = VTName.substr(5);
- if (i) Result += ':';
- Result += VTName;
- }
- if (TypeVec.size() == 1)
- return Result;
- return "{" + Result + "}";
- }
- /// MergeInTypeInfo - This merges in type information from the specified
- /// argument. If 'this' changes, it returns true. If the two types are
- /// contradictory (e.g. merge f32 into i32) then this flags an error.
- bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
- if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError())
- return false;
- if (isCompletelyUnknown()) {
- *this = InVT;
- return true;
- }
- assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns");
- // Handle the abstract cases, seeing if we can resolve them better.
- switch (TypeVec[0]) {
- default: break;
- case MVT::iPTR:
- case MVT::iPTRAny:
- if (InVT.hasIntegerTypes()) {
- EEVT::TypeSet InCopy(InVT);
- InCopy.EnforceInteger(TP);
- InCopy.EnforceScalar(TP);
- if (InCopy.isConcrete()) {
- // If the RHS has one integer type, upgrade iPTR to i32.
- TypeVec[0] = InVT.TypeVec[0];
- return true;
- }
- // If the input has multiple scalar integers, this doesn't add any info.
- if (!InCopy.isCompletelyUnknown())
- return false;
- }
- break;
- }
- // If the input constraint is iAny/iPTR and this is an integer type list,
- // remove non-integer types from the list.
- if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
- hasIntegerTypes()) {
- bool MadeChange = EnforceInteger(TP);
- // If we're merging in iPTR/iPTRAny and the node currently has a list of
- // multiple different integer types, replace them with a single iPTR.
- if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
- TypeVec.size() != 1) {
- TypeVec.resize(1);
- TypeVec[0] = InVT.TypeVec[0];
- MadeChange = true;
- }
- return MadeChange;
- }
- // If this is a type list and the RHS is a typelist as well, eliminate entries
- // from this list that aren't in the other one.
- bool MadeChange = false;
- TypeSet InputSet(*this);
- for (unsigned i = 0; i != TypeVec.size(); ++i) {
- bool InInVT = false;
- for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j)
- if (TypeVec[i] == InVT.TypeVec[j]) {
- InInVT = true;
- break;
- }
- if (InInVT) continue;
- TypeVec.erase(TypeVec.begin()+i--);
- MadeChange = true;
- }
- // If we removed all of our types, we have a type contradiction.
- if (!TypeVec.empty())
- return MadeChange;
- // FIXME: Really want an SMLoc here!
- TP.error("Type inference contradiction found, merging '" +
- InVT.getName() + "' into '" + InputSet.getName() + "'");
- return false;
- }
- /// EnforceInteger - Remove all non-integer types from this set.
- bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
- if (TP.hasError())
- return false;
- // If we know nothing, then get the full set.
- if (TypeVec.empty())
- return FillWithPossibleTypes(TP, isInteger, "integer");
- if (!hasFloatingPointTypes())
- return false;
- TypeSet InputSet(*this);
- // Filter out all the fp types.
- for (unsigned i = 0; i != TypeVec.size(); ++i)
- if (!isInteger(TypeVec[i]))
- TypeVec.erase(TypeVec.begin()+i--);
- if (TypeVec.empty()) {
- TP.error("Type inference contradiction found, '" +
- InputSet.getName() + "' needs to be integer");
- return false;
- }
- return true;
- }
- /// EnforceFloatingPoint - Remove all integer types from this set.
- bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
- if (TP.hasError())
- return false;
- // If we know nothing, then get the full set.
- if (TypeVec.empty())
- return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
- if (!hasIntegerTypes())
- return false;
- TypeSet InputSet(*this);
- // Filter out all the fp types.
- for (unsigned i = 0; i != TypeVec.size(); ++i)
- if (!isFloatingPoint(TypeVec[i]))
- TypeVec.erase(TypeVec.begin()+i--);
- if (TypeVec.empty()) {
- TP.error("Type inference contradiction found, '" +
- InputSet.getName() + "' needs to be floating point");
- return false;
- }
- return true;
- }
- /// EnforceScalar - Remove all vector types from this.
- bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
- if (TP.hasError())
- return false;
- // If we know nothing, then get the full set.
- if (TypeVec.empty())
- return FillWithPossibleTypes(TP, isScalar, "scalar");
- if (!hasVectorTypes())
- return false;
- TypeSet InputSet(*this);
- // Filter out all the vector types.
- for (unsigned i = 0; i != TypeVec.size(); ++i)
- if (!isScalar(TypeVec[i]))
- TypeVec.erase(TypeVec.begin()+i--);
- if (TypeVec.empty()) {
- TP.error("Type inference contradiction found, '" +
- InputSet.getName() + "' needs to be scalar");
- return false;
- }
- return true;
- }
- /// EnforceVector - Remove all vector types from this.
- bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
- if (TP.hasError())
- return false;
- // If we know nothing, then get the full set.
- if (TypeVec.empty())
- return FillWithPossibleTypes(TP, isVector, "vector");
- TypeSet InputSet(*this);
- bool MadeChange = false;
- // Filter out all the scalar types.
