PageRenderTime 20ms CodeModel.GetById 10ms app.highlight 4ms RepoModel.GetById 1ms app.codeStats 1ms

/thirdparty/libportfwd/third-party/miniupnpc-1.6/bsdqueue.h

http://github.com/tomahawk-player/tomahawk
C Header | 531 lines | 342 code | 65 blank | 124 comment | 91 complexity | 61d9f9d92938d7298dbda4ff80160590 MD5 | raw file
  1/*	$OpenBSD: queue.h,v 1.31 2005/11/25 08:06:25 otto Exp $	*/
  2/*	$NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $	*/
  3
  4/*
  5 * Copyright (c) 1991, 1993
  6 *	The Regents of the University of California.  All rights reserved.
  7 *
  8 * Redistribution and use in source and binary forms, with or without
  9 * modification, are permitted provided that the following conditions
 10 * are met:
 11 * 1. Redistributions of source code must retain the above copyright
 12 *    notice, this list of conditions and the following disclaimer.
 13 * 2. Redistributions in binary form must reproduce the above copyright
 14 *    notice, this list of conditions and the following disclaimer in the
 15 *    documentation and/or other materials provided with the distribution.
 16 * 3. Neither the name of the University nor the names of its contributors
 17 *    may be used to endorse or promote products derived from this software
 18 *    without specific prior written permission.
 19 *
 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 30 * SUCH DAMAGE.
 31 *
 32 *	@(#)queue.h	8.5 (Berkeley) 8/20/94
 33 */
 34
 35#ifndef	_SYS_QUEUE_H_
 36#define	_SYS_QUEUE_H_
 37
 38/*
 39 * This file defines five types of data structures: singly-linked lists, 
 40 * lists, simple queues, tail queues, and circular queues.
 41 *
 42 *
 43 * A singly-linked list is headed by a single forward pointer. The elements
 44 * are singly linked for minimum space and pointer manipulation overhead at
 45 * the expense of O(n) removal for arbitrary elements. New elements can be
 46 * added to the list after an existing element or at the head of the list.
 47 * Elements being removed from the head of the list should use the explicit
 48 * macro for this purpose for optimum efficiency. A singly-linked list may
 49 * only be traversed in the forward direction.  Singly-linked lists are ideal
 50 * for applications with large datasets and few or no removals or for
 51 * implementing a LIFO queue.
 52 *
 53 * A list is headed by a single forward pointer (or an array of forward
 54 * pointers for a hash table header). The elements are doubly linked
 55 * so that an arbitrary element can be removed without a need to
 56 * traverse the list. New elements can be added to the list before
 57 * or after an existing element or at the head of the list. A list
 58 * may only be traversed in the forward direction.
 59 *
 60 * A simple queue is headed by a pair of pointers, one the head of the
 61 * list and the other to the tail of the list. The elements are singly
 62 * linked to save space, so elements can only be removed from the
 63 * head of the list. New elements can be added to the list before or after
 64 * an existing element, at the head of the list, or at the end of the
 65 * list. A simple queue may only be traversed in the forward direction.
 66 *
 67 * A tail queue is headed by a pair of pointers, one to the head of the
 68 * list and the other to the tail of the list. The elements are doubly
 69 * linked so that an arbitrary element can be removed without a need to
 70 * traverse the list. New elements can be added to the list before or
 71 * after an existing element, at the head of the list, or at the end of
 72 * the list. A tail queue may be traversed in either direction.
 73 *
 74 * A circle queue is headed by a pair of pointers, one to the head of the
 75 * list and the other to the tail of the list. The elements are doubly
 76 * linked so that an arbitrary element can be removed without a need to
 77 * traverse the list. New elements can be added to the list before or after
 78 * an existing element, at the head of the list, or at the end of the list.
 79 * A circle queue may be traversed in either direction, but has a more
 80 * complex end of list detection.
 81 *
 82 * For details on the use of these macros, see the queue(3) manual page.
 83 */
 84
 85#ifdef QUEUE_MACRO_DEBUG
 86#define _Q_INVALIDATE(a) (a) = ((void *)-1)
 87#else
 88#define _Q_INVALIDATE(a)
 89#endif
 90
 91/*
 92 * Singly-linked List definitions.
 93 */
 94#define SLIST_HEAD(name, type)						\
 95struct name {								\
 96	struct type *slh_first;	/* first element */			\
 97}
 98 
 99#define	SLIST_HEAD_INITIALIZER(head)					\
100	{ NULL }
101
102#ifdef SLIST_ENTRY
103#undef SLIST_ENTRY
104#endif
105
106#define SLIST_ENTRY(type)						\
107struct {								\
108	struct type *sle_next;	/* next element */			\
109}
110 
111/*
112 * Singly-linked List access methods.
