/Src/Dependencies/Boost/libs/math/doc/sf_and_dist/html/math_toolkit/special/ellint/ellint_3.html
http://hadesmem.googlecode.com/ · HTML · 324 lines · 316 code · 8 blank · 0 comment · 0 complexity · b27cad9f507fa639294c167ad8312d04 MD5 · raw file
- <html>
- <head>
- <meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
- <title>Elliptic Integrals of the Third Kind - Legendre Form</title>
- <link rel="stylesheet" href="../../../../../../../../doc/src/boostbook.css" type="text/css">
- <meta name="generator" content="DocBook XSL Stylesheets V1.74.0">
- <link rel="home" href="../../../index.html" title="Math Toolkit">
- <link rel="up" href="../ellint.html" title="Elliptic Integrals">
- <link rel="prev" href="ellint_2.html" title="Elliptic Integrals of the Second Kind - Legendre Form">
- <link rel="next" href="../zetas.html" title="Zeta Functions">
- </head>
- <body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
- <table cellpadding="2" width="100%"><tr>
- <td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../../../boost.png"></td>
- <td align="center"><a href="../../../../../../../../index.html">Home</a></td>
- <td align="center"><a href="../../../../../../../../libs/libraries.htm">Libraries</a></td>
- <td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
- <td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
- <td align="center"><a href="../../../../../../../../more/index.htm">More</a></td>
- </tr></table>
- <hr>
- <div class="spirit-nav">
- <a accesskey="p" href="ellint_2.html"><img src="../../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../ellint.html"><img src="../../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../index.html"><img src="../../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../zetas.html"><img src="../../../../../../../../doc/src/images/next.png" alt="Next"></a>
- </div>
- <div class="section" lang="en">
- <div class="titlepage"><div><div><h4 class="title">
- <a name="math_toolkit.special.ellint.ellint_3"></a><a class="link" href="ellint_3.html" title="Elliptic Integrals of the Third Kind - Legendre Form">Elliptic Integrals
- of the Third Kind - Legendre Form</a>
- </h4></div></div></div>
- <a name="math_toolkit.special.ellint.ellint_3.synopsis"></a><h6>
- <a name="id1302489"></a>
- <a class="link" href="ellint_3.html#math_toolkit.special.ellint.ellint_3.synopsis">Synopsis</a>
- </h6>
- <p>
-
- </p>
- <pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">ellint_3</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
- </pre>
- <p>
- </p>
- <pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span> <span class="special">{</span>
- <span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T3</span><span class="special">></span>
- <a class="link" href="../../main_overview/result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_3</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">T3</span> <span class="identifier">phi</span><span class="special">);</span>
- <span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T3</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Policies">Policy</a><span class="special">></span>
- <a class="link" href="../../main_overview/result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_3</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">T3</span> <span class="identifier">phi</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Policies">Policy</a><span class="special">&);</span>
- <span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">></span>
- <a class="link" href="../../main_overview/result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_3</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">n</span><span class="special">);</span>
- <span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Policies">Policy</a><span class="special">></span>
- <a class="link" href="../../main_overview/result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_3</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Policies">Policy</a><span class="special">&);</span>
- <span class="special">}}</span> <span class="comment">// namespaces
- </span></pre>
- <a name="math_toolkit.special.ellint.ellint_3.description"></a><h6>
- <a name="id1303136"></a>
- <a class="link" href="ellint_3.html#math_toolkit.special.ellint.ellint_3.description">Description</a>
- </h6>
- <p>
- These two functions evaluate the incomplete elliptic integral of the third
- kind <span class="emphasis"><em>Π(n, φ, k)</em></span> and its complete counterpart <span class="emphasis"><em>Π(n,
- k) = E(n, π/2, k)</em></span>.
- </p>
- <p>
- <span class="inlinemediaobject"><img src="../../../../graphs/ellint_3.png" align="middle"></span>
- </p>
- <p>
- The return type of these functions is computed using the <a class="link" href="../../main_overview/result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
- type calculation rules</em></span></a> when the arguments are of different
- types: when they are the same type then the result is the same type as
- the arguments.