- for (unsigned i = 0; i != TypeVec.size(); ++i)
- if (!isVector(TypeVec[i])) {
- TypeVec.erase(TypeVec.begin()+i--);
- MadeChange = true;
- }
- if (TypeVec.empty()) {
- TP.error("Type inference contradiction found, '" +
- InputSet.getName() + "' needs to be a vector");
- return false;
- }
- return MadeChange;
- }
- /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update
- /// this an other based on this information.
- bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
- if (TP.hasError())
- return false;
- // Both operands must be integer or FP, but we don't care which.
- bool MadeChange = false;
- if (isCompletelyUnknown())
- MadeChange = FillWithPossibleTypes(TP);
- if (Other.isCompletelyUnknown())
- MadeChange = Other.FillWithPossibleTypes(TP);
- // If one side is known to be integer or known to be FP but the other side has
- // no information, get at least the type integrality info in there.
- if (!hasFloatingPointTypes())
- MadeChange |= Other.EnforceInteger(TP);
- else if (!hasIntegerTypes())
- MadeChange |= Other.EnforceFloatingPoint(TP);
- if (!Other.hasFloatingPointTypes())
- MadeChange |= EnforceInteger(TP);
- else if (!Other.hasIntegerTypes())
- MadeChange |= EnforceFloatingPoint(TP);
- assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
- "Should have a type list now");
- // If one contains vectors but the other doesn't pull vectors out.
- if (!hasVectorTypes())
- MadeChange |= Other.EnforceScalar(TP);
- if (!hasVectorTypes())
- MadeChange |= EnforceScalar(TP);
- if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) {
- // If we are down to concrete types, this code does not currently
- // handle nodes which have multiple types, where some types are
- // integer, and some are fp. Assert that this is not the case.
- assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
- !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
- "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
- // Otherwise, if these are both vector types, either this vector
- // must have a larger bitsize than the other, or this element type
- // must be larger than the other.
- MVT Type(TypeVec[0]);
- MVT OtherType(Other.TypeVec[0]);
- if (hasVectorTypes() && Other.hasVectorTypes()) {
- if (Type.getSizeInBits() >= OtherType.getSizeInBits())
- if (Type.getVectorElementType().getSizeInBits()
- >= OtherType.getVectorElementType().getSizeInBits()) {
- TP.error("Type inference contradiction found, '" +
- getName() + "' element type not smaller than '" +
- Other.getName() +"'!");
- return false;
- }
- } else
- // For scalar types, the bitsize of this type must be larger
- // than that of the other.
- if (Type.getSizeInBits() >= OtherType.getSizeInBits()) {
- TP.error("Type inference contradiction found, '" +
- getName() + "' is not smaller than '" +
- Other.getName() +"'!");
- return false;
- }
- }
-
- // Handle int and fp as disjoint sets. This won't work for patterns
- // that have mixed fp/int types but those are likely rare and would
- // not have been accepted by this code previously.
- // Okay, find the smallest type from the current set and remove it from the
- // largest set.
- MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE;
- for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
- if (isInteger(TypeVec[i])) {
- SmallestInt = TypeVec[i];
- break;
- }
- for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
- if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt)
- SmallestInt = TypeVec[i];
- MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE;
- for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
- if (isFloatingPoint(TypeVec[i])) {
- SmallestFP = TypeVec[i];
- break;
- }
- for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
- if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP)
- SmallestFP = TypeVec[i];
- int OtherIntSize = 0;
- int OtherFPSize = 0;
- for (SmallVectorImpl<MVT::SimpleValueType>::iterator TVI =
- Other.TypeVec.begin();
- TVI != Other.TypeVec.end();
- /* NULL */) {
- if (isInteger(*TVI)) {
- ++OtherIntSize;
- if (*TVI == SmallestInt) {
- TVI = Other.TypeVec.erase(TVI);
- --OtherIntSize;
- MadeChange = true;
- continue;
- }
- } else if (isFloatingPoint(*TVI)) {
- ++OtherFPSize;
- if (*TVI == SmallestFP) {
- TVI = Other.TypeVec.erase(TVI);
- --OtherFPSize;
- MadeChange = true;
- continue;
- }
- }
- ++TVI;
- }
- // If this is the only type in the large set, the constraint can never be
- // satisfied.
- if ((Other.hasIntegerTypes() && OtherIntSize == 0) ||
- (Other.hasFloatingPointTypes() && OtherFPSize == 0)) {
- TP.error("Type inference contradiction found, '" +
- Other.getName() + "' has nothing larger than '" + getName() +"'!");
- return false;
- }
- // Okay, find the largest type in the Other set and remove it from the
- // current set.
