/Src/Dependencies/Boost/libs/math/doc/sf_and_dist/laguerre.qbk
http://hadesmem.googlecode.com/ · text · 175 lines · 124 code · 51 blank · 0 comment · 0 complexity · 15f438fc2c1197b45094212d873d5be7 MD5 · raw file
- [section:laguerre Laguerre (and Associated) Polynomials]
- [h4 Synopsis]
- ``
- #include <boost/math/special_functions/laguerre.hpp>
- ``
- namespace boost{ namespace math{
-
- template <class T>
- ``__sf_result`` laguerre(unsigned n, T x);
-
- template <class T, class ``__Policy``>
- ``__sf_result`` laguerre(unsigned n, T x, const ``__Policy``&);
-
- template <class T>
- ``__sf_result`` laguerre(unsigned n, unsigned m, T x);
-
- template <class T, class ``__Policy``>
- ``__sf_result`` laguerre(unsigned n, unsigned m, T x, const ``__Policy``&);
-
- template <class T1, class T2, class T3>
- ``__sf_result`` laguerre_next(unsigned n, T1 x, T2 Ln, T3 Lnm1);
-
- template <class T1, class T2, class T3>
- ``__sf_result`` laguerre_next(unsigned n, unsigned m, T1 x, T2 Ln, T3 Lnm1);
-
- }} // namespaces
-
- [h4 Description]
- The return type of these functions is computed using the __arg_pomotion_rules:
- note than when there is a single template argument the result is the same type
- as that argument or `double` if the template argument is an integer type.
- [optional_policy]
- template <class T>
- ``__sf_result`` laguerre(unsigned n, T x);
-
- template <class T, class ``__Policy``>
- ``__sf_result`` laguerre(unsigned n, T x, const ``__Policy``&);
-
- Returns the value of the Laguerre Polynomial of order /n/ at point /x/:
- [equation laguerre_0]
- The following graph illustrates the behaviour of the first few
- Laguerre Polynomials:
- [graph laguerre]
-
- template <class T>
- ``__sf_result`` laguerre(unsigned n, unsigned m, T x);
-
- template <class T, class ``__Policy``>
- ``__sf_result`` laguerre(unsigned n, unsigned m, T x, const ``__Policy``&);
-
- Returns the Associated Laguerre polynomial of degree /n/
- and order /m/ at point /x/:
- [equation laguerre_1]
-
- template <class T1, class T2, class T3>
- ``__sf_result`` laguerre_next(unsigned n, T1 x, T2 Ln, T3 Lnm1);
-
- Implements the three term recurrence relation for the Laguerre
- polynomials, this function can be used to create a sequence of
- values evaluated at the same /x/, and for rising /n/.
- [equation laguerre_2]
- For example we could produce a vector of the first 10 polynomial
- values using:
- double x = 0.5; // Abscissa value
- vector<double> v;
- v.push_back(laguerre(0, x)).push_back(laguerre(1, x));
- for(unsigned l = 1; l < 10; ++l)
- v.push_back(laguerre_next(l, x, v[l], v[l-1]));
-
- Formally the arguments are:
- [variablelist
- [[n][The degree /n/ of the last polynomial calculated.]]
- [[x][The abscissa value]]
- [[Ln][The value of the polynomial evaluated at degree /n/.]]
- [[Lnm1][The value of the polynomial evaluated at degree /n-1/.]]
- ]
-
- template <class T1, class T2, class T3>
- ``__sf_result`` laguerre_next(unsigned n, unsigned m, T1 x, T2 Ln, T3 Lnm1);
- Implements the three term recurrence relation for the Associated Laguerre
- polynomials, this function can be used to create a sequence of
- values evaluated at the same /x/, and for rising degree /n/.
- [equation laguerre_3]
- For example we could produce a vector of the first 10 polynomial
- values using:
- double x = 0.5; // Abscissa value
- int m = 10; // order
- vector<double> v;
- v.push_back(laguerre(0, m, x)).push_back(laguerre(1, m, x));
- for(unsigned l = 1; l < 10; ++l)
- v.push_back(laguerre_next(l, m, x, v[l], v[l-1]));
-
- Formally the arguments are:
- [variablelist
- [[n][The degree of the last polynomial calculated.]]
- [[m][The order of the Associated Polynomial.]]
- [[x][The abscissa value.]]
- [[Ln][The value of the polynomial evaluated at degree /n/.]]
- [[Lnm1][The value of the polynomial evaluated at degree /n-1/.]]
- ]
-
- [h4 Accuracy]
- The following table shows peak errors (in units of epsilon)
- for various domains of input arguments.
- Note that only results for the widest floating point type on the system are
- given as narrower types have __zero_error.
- [table Peak Errors In the Laguerre Polynomial
- [[Significand Size] [Platform and Compiler] [Errors in range
- 0 < l < 20] ]
- [[53] [Win32, Visual C++ 8] [Peak=3000 Mean=185] ]
- [[64] [SUSE Linux IA32, g++ 4.1] [Peak=1x10[super 4] Mean=828]]
- [[64] [Red Hat Linux IA64, g++ 3.4.4] [Peak=1x10[super 4] Mean=828] ]
- [[113] [HPUX IA64, aCC A.06.06] [Peak=680 Mean=40]]
- ]
- [table Peak Errors In the Associated Laguerre Polynomial
- [[Significand Size] [Platform and Compiler] [Errors in range
- 0 < l < 20] ]
- [[53] [Win32, Visual C++ 8] [Peak=433 Mean=11]]
- [[64] [SUSE Linux IA32, g++ 4.1] [Peak=61.4 Mean=19.5]]
- [[64] [Red Hat Linux IA64, g++ 3.4.4] [Peak=61.4 Mean=19.5] ]
- [[113] [HPUX IA64, aCC A.06.06] [Peak=540 Mean=13.94] ]
- ]
- Note that the worst errors occur when the degree increases, values greater than
- ~120 are very unlikely to produce sensible results, especially in the associated
- polynomial case when the order is also large. Further the relative errors
- are likely to grow arbitrarily large when the function is very close to a root.
- [h4 Testing]
- A mixture of spot tests of values calculated using functions.wolfram.com,
- and randomly generated test data are
- used: the test data was computed using
- [@http://shoup.net/ntl/doc/RR.txt NTL::RR] at 1000-bit precision.
- [h4 Implementation]
- These functions are implemented using the stable three term
- recurrence relations. These relations guarentee low absolute error
- but cannot guarentee low relative error near one of the roots of the
- polynomials.
- [endsect][/section:beta_function The Beta Function]
- [/
- Copyright 2006 John Maddock and Paul A. Bristow.
- Distributed under the Boost Software License, Version 1.0.
- (See accompanying file LICENSE_1_0.txt or copy at
- http://www.boost.org/LICENSE_1_0.txt).
- ]