113 */
114#define	SLIST_FIRST(head)	((head)->slh_first)
115#define	SLIST_END(head)		NULL
116#define	SLIST_EMPTY(head)	(SLIST_FIRST(head) == SLIST_END(head))
117#define	SLIST_NEXT(elm, field)	((elm)->field.sle_next)
118
119#define	SLIST_FOREACH(var, head, field)					\
120	for((var) = SLIST_FIRST(head);					\
121	    (var) != SLIST_END(head);					\
122	    (var) = SLIST_NEXT(var, field))
123
124#define	SLIST_FOREACH_PREVPTR(var, varp, head, field)			\
125	for ((varp) = &SLIST_FIRST((head));				\
126	    ((var) = *(varp)) != SLIST_END(head);			\
127	    (varp) = &SLIST_NEXT((var), field))
128
129/*
130 * Singly-linked List functions.
131 */
132#define	SLIST_INIT(head) {						\
133	SLIST_FIRST(head) = SLIST_END(head);				\
134}
135
136#define	SLIST_INSERT_AFTER(slistelm, elm, field) do {			\
137	(elm)->field.sle_next = (slistelm)->field.sle_next;		\
138	(slistelm)->field.sle_next = (elm);				\
139} while (0)
140
141#define	SLIST_INSERT_HEAD(head, elm, field) do {			\
142	(elm)->field.sle_next = (head)->slh_first;			\
143	(head)->slh_first = (elm);					\
144} while (0)
145
146#define	SLIST_REMOVE_NEXT(head, elm, field) do {			\
147	(elm)->field.sle_next = (elm)->field.sle_next->field.sle_next;	\
148} while (0)
149
150#define	SLIST_REMOVE_HEAD(head, field) do {				\
151	(head)->slh_first = (head)->slh_first->field.sle_next;		\
152} while (0)
153
154#define SLIST_REMOVE(head, elm, type, field) do {			\
155	if ((head)->slh_first == (elm)) {				\
156		SLIST_REMOVE_HEAD((head), field);			\
157	} else {							\
158		struct type *curelm = (head)->slh_first;		\
159									\
160		while (curelm->field.sle_next != (elm))			\
161			curelm = curelm->field.sle_next;		\
162		curelm->field.sle_next =				\
163		    curelm->field.sle_next->field.sle_next;		\
164		_Q_INVALIDATE((elm)->field.sle_next);			\
165	}								\
166} while (0)
167
168/*
169 * List definitions.
170 */
171#define LIST_HEAD(name, type)						\
172struct name {								\
173	struct type *lh_first;	/* first element */			\
174}
175
176#define LIST_HEAD_INITIALIZER(head)					\
177	{ NULL }
178
179#define LIST_ENTRY(type)						\
180struct {								\
181	struct type *le_next;	/* next element */			\
182	struct type **le_prev;	/* address of previous next element */	\
183}
184
185/*
186 * List access methods
187 */
188#define	LIST_FIRST(head)		((head)->lh_first)
189#define	LIST_END(head)			NULL
190#define	LIST_EMPTY(head)		(LIST_FIRST(head) == LIST_END(head))
191#define	LIST_NEXT(elm, field)		((elm)->field.le_next)
192
193#define LIST_FOREACH(var, head, field)					\
194	for((var) = LIST_FIRST(head);					\
195	    (var)!= LIST_END(head);					\
196	    (var) = LIST_NEXT(var, field))
197
198/*
199 * List functions.
200 */
201#define	LIST_INIT(head) do {						\
202	LIST_FIRST(head) = LIST_END(head);				\
203} while (0)
204
205#define LIST_INSERT_AFTER(listelm, elm, field) do {			\
206	if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)	\
207		(listelm)->field.le_next->field.le_prev =		\
208		    &(elm)->field.le_next;				\
209	(listelm)->field.le_next = (elm);				\
210	(elm)->field.le_prev = &(listelm)->field.le_next;		\
211} while (0)
212
213#define	LIST_INSERT_BEFORE(listelm, elm, field) do {			\
214	(elm)->field.le_prev = (listelm)->field.le_prev;		\
215	(elm)->field.le_next = (listelm);				\
216	*(listelm)->field.le_prev = (elm);				\
217	(listelm)->field.le_prev = &(elm)->field.le_next;		\
218} while (0)
219
220#define LIST_INSERT_HEAD(head, elm, field) do {				\
221	if (((elm)->field.le_next = (head)->lh_first) != NULL)		\
222		(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
223	(head)->lh_first = (elm);					\
224	(elm)->field.le_prev = &(head)->lh_first;			\
225} while (0)
226
227#define LIST_REMOVE(elm, field) do {					\
228	if ((elm)->field.le_next != NULL)				\
229		(elm)->field.le_next->field.le_prev =			\
230		    (elm)->field.le_prev;				\
231	*(elm)->field.le_prev = (elm)->field.le_next;			\
232	_Q_INVALIDATE((elm)->field.le_prev);				\
233	_Q_INVALIDATE((elm)->field.le_next);				\
234} while (0)
235
236#define LIST_REPLACE(elm, elm2, field) do {				\
237	if (((elm2)->field.le_next = (elm)->field.le_next) != NULL)	\
238		(elm2)->field.le_next->field.le_prev =			\
239		    &(elm2)->field.le_next;				\
240	(elm2)->field.le_prev = (elm)->field.le_prev;			\
241	*(elm2)->field.le_prev = (elm2);				\
242	_Q_INVALIDATE((elm)->field.le_prev);				\
243	_Q_INVALIDATE((elm)->field.le_next);				\
244} while (0)
245
246/*
247 * Simple queue definitions.