- MVT::SimpleValueType LargestInt = MVT::Other;
- for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
- if (isInteger(Other.TypeVec[i])) {
- LargestInt = Other.TypeVec[i];
- break;
- }
- for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
- if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt)
- LargestInt = Other.TypeVec[i];
- MVT::SimpleValueType LargestFP = MVT::Other;
- for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
- if (isFloatingPoint(Other.TypeVec[i])) {
- LargestFP = Other.TypeVec[i];
- break;
- }
- for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
- if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP)
- LargestFP = Other.TypeVec[i];
- int IntSize = 0;
- int FPSize = 0;
- for (SmallVectorImpl<MVT::SimpleValueType>::iterator TVI =
- TypeVec.begin();
- TVI != TypeVec.end();
- /* NULL */) {
- if (isInteger(*TVI)) {
- ++IntSize;
- if (*TVI == LargestInt) {
- TVI = TypeVec.erase(TVI);
- --IntSize;
- MadeChange = true;
- continue;
- }
- } else if (isFloatingPoint(*TVI)) {
- ++FPSize;
- if (*TVI == LargestFP) {
- TVI = TypeVec.erase(TVI);
- --FPSize;
- MadeChange = true;
- continue;
- }
- }
- ++TVI;
- }
- // If this is the only type in the small set, the constraint can never be
- // satisfied.
- if ((hasIntegerTypes() && IntSize == 0) ||
- (hasFloatingPointTypes() && FPSize == 0)) {
- TP.error("Type inference contradiction found, '" +
- getName() + "' has nothing smaller than '" + Other.getName()+"'!");
- return false;
- }
- return MadeChange;
- }
- /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
- /// whose element is specified by VTOperand.
- bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
- TreePattern &TP) {
- if (TP.hasError())
- return false;
- // "This" must be a vector and "VTOperand" must be a scalar.
- bool MadeChange = false;
- MadeChange |= EnforceVector(TP);
- MadeChange |= VTOperand.EnforceScalar(TP);
- // If we know the vector type, it forces the scalar to agree.
- if (isConcrete()) {
- MVT IVT = getConcrete();
- IVT = IVT.getVectorElementType();
- return MadeChange |
- VTOperand.MergeInTypeInfo(IVT.SimpleTy, TP);
- }
- // If the scalar type is known, filter out vector types whose element types
- // disagree.
- if (!VTOperand.isConcrete())
- return MadeChange;
- MVT::SimpleValueType VT = VTOperand.getConcrete();
- TypeSet InputSet(*this);
- // Filter out all the types which don't have the right element type.
- for (unsigned i = 0; i != TypeVec.size(); ++i) {
- assert(isVector(TypeVec[i]) && "EnforceVector didn't work");
- if (MVT(TypeVec[i]).getVectorElementType().SimpleTy != VT) {
- TypeVec.erase(TypeVec.begin()+i--);
- MadeChange = true;
- }
- }
- if (TypeVec.empty()) { // FIXME: Really want an SMLoc here!
- TP.error("Type inference contradiction found, forcing '" +
- InputSet.getName() + "' to have a vector element");
- return false;
- }
- return MadeChange;
- }
- /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a
- /// vector type specified by VTOperand.
- bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
- TreePattern &TP) {
- // "This" must be a vector and "VTOperand" must be a vector.
- bool MadeChange = false;
- MadeChange |= EnforceVector(TP);
- MadeChange |= VTOperand.EnforceVector(TP);
- // "This" must be larger than "VTOperand."
- MadeChange |= VTOperand.EnforceSmallerThan(*this, TP);
- // If we know the vector type, it forces the scalar types to agree.
- if (isConcrete()) {
- MVT IVT = getConcrete();
- IVT = IVT.getVectorElementType();
- EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP);
- MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
- } else if (VTOperand.isConcrete()) {
- MVT IVT = VTOperand.getConcrete();
- IVT = IVT.getVectorElementType();
- EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP);
- MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
- }
- return MadeChange;
- }
- //===----------------------------------------------------------------------===//
- // Helpers for working with extended types.
- /// Dependent variable map for CodeGenDAGPattern variant generation
- typedef std::map<std::string, int> DepVarMap;
- /// Const iterator shorthand for DepVarMap
- typedef DepVarMap::const_iterator DepVarMap_citer;
- static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
- if (N->isLeaf()) {
- if (isa<DefInit>(N->getLeafValue()))
- DepMap[N->getName()]++;
- } else {
- for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
- FindDepVarsOf(N->getChild(i), DepMap);
- }
- }
-
- /// Find dependent variables within child patterns
- static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
- DepVarMap depcounts;
- FindDepVarsOf(N, depcounts);
- for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
- if (i->second > 1) // std::pair<std::string, int>
- DepVars.insert(i->first);
- }
- }
- #ifndef NDEBUG
- /// Dump the dependent variable set:
- static void DumpDepVars(MultipleUseVarSet &DepVars) {
- if (DepVars.empty()) {
- DEBUG(errs() << "<empty set>");
- } else {
- DEBUG(errs() << "[ ");
- for (MultipleUseVarSet::const_iterator i = DepVars.begin(),
- e = DepVars.end(); i != e; ++i) {
- DEBUG(errs() << (*i) << " ");
- }
- DEBUG(errs() << "]");
- }
- }
- #endif
- //===----------------------------------------------------------------------===//
- // TreePredicateFn Implementation
- //===----------------------------------------------------------------------===//
- /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
- TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
- assert((getPredCode().empty() || getImmCode().empty()) &&
- ".td file corrupt: can't have a node predicate *and* an imm predicate");
- }
- std::string TreePredicateFn::getPredCode() const {
- return PatFragRec->getRecord()->getValueAsString("PredicateCode");
- }
- std::string TreePredicateFn::getImmCode() const {
- return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
- }
- /// isAlwaysTrue - Return true if this is a noop predicate.