- </p>
- <pre class="programlisting"><span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T3</span><span class="special">></span>
- <a class="link" href="../../main_overview/result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_3</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">T3</span> <span class="identifier">phi</span><span class="special">);</span>
- <span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T3</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Policies">Policy</a><span class="special">></span>
- <a class="link" href="../../main_overview/result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_3</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">T3</span> <span class="identifier">phi</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Policies">Policy</a><span class="special">&);</span>
- </pre>
- <p>
- Returns the incomplete elliptic integral of the third kind <span class="emphasis"><em>Π(n,
- φ, k)</em></span>:
- </p>
- <p>
- <span class="inlinemediaobject"><img src="../../../../equations/ellint4.png"></span>
- </p>
- <p>
- Requires <span class="emphasis"><em>-1 <= k <= 1</em></span> and <span class="emphasis"><em>n < 1/sin<sup>2</sup>(φ)</em></span>,
- otherwise returns the result of <a class="link" href="../../main_overview/error_handling.html#domain_error">domain_error</a>
- (outside this range the result would be complex).
- </p>
- <p>
- The final <a class="link" href="../../policy.html" title="Policies">Policy</a> argument is
- optional and can be used to control the behaviour of the function: how
- it handles errors, what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Policies">policy documentation for more details</a>.
- </p>
- <pre class="programlisting"><span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">></span>
- <a class="link" href="../../main_overview/result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_3</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">n</span><span class="special">);</span>
- <span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Policies">Policy</a><span class="special">></span>
- <a class="link" href="../../main_overview/result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">ellint_3</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">k</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Policies">Policy</a><span class="special">&);</span>
- </pre>
- <p>
- Returns the complete elliptic integral of the first kind <span class="emphasis"><em>Π(n,
- k)</em></span>:
- </p>
- <p>
- <span class="inlinemediaobject"><img src="../../../../equations/ellint8.png"></span>
- </p>
- <p>
- Requires <span class="emphasis"><em>-1 <= k <= 1</em></span> and <span class="emphasis"><em>n < 1</em></span>,
- otherwise returns the result of <a class="link" href="../../main_overview/error_handling.html#domain_error">domain_error</a>
- (outside this range the result would be complex).
- </p>
- <p>
- The final <a class="link" href="../../policy.html" title="Policies">Policy</a> argument is
- optional and can be used to control the behaviour of the function: how
- it handles errors, what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Policies">policy documentation for more details</a>.
- </p>
- <a name="math_toolkit.special.ellint.ellint_3.accuracy"></a><h6>
- <a name="id1303730"></a>
- <a class="link" href="ellint_3.html#math_toolkit.special.ellint.ellint_3.accuracy">Accuracy</a>
- </h6>
- <p>
- These functions are computed using only basic arithmetic operations, so
- there isn't much variation in accuracy over differing platforms. Note that
- only results for the widest floating point type on the system are given
- as narrower types have <a class="link" href="../../backgrounders/relative_error.html#zero_error">effectively zero error</a>.
- All values are relative errors in units of epsilon.
- </p>
- <div class="table">
- <a name="math_toolkit.special.ellint.ellint_3.errors_rates_in_the_elliptic_integrals_of_the_third_kind"></a><p class="title"><b>Table 46. Errors Rates in the Elliptic Integrals of the Third Kind</b></p>
- <div class="table-contents"><table class="table" summary="Errors Rates in the Elliptic Integrals of the Third Kind">
- <colgroup>
- <col>
- <col>
- <col>
- <col>
- </colgroup>
- <thead><tr>
- <th>
- <p>
- Significand Size
- </p>
- </th>
- <th>
- <p>
- Platform and Compiler
- </p>
- </th>
- <th>
- <p>
- Π(n, φ, k)
- </p>
- </th>
- <th>
- <p>
- Π(n, k)
- </p>
- </th>
- </tr></thead>
- <tbody>
- <tr>
- <td>
- <p>
- 53
- </p>
- </td>
- <td>
- <p>
- Win32 / Visual C++ 8.0
- </p>
- </td>
- <td>
- <p>
- Peak=29 Mean=2.2
- </p>
- </td>
- <td>
- <p>
- Peak=3 Mean=0.8
- </p>
- </td>
- </tr>
- <tr>
- <td>
- <p>
- 64
- </p>
- </td>
- <td>
- <p>
- Red Hat Linux / G++ 3.4
- </p>
- </td>
- <td>
- <p>
- Peak=14 Mean=1.3
- </p>
- </td>
- <td>
- <p>
- Peak=2.3 Mean=0.8
- </p>
- </td>
- </tr>
- <tr>
- <td>
- <p>
- 113
- </p>
- </td>
- <td>
- <p>
- HP-UX / HP aCC 6
- </p>
- </td>
- <td>
- <p>
- Peak=10 Mean=1.4
- </p>
- </td>
- <td>
- <p>
- Peak=4.2 Mean=1.1
- </p>
- </td>
- </tr>
- </tbody>
- </table></div>
- </div>
- <br class="table-break"><a name="math_toolkit.special.ellint.ellint_3.testing"></a><h6>
- <a name="id1303904"></a>
- <a class="link" href="ellint_3.html#math_toolkit.special.ellint.ellint_3.testing">Testing</a>
- </h6>
- <p>
- The tests use a mixture of spot test values calculated using the online
- calculator at <a href="http://functions.wolfram.com" target="_top">functions.wolfram.com</a>,
- and random test data generated using NTL::RR at 1000-bit precision and
- this implementation.
