PageRenderTime 14ms CodeModel.GetById 1ms app.highlight 10ms RepoModel.GetById 1ms app.codeStats 0ms

/Src/Dependencies/Boost/boost/multi_index/detail/index_matcher.hpp

http://hadesmem.googlecode.com/
C++ Header | 248 lines | 148 code | 46 blank | 54 comment | 6 complexity | 2036f888f63d34a2ae69afb283f77121 MD5 | raw file
  1/* Copyright 2003-2008 Joaquin M Lopez Munoz.
  2 * Distributed under the Boost Software License, Version 1.0.
  3 * (See accompanying file LICENSE_1_0.txt or copy at
  4 * http://www.boost.org/LICENSE_1_0.txt)
  5 *
  6 * See http://www.boost.org/libs/multi_index for library home page.
  7 */
  8
  9#ifndef BOOST_MULTI_INDEX_DETAIL_INDEX_MATCHER_HPP
 10#define BOOST_MULTI_INDEX_DETAIL_INDEX_MATCHER_HPP
 11
 12#if defined(_MSC_VER)&&(_MSC_VER>=1200)
 13#pragma once
 14#endif
 15
 16#include <boost/config.hpp> /* keep it first to prevent nasty warns in MSVC */
 17#include <algorithm>
 18#include <boost/noncopyable.hpp>
 19#include <boost/multi_index/detail/auto_space.hpp>
 20#include <cstddef>
 21#include <functional>
 22
 23namespace boost{
 24
 25namespace multi_index{
 26
 27namespace detail{
 28
 29/* index_matcher compares a sequence of elements against a
 30 * base sequence, identifying those elements that belong to the
 31 * longest subsequence which is ordered with respect to the base.
 32 * For instance, if the base sequence is:
 33 *
 34 *   0 1 2 3 4 5 6 7 8 9
 35 *
 36 * and the compared sequence (not necesarilly the same length):
 37 *
 38 *   1 4 2 3 0 7 8 9
 39 *
 40 * the elements of the longest ordered subsequence are:
 41 *
 42 *   1 2 3 7 8 9
 43 * 
 44 * The algorithm for obtaining such a subsequence is called
 45 * Patience Sorting, described in ch. 1 of:
 46 *   Aldous, D., Diaconis, P.: "Longest increasing subsequences: from
 47 *   patience sorting to the Baik-Deift-Johansson Theorem", Bulletin
 48 *   of the American Mathematical Society, vol. 36, no 4, pp. 413-432,
 49 *   July 1999.
 50 *   http://www.ams.org/bull/1999-36-04/S0273-0979-99-00796-X/
 51 *   S0273-0979-99-00796-X.pdf
 52 *
 53 * This implementation is not fully generic since it assumes that
 54 * the sequences given are pointed to by index iterators (having a
 55 * get_node() memfun.)
 56 */
 57
 58namespace index_matcher{
 59
 60/* The algorithm stores the nodes of the base sequence and a number
 61 * of "piles" that are dynamically updated during the calculation
 62 * stage. From a logical point of view, nodes form an independent
 63 * sequence from piles. They are stored together so as to minimize
 64 * allocated memory.