- bool TreePredicateFn::isAlwaysTrue() const {
- return getPredCode().empty() && getImmCode().empty();
- }
- /// Return the name to use in the generated code to reference this, this is
- /// "Predicate_foo" if from a pattern fragment "foo".
- std::string TreePredicateFn::getFnName() const {
- return "Predicate_" + PatFragRec->getRecord()->getName();
- }
- /// getCodeToRunOnSDNode - Return the code for the function body that
- /// evaluates this predicate. The argument is expected to be in "Node",
- /// not N. This handles casting and conversion to a concrete node type as
- /// appropriate.
- std::string TreePredicateFn::getCodeToRunOnSDNode() const {
- // Handle immediate predicates first.
- std::string ImmCode = getImmCode();
- if (!ImmCode.empty()) {
- std::string Result =
- " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
- return Result + ImmCode;
- }
-
- // Handle arbitrary node predicates.
- assert(!getPredCode().empty() && "Don't have any predicate code!");
- std::string ClassName;
- if (PatFragRec->getOnlyTree()->isLeaf())
- ClassName = "SDNode";
- else {
- Record *Op = PatFragRec->getOnlyTree()->getOperator();
- ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
- }
- std::string Result;
- if (ClassName == "SDNode")
- Result = " SDNode *N = Node;\n";
- else
- Result = " " + ClassName + "*N = cast<" + ClassName + ">(Node);\n";
-
- return Result + getPredCode();
- }
- //===----------------------------------------------------------------------===//
- // PatternToMatch implementation
- //
- /// getPatternSize - Return the 'size' of this pattern. We want to match large
- /// patterns before small ones. This is used to determine the size of a
- /// pattern.
- static unsigned getPatternSize(const TreePatternNode *P,
- const CodeGenDAGPatterns &CGP) {
- unsigned Size = 3; // The node itself.
- // If the root node is a ConstantSDNode, increases its size.
- // e.g. (set R32:$dst, 0).
- if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
- Size += 2;
- // FIXME: This is a hack to statically increase the priority of patterns
- // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
- // Later we can allow complexity / cost for each pattern to be (optionally)
- // specified. To get best possible pattern match we'll need to dynamically
- // calculate the complexity of all patterns a dag can potentially map to.
- const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
- if (AM)
- Size += AM->getNumOperands() * 3;
- // If this node has some predicate function that must match, it adds to the
- // complexity of this node.
- if (!P->getPredicateFns().empty())
- ++Size;
- // Count children in the count if they are also nodes.
- for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
- TreePatternNode *Child = P->getChild(i);
- if (!Child->isLeaf() && Child->getNumTypes() &&
- Child->getType(0) != MVT::Other)
- Size += getPatternSize(Child, CGP);
- else if (Child->isLeaf()) {
- if (isa<IntInit>(Child->getLeafValue()))
- Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
- else if (Child->getComplexPatternInfo(CGP))
- Size += getPatternSize(Child, CGP);
- else if (!Child->getPredicateFns().empty())
- ++Size;
- }
- }
- return Size;
- }
- /// Compute the complexity metric for the input pattern. This roughly
- /// corresponds to the number of nodes that are covered.
- unsigned PatternToMatch::
- getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
- return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
- }
- /// getPredicateCheck - Return a single string containing all of this
- /// pattern's predicates concatenated with "&&" operators.
- ///
- std::string PatternToMatch::getPredicateCheck() const {
- std::string PredicateCheck;
- for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
- if (DefInit *Pred = dyn_cast<DefInit>(Predicates->getElement(i))) {
- Record *Def = Pred->getDef();
- if (!Def->isSubClassOf("Predicate")) {
- #ifndef NDEBUG
- Def->dump();
- #endif
- llvm_unreachable("Unknown predicate type!");
- }
- if (!PredicateCheck.empty())
- PredicateCheck += " && ";
- PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
- }
- }
- return PredicateCheck;
- }
- //===----------------------------------------------------------------------===//
- // SDTypeConstraint implementation
- //
- SDTypeConstraint::SDTypeConstraint(Record *R) {
- OperandNo = R->getValueAsInt("OperandNum");
- if (R->isSubClassOf("SDTCisVT")) {
- ConstraintType = SDTCisVT;
- x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
- if (x.SDTCisVT_Info.VT == MVT::isVoid)
- PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
- } else if (R->isSubClassOf("SDTCisPtrTy")) {
- ConstraintType = SDTCisPtrTy;
- } else if (R->isSubClassOf("SDTCisInt")) {
- ConstraintType = SDTCisInt;
- } else if (R->isSubClassOf("SDTCisFP")) {
- ConstraintType = SDTCisFP;
- } else if (R->isSubClassOf("SDTCisVec")) {
- ConstraintType = SDTCisVec;
- } else if (R->isSubClassOf("SDTCisSameAs")) {
- ConstraintType = SDTCisSameAs;
- x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
- } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
- ConstraintType = SDTCisVTSmallerThanOp;
- x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
- R->getValueAsInt("OtherOperandNum");
- } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
- ConstraintType = SDTCisOpSmallerThanOp;
- x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
- R->getValueAsInt("BigOperandNum");
- } else if (R->isSubClassOf("SDTCisEltOfVec")) {
- ConstraintType = SDTCisEltOfVec;
- x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
- } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
- ConstraintType = SDTCisSubVecOfVec;
- x.SDTCisSubVecOfVec_Info.OtherOperandNum =
- R->getValueAsInt("OtherOpNum");
- } else {
- errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
- exit(1);
- }
- }
- /// getOperandNum - Return the node corresponding to operand #OpNo in tree
- /// N, and the result number in ResNo.