- </p>
- <a name="math_toolkit.special.ellint.ellint_3.implementation"></a><h6>
- <a name="id1303926"></a>
- <a class="link" href="ellint_3.html#math_toolkit.special.ellint.ellint_3.implementation">Implementation</a>
- </h6>
- <p>
- The implementation for Π(n, φ, k) first siphons off the special cases:
- </p>
- <p>
- <span class="emphasis"><em>Π(0, φ, k) = F(φ, k)</em></span>
- </p>
- <p>
- <span class="emphasis"><em>Π(n, π/2, k) = Π(n, k)</em></span>
- </p>
- <p>
- and
- </p>
- <p>
- <span class="inlinemediaobject"><img src="../../../../equations/ellint23.png"></span>
- </p>
- <p>
- Then if n < 0 the relations (A&S 17.7.15/16):
- </p>
- <p>
- <span class="inlinemediaobject"><img src="../../../../equations/ellint24.png"></span>
- </p>
- <p>
- are used to shift <span class="emphasis"><em>n</em></span> to the range [0, 1].
- </p>
- <p>
- Then the relations:
- </p>
- <p>
- <span class="emphasis"><em>Π(n, -φ, k) = -Π(n, φ, k)</em></span>
- </p>
- <p>
- <span class="emphasis"><em>Π(n, φ+mπ, k) = Π(n, φ, k) + 2mΠ(n, k) ; n <= 1</em></span>
- </p>
- <p>
- <span class="emphasis"><em>Π(n, φ+mπ, k) = Π(n, φ, k) ; n > 1</em></span> <sup>[<a name="id1304041" href="#ftn.id1304041" class="footnote">1</a>]</sup>
- </p>
- <p>
- are used to move φ   to the range [0, π/2].
- </p>
- <p>
- The functions are then implemented in terms of Carlson's integrals using
- the relations:
- </p>
- <p>
- <span class="inlinemediaobject"><img src="../../../../equations/ellint25.png"></span>
- </p>
- <p>
- and
- </p>
- <p>
- <span class="inlinemediaobject"><img src="../../../../equations/ellint26.png"></span>
- </p>
- <div class="footnotes">
- <br><hr width="100" align="left">
- <div class="footnote"><p><sup>[<a name="ftn.id1304041" href="#id1304041" class="para">1</a>] </sup>
- I haven't been able to find a literature reference for this relation,
- but it appears to be the convention used by Mathematica. Intuitively
- the first <span class="emphasis"><em>2 * m * Π(n, k)</em></span> terms cancel out as the
- derivative alternates between +∞ and -∞.
- </p></div>
- </div>
- </div>
- <table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
- <td align="left"></td>
- <td align="right"><div class="copyright-footer">Copyright © 2006 , 2007, 2008, 2009, 2010 John Maddock, Paul A. Bristow,
- Hubert Holin, Xiaogang Zhang, Bruno Lalande, Johan Råde, Gautam Sewani and
- Thijs van den Berg<p>
- Distributed under the Boost Software License, Version 1.0. (See accompanying
- file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
- </p>
- </div></td>
- </tr></table>
- <hr>
- <div class="spirit-nav">
- <a accesskey="p" href="ellint_2.html"><img src="../../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../ellint.html"><img src="../../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../index.html"><img src="../../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../zetas.html"><img src="../../../../../../../../doc/src/images/next.png" alt="Next"></a>
- </div>
- </body>
- </html>