 65 */
 66
 67struct entry
 68{
 69  entry(void* node_,std::size_t pos_=0):node(node_),pos(pos_){}
 70
 71  /* node stuff */
 72
 73  void*       node;
 74  std::size_t pos;
 75  entry*      previous;
 76  bool        ordered;
 77
 78  struct less_by_node
 79  {
 80    bool operator()(
 81      const entry& x,const entry& y)const
 82    {
 83      return std::less<void*>()(x.node,y.node);
 84    }
 85  };
 86
 87  /* pile stuff */
 88
 89  std::size_t pile_top;
 90  entry*      pile_top_entry;
 91
 92  struct less_by_pile_top
 93  {
 94    bool operator()(
 95      const entry& x,const entry& y)const
 96    {
 97      return x.pile_top<y.pile_top;
 98    }
 99  };
100};
101
102/* common code operating on void *'s */
103
104template<typename Allocator>
105class algorithm_base:private noncopyable
106{
107protected:
108  algorithm_base(const Allocator& al,std::size_t size):
109    spc(al,size),size_(size),n(0),sorted(false)
110  {
111  }
112
113  void add(void* node)
114  {
115    entries()[n]=entry(node,n);
116    ++n;
117  }
118
119  void begin_algorithm()const
120  {
121    if(!sorted){
122      std::sort(entries(),entries()+size_,entry::less_by_node());
123      sorted=true;
124    }
125    num_piles=0;
126  }
127
128  void add_node_to_algorithm(void* node)const
129  {
130    entry* ent=
131      std::lower_bound(
132        entries(),entries()+size_,
133        entry(node),entry::less_by_node()); /* localize entry */
134    ent->ordered=false;
135    std::size_t n=ent->pos;                 /* get its position */
136
137    entry dummy(0);
138    dummy.pile_top=n;
139
140    entry* pile_ent=                        /* find the first available pile */
141      std::lower_bound(                     /* to stack the entry            */
142        entries(),entries()+num_piles,
143        dummy,entry::less_by_pile_top());
144
145    pile_ent->pile_top=n;                   /* stack the entry */
146    pile_ent->pile_top_entry=ent;        
147
148    /* if not the first pile, link entry to top of the preceding pile */
149    if(pile_ent>&entries()[0]){ 
150      ent->previous=(pile_ent-1)->pile_top_entry;
151    }
152
153    if(pile_ent==&entries()[num_piles]){    /* new pile? */
154      ++num_piles;
155    }
156  }
157
158  void finish_algorithm()const
159  {
160    if(num_piles>0){
161      /* Mark those elements which are in their correct position, i.e. those
162       * belonging to the longest increasing subsequence. These are those
163       * elements linked from the top of the last pile.
164       */
165
166      entry* ent=entries()[num_piles-1].pile_top_entry;
167      for(std::size_t n=num_piles;n--;){
168        ent->ordered=true;
169        ent=ent->previous;
170      }
171    }
172  }
173
174  bool is_ordered(void * node)const
175  {
176    return std::lower_bound(
177      entries(),entries()+size_,
178      entry(node),entry::less_by_node())->ordered;
179  }
180
181private:
182  entry* entries()const{return &*spc.data();}
183
184  auto_space<entry,Allocator> spc;
185  std::size_t                 size_;
186  std::size_t                 n;
187  mutable bool                sorted;
188  mutable std::size_t         num_piles;
189};
190
191/* The algorithm has three phases:
192 *   - Initialization, during which the nodes of the base sequence are added.
193 *   - Execution.
194 *   - Results querying, through the is_ordered memfun.
195 */
196
197template<typename Node,typename Allocator>
198class algorithm:private algorithm_base<Allocator>
199{
200  typedef algorithm_base<Allocator> super;
201
202public:
203  algorithm(const Allocator& al,std::size_t size):super(al,size){}
204
205  void add(Node* node)
206  {
207    super::add(node);
208  }
209
210  template<typename IndexIterator>
211  void execute(IndexIterator first,IndexIterator last)const
212  {
213    super::begin_algorithm();
214
215    for(IndexIterator it=first;it!=last;++it){
216      add_node_to_algorithm(get_node(it));
217    }
218
219    super::finish_algorithm();
220  }
221
222  bool is_ordered(Node* node)const
223  {
224    return super::is_ordered(node);
225  }
226
227private:
228  void add_node_to_algorithm(Node* node)const
229  {
230    super::add_node_to_algorithm(node);
231  }
232
233  template<typename IndexIterator>
234  static Node* get_node(IndexIterator it)
235  {
236    return static_cast<Node*>(it.get_node());
237  }
238};
239
240} /* namespace multi_index::detail::index_matcher */
241
242} /* namespace multi_index::detail */
243
244} /* namespace multi_index */
245
246} /* namespace boost */
247
248#endif