- static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
- const SDNodeInfo &NodeInfo,
- unsigned &ResNo) {
- unsigned NumResults = NodeInfo.getNumResults();
- if (OpNo < NumResults) {
- ResNo = OpNo;
- return N;
- }
- OpNo -= NumResults;
- if (OpNo >= N->getNumChildren()) {
- errs() << "Invalid operand number in type constraint "
- << (OpNo+NumResults) << " ";
- N->dump();
- errs() << '\n';
- exit(1);
- }
- return N->getChild(OpNo);
- }
- /// ApplyTypeConstraint - Given a node in a pattern, apply this type
- /// constraint to the nodes operands. This returns true if it makes a
- /// change, false otherwise. If a type contradiction is found, flag an error.
- bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
- const SDNodeInfo &NodeInfo,
- TreePattern &TP) const {
- if (TP.hasError())
- return false;
- unsigned ResNo = 0; // The result number being referenced.
- TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
- switch (ConstraintType) {
- case SDTCisVT:
- // Operand must be a particular type.
- return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
- case SDTCisPtrTy:
- // Operand must be same as target pointer type.
- return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
- case SDTCisInt:
- // Require it to be one of the legal integer VTs.
- return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
- case SDTCisFP:
- // Require it to be one of the legal fp VTs.
- return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
- case SDTCisVec:
- // Require it to be one of the legal vector VTs.
- return NodeToApply->getExtType(ResNo).EnforceVector(TP);
- case SDTCisSameAs: {
- unsigned OResNo = 0;
- TreePatternNode *OtherNode =
- getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
- return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)|
- OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP);
- }
- case SDTCisVTSmallerThanOp: {
- // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
- // have an integer type that is smaller than the VT.
- if (!NodeToApply->isLeaf() ||
- !isa<DefInit>(NodeToApply->getLeafValue()) ||
- !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
- ->isSubClassOf("ValueType")) {
- TP.error(N->getOperator()->getName() + " expects a VT operand!");
- return false;
- }
- MVT::SimpleValueType VT =
- getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
- EEVT::TypeSet TypeListTmp(VT, TP);
- unsigned OResNo = 0;
- TreePatternNode *OtherNode =
- getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
- OResNo);
- return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
- }
- case SDTCisOpSmallerThanOp: {
- unsigned BResNo = 0;
- TreePatternNode *BigOperand =
- getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
- BResNo);
- return NodeToApply->getExtType(ResNo).
- EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
- }
- case SDTCisEltOfVec: {
- unsigned VResNo = 0;
- TreePatternNode *VecOperand =
- getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
- VResNo);
- // Filter vector types out of VecOperand that don't have the right element
- // type.
- return VecOperand->getExtType(VResNo).
- EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
- }
- case SDTCisSubVecOfVec: {
- unsigned VResNo = 0;
- TreePatternNode *BigVecOperand =
- getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
- VResNo);
- // Filter vector types out of BigVecOperand that don't have the
- // right subvector type.
- return BigVecOperand->getExtType(VResNo).
- EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
- }
- }
- llvm_unreachable("Invalid ConstraintType!");
- }
- // Update the node type to match an instruction operand or result as specified
- // in the ins or outs lists on the instruction definition. Return true if the
- // type was actually changed.
- bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
- Record *Operand,
- TreePattern &TP) {
- // The 'unknown' operand indicates that types should be inferred from the
- // context.
- if (Operand->isSubClassOf("unknown_class"))
- return false;
- // The Operand class specifies a type directly.
- if (Operand->isSubClassOf("Operand"))
- return UpdateNodeType(ResNo, getValueType(Operand->getValueAsDef("Type")),
- TP);
- // PointerLikeRegClass has a type that is determined at runtime.
- if (Operand->isSubClassOf("PointerLikeRegClass"))
- return UpdateNodeType(ResNo, MVT::iPTR, TP);
- // Both RegisterClass and RegisterOperand operands derive their types from a
- // register class def.
- Record *RC = 0;
- if (Operand->isSubClassOf("RegisterClass"))
- RC = Operand;
- else if (Operand->isSubClassOf("RegisterOperand"))
- RC = Operand->getValueAsDef("RegClass");
- assert(RC && "Unknown operand type");
- CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
- return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
- }
- //===----------------------------------------------------------------------===//
- // SDNodeInfo implementation
- //
- SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
- EnumName = R->getValueAsString("Opcode");
- SDClassName = R->getValueAsString("SDClass");
- Record *TypeProfile = R->getValueAsDef("TypeProfile");
- NumResults = TypeProfile->getValueAsInt("NumResults");
- NumOperands = TypeProfile->getValueAsInt("NumOperands");
- // Parse the properties.
- Properties = 0;
- std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
- for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
- if (PropList[i]->getName() == "SDNPCommutative") {
- Properties |= 1 << SDNPCommutative;
- } else if (PropList[i]->getName() == "SDNPAssociative") {
- Properties |= 1 << SDNPAssociative;
- } else if (PropList[i]->getName() == "SDNPHasChain") {
- Properties |= 1 << SDNPHasChain;
- } else if (PropList[i]->getName() == "SDNPOutGlue") {
- Properties |= 1 << SDNPOutGlue;
- } else if (PropList[i]->getName() == "SDNPInGlue") {
- Properties |= 1 << SDNPInGlue;
- } else if (PropList[i]->getName() == "SDNPOptInGlue") {
- Properties |= 1 << SDNPOptInGlue;
- } else if (PropList[i]->getName() == "SDNPMayStore") {
- Properties |= 1 << SDNPMayStore;
- } else if (PropList[i]->getName() == "SDNPMayLoad") {
- Properties |= 1 << SDNPMayLoad;
- } else if (PropList[i]->getName() == "SDNPSideEffect") {
- Properties |= 1 << SDNPSideEffect;
- } else if (PropList[i]->getName() == "SDNPMemOperand") {
- Properties |= 1 << SDNPMemOperand;
- } else if (PropList[i]->getName() == "SDNPVariadic") {
- Properties |= 1 << SDNPVariadic;
- } else {
- errs() << "Unknown SD Node property '" << PropList[i]->getName()
- << "' on node '" << R->getName() << "'!\n";
- exit(1);
- }
- }
- // Parse the type constraints.
- std::vector<Record*> ConstraintList =
- TypeProfile->getValueAsListOfDefs("Constraints");
- TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
- }
- /// getKnownType - If the type constraints on this node imply a fixed type
- /// (e.g. all stores return void, etc), then return it as an
- /// MVT::SimpleValueType. Otherwise, return EEVT::Other.
- MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
- unsigned NumResults = getNumResults();
- assert(NumResults <= 1 &&
- "We only work with nodes with zero or one result so far!");
- assert(ResNo == 0 && "Only handles single result nodes so far");
- for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) {
- // Make sure that this applies to the correct node result.
- if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value #
- continue;
- switch (TypeConstraints[i].ConstraintType) {
- default: break;
- case SDTypeConstraint::SDTCisVT:
- return TypeConstraints[i].x.SDTCisVT_Info.VT;
- case SDTypeConstraint::SDTCisPtrTy:
- return MVT::iPTR;
- }
- }
- return MVT::Other;
- }
- //===----------------------------------------------------------------------===//
- // TreePatternNode implementation
- //
- TreePatternNode::~TreePatternNode() {
- #if 0 // FIXME: implement refcounted tree nodes!
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- delete getChild(i);
- #endif
- }
- static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
- if (Operator->getName() == "set" ||
- Operator->getName() == "implicit")
- return 0; // All return nothing.
- if (Operator->isSubClassOf("Intrinsic"))
- return CDP.getIntrinsic(Operator).IS.RetVTs.size();
- if (Operator->isSubClassOf("SDNode"))
- return CDP.getSDNodeInfo(Operator).getNumResults();
- if (Operator->isSubClassOf("PatFrag")) {
- // If we've already parsed this pattern fragment, get it. Otherwise, handle
- // the forward reference case where one pattern fragment references another
- // before it is processed.
- if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
- return PFRec->getOnlyTree()->getNumTypes();
- // Get the result tree.
- DagInit *Tree = Operator->getValueAsDag("Fragment");
- Record *Op = 0;
- if (Tree)
- if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator()))
- Op = DI->getDef();
- assert(Op && "Invalid Fragment");
- return GetNumNodeResults(Op, CDP);
- }
- if (Operator->isSubClassOf("Instruction")) {
- CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
- // FIXME: Should allow access to all the results here.
- unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
- // Add on one implicit def if it has a resolvable type.
- if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
- ++NumDefsToAdd;
- return NumDefsToAdd;
- }
- if (Operator->isSubClassOf("SDNodeXForm"))
- return 1; // FIXME: Generalize SDNodeXForm
- Operator->dump();
- errs() << "Unhandled node in GetNumNodeResults\n";
- exit(1);
- }
- void TreePatternNode::print(raw_ostream &OS) const {
- if (isLeaf())
- OS << *getLeafValue();
- else
- OS << '(' << getOperator()->getName();
- for (unsigned i = 0, e = Types.size(); i != e; ++i)
- OS << ':' << getExtType(i).getName();
- if (!isLeaf()) {
- if (getNumChildren() != 0) {
- OS << " ";
- getChild(0)->print(OS);
- for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
- OS << ", ";
- getChild(i)->print(OS);
- }
- }
- OS << ")";
- }
- for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
- OS << "<<P:" << PredicateFns[i].getFnName() << ">>";
- if (TransformFn)
- OS << "<<X:" << TransformFn->getName() << ">>";
- if (!getName().empty())
- OS << ":$" << getName();
- }
- void TreePatternNode::dump() const {
- print(errs());
- }
- /// isIsomorphicTo - Return true if this node is recursively
- /// isomorphic to the specified node. For this comparison, the node's
- /// entire state is considered. The assigned name is ignored, since
- /// nodes with differing names are considered isomorphic. However, if
- /// the assigned name is present in the dependent variable set, then
- /// the assigned name is considered significant and the node is
- /// isomorphic if the names match.
- bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
- const MultipleUseVarSet &DepVars) const {
- if (N == this) return true;
- if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
- getPredicateFns() != N->getPredicateFns() ||
- getTransformFn() != N->getTransformFn())
- return false;
- if (isLeaf()) {
- if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
- if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
- return ((DI->getDef() == NDI->getDef())
- && (DepVars.find(getName()) == DepVars.end()
- || getName() == N->getName()));
- }
- }
- return getLeafValue() == N->getLeafValue();
- }
- if (N->getOperator() != getOperator() ||
- N->getNumChildren() != getNumChildren()) return false;
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
- return false;
- return true;
- }
- /// clone - Make a copy of this tree and all of its children.
- ///
- TreePatternNode *TreePatternNode::clone() const {
- TreePatternNode *New;
- if (isLeaf()) {
- New = new TreePatternNode(getLeafValue(), getNumTypes());
- } else {
- std::vector<TreePatternNode*> CChildren;
- CChildren.reserve(Children.size());
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- CChildren.push_back(getChild(i)->clone());
- New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
- }
- New->setName(getName());
- New->Types = Types;
- New->setPredicateFns(getPredicateFns());
- New->setTransformFn(getTransformFn());
- return New;
- }
- /// RemoveAllTypes - Recursively strip all the types of this tree.
- void TreePatternNode::RemoveAllTypes() {
- for (unsigned i = 0, e = Types.size(); i != e; ++i)
- Types[i] = EEVT::TypeSet(); // Reset to unknown type.
- if (isLeaf()) return;
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- getChild(i)->RemoveAllTypes();
- }
- /// SubstituteFormalArguments - Replace the formal arguments in this tree
- /// with actual values specified by ArgMap.
- void TreePatternNode::
- SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
- if (isLeaf()) return;
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
- TreePatternNode *Child = getChild(i);
- if (Child->isLeaf()) {
- Init *Val = Child->getLeafValue();
- if (isa<DefInit>(Val) &&
- cast<DefInit>(Val)->getDef()->getName() == "node") {
- // We found a use of a formal argument, replace it with its value.
- TreePatternNode *NewChild = ArgMap[Child->getName()];
- assert(NewChild && "Couldn't find formal argument!");
- assert((Child->getPredicateFns().empty() ||
- NewChild->getPredicateFns() == Child->getPredicateFns()) &&
- "Non-empty child predicate clobbered!");
- setChild(i, NewChild);
- }
- } else {
- getChild(i)->SubstituteFormalArguments(ArgMap);
- }
- }
- }
- /// InlinePatternFragments - If this pattern refers to any pattern
- /// fragments, inline them into place, giving us a pattern without any
- /// PatFrag references.
- TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
- if (TP.hasError())
- return 0;
- if (isLeaf())
- return this; // nothing to do.
- Record *Op = getOperator();
- if (!Op->isSubClassOf("PatFrag")) {
- // Just recursively inline children nodes.
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
- TreePatternNode *Child = getChild(i);
- TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
- assert((Child->getPredicateFns().empty() ||
- NewChild->getPredicateFns() == Child->getPredicateFns()) &&
- "Non-empty child predicate clobbered!");
- setChild(i, NewChild);
- }
- return this;
- }
- // Otherwise, we found a reference to a fragment. First, look up its
- // TreePattern record.
- TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
- // Verify that we are passing the right number of operands.
- if (Frag->getNumArgs() != Children.size()) {
- TP.error("'" + Op->getName() + "' fragment requires " +
- utostr(Frag->getNumArgs()) + " operands!");
- return 0;
- }
- TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
- TreePredicateFn PredFn(Frag);
- if (!PredFn.isAlwaysTrue())
- FragTree->addPredicateFn(PredFn);
- // Resolve formal arguments to their actual value.
- if (Frag->getNumArgs()) {
- // Compute the map of formal to actual arguments.
- std::map<std::string, TreePatternNode*> ArgMap;
- for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
- ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
- FragTree->SubstituteFormalArguments(ArgMap);
- }
- FragTree->setName(getName());
- for (unsigned i = 0, e = Types.size(); i != e; ++i)
- FragTree->UpdateNodeType(i, getExtType(i), TP);
- // Transfer in the old predicates.
- for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
- FragTree->addPredicateFn(getPredicateFns()[i]);
- // Get a new copy of this fragment to stitch into here.
- //delete this; // FIXME: implement refcounting!
- // The fragment we inlined could have recursive inlining that is needed. See
- // if there are any pattern fragments in it and inline them as needed.
- return FragTree->InlinePatternFragments(TP);
- }
- /// getImplicitType - Check to see if the specified record has an implicit
- /// type which should be applied to it. This will infer the type of register
- /// references from the register file information, for example.
- ///
- /// When Unnamed is set, return the type of a DAG operand with no name, such as
- /// the F8RC register class argument in:
- ///
- /// (COPY_TO_REGCLASS GPR:$src, F8RC)
- ///
- /// When Unnamed is false, return the type of a named DAG operand such as the
- /// GPR:$src operand above.
- ///
- static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
- bool NotRegisters,
- bool Unnamed,
- TreePattern &TP) {
- // Check to see if this is a register operand.
- if (R->isSubClassOf("RegisterOperand")) {
- assert(ResNo == 0 && "Regoperand ref only has one result!");
- if (NotRegisters)
- return EEVT::TypeSet(); // Unknown.
- Record *RegClass = R->getValueAsDef("RegClass");
- const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
- return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
- }
- // Check to see if this is a register or a register class.
- if (R->isSubClassOf("RegisterClass")) {
- assert(ResNo == 0 && "Regclass ref only has one result!");
- // An unnamed register class represents itself as an i32 immediate, for
- // example on a COPY_TO_REGCLASS instruction.
- if (Unnamed)
- return EEVT::TypeSet(MVT::i32, TP);
- // In a named operand, the register class provides the possible set of
- // types.
- if (NotRegisters)
- return EEVT::TypeSet(); // Unknown.
- const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
- return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
- }
- if (R->isSubClassOf("PatFrag")) {
- assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
- // Pattern fragment types will be resolved when they are inlined.
- return EEVT::TypeSet(); // Unknown.
- }
- if (R->isSubClassOf("Register")) {
- assert(ResNo == 0 && "Registers only produce one result!");
- if (NotRegisters)
- return EEVT::TypeSet(); // Unknown.
- const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
- return EEVT::TypeSet(T.getRegisterVTs(R));
- }
- if (R->isSubClassOf("SubRegIndex")) {
- assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
- return EEVT::TypeSet();
- }
- if (R->isSubClassOf("ValueType")) {
- assert(ResNo == 0 && "This node only has one result!");
- // An unnamed VTSDNode represents itself as an MVT::Other immediate.
- //
- // (sext_inreg GPR:$src, i16)
- // ~~~
- if (Unnamed)
- return EEVT::TypeSet(MVT::Other, TP);
- // With a name, the ValueType simply provides the type of the named
- // variable.
- //
- // (sext_inreg i32:$src, i16)
- // ~~~~~~~~
- if (NotRegisters)
- return EEVT::TypeSet(); // Unknown.
- return EEVT::TypeSet(getValueType(R), TP);
- }
- if (R->isSubClassOf("CondCode")) {
- assert(ResNo == 0 && "This node only has one result!");
- // Using a CondCodeSDNode.
- return EEVT::TypeSet(MVT::Other, TP);
- }
- if (R->isSubClassOf("ComplexPattern")) {
- assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
- if (NotRegisters)
- return EEVT::TypeSet(); // Unknown.
- return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
- TP);
- }
- if (R->isSubClassOf("PointerLikeRegClass")) {
- assert(ResNo == 0 && "Regclass can only have one result!");
- return EEVT::TypeSet(MVT::iPTR, TP);
- }
- if (R->getName() == "node" || R->getName() == "srcvalue" ||
- R->getName() == "zero_reg") {
- // Placeholder.
- return EEVT::TypeSet(); // Unknown.
- }
- TP.error("Unknown node flavor used in pattern: " + R->getName());
- return EEVT::TypeSet(MVT::Other, TP);
- }
- /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
- /// CodeGenIntrinsic information for it, otherwise return a null pointer.
- const CodeGenIntrinsic *TreePatternNode::
- getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
- if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
- getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
- getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
- return 0;
- unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
- return &CDP.getIntrinsicInfo(IID);
- }
- /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
- /// return the ComplexPattern information, otherwise return null.
- const ComplexPattern *
- TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
- if (!isLeaf()) return 0;
- DefInit *DI = dyn_cast<DefInit>(getLeafValue());
- if (DI && DI->getDef()->isSubClassOf("ComplexPattern"))
- return &CGP.getComplexPattern(DI->getDef());
- return 0;
- }
- /// NodeHasProperty - Return true if this node has the specified property.
- bool TreePatternNode::NodeHasProperty(SDNP Property,
- const CodeGenDAGPatterns…