248 */
249#define SIMPLEQ_HEAD(name, type)					\
250struct name {								\
251	struct type *sqh_first;	/* first element */			\
252	struct type **sqh_last;	/* addr of last next element */		\
253}
254
255#define SIMPLEQ_HEAD_INITIALIZER(head)					\
256	{ NULL, &(head).sqh_first }
257
258#define SIMPLEQ_ENTRY(type)						\
259struct {								\
260	struct type *sqe_next;	/* next element */			\
261}
262
263/*
264 * Simple queue access methods.
265 */
266#define	SIMPLEQ_FIRST(head)	    ((head)->sqh_first)
267#define	SIMPLEQ_END(head)	    NULL
268#define	SIMPLEQ_EMPTY(head)	    (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
269#define	SIMPLEQ_NEXT(elm, field)    ((elm)->field.sqe_next)
270
271#define SIMPLEQ_FOREACH(var, head, field)				\
272	for((var) = SIMPLEQ_FIRST(head);				\
273	    (var) != SIMPLEQ_END(head);					\
274	    (var) = SIMPLEQ_NEXT(var, field))
275
276/*
277 * Simple queue functions.
278 */
279#define	SIMPLEQ_INIT(head) do {						\
280	(head)->sqh_first = NULL;					\
281	(head)->sqh_last = &(head)->sqh_first;				\
282} while (0)
283
284#define SIMPLEQ_INSERT_HEAD(head, elm, field) do {			\
285	if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)	\
286		(head)->sqh_last = &(elm)->field.sqe_next;		\
287	(head)->sqh_first = (elm);					\
288} while (0)
289
290#define SIMPLEQ_INSERT_TAIL(head, elm, field) do {			\
291	(elm)->field.sqe_next = NULL;					\
292	*(head)->sqh_last = (elm);					\
293	(head)->sqh_last = &(elm)->field.sqe_next;			\
294} while (0)
295
296#define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
297	if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
298		(head)->sqh_last = &(elm)->field.sqe_next;		\
299	(listelm)->field.sqe_next = (elm);				\
300} while (0)
301
302#define SIMPLEQ_REMOVE_HEAD(head, field) do {			\
303	if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
304		(head)->sqh_last = &(head)->sqh_first;			\
305} while (0)
306
307/*
308 * Tail queue definitions.
309 */
310#define TAILQ_HEAD(name, type)						\
311struct name {								\
312	struct type *tqh_first;	/* first element */			\
313	struct type **tqh_last;	/* addr of last next element */		\
314}
315
316#define TAILQ_HEAD_INITIALIZER(head)					\
317	{ NULL, &(head).tqh_first }
318
319#define TAILQ_ENTRY(type)						\
320struct {								\
321	struct type *tqe_next;	/* next element */			\
322	struct type **tqe_prev;	/* address of previous next element */	\
323}
324
325/* 
326 * tail queue access methods 
327 */
328#define	TAILQ_FIRST(head)		((head)->tqh_first)
329#define	TAILQ_END(head)			NULL
330#define	TAILQ_NEXT(elm, field)		((elm)->field.tqe_next)
331#define TAILQ_LAST(head, headname)					\
332	(*(((struct headname *)((head)->tqh_last))->tqh_last))
333/* XXX */
334#define TAILQ_PREV(elm, headname, field)				\
335	(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
336#define	TAILQ_EMPTY(head)						\
337	(TAILQ_FIRST(head) == TAILQ_END(head))
338
339#define TAILQ_FOREACH(var, head, field)					\
340	for((var) = TAILQ_FIRST(head);					\
341	    (var) != TAILQ_END(head);					\
342	    (var) = TAILQ_NEXT(var, field))
343
344#define TAILQ_FOREACH_REVERSE(var, head, headname, field)		\
345	for((var) = TAILQ_LAST(head, headname);				\
346	    (var) != TAILQ_END(head);					\
347	    (var) = TAILQ_PREV(var, headname, field))
348
349/*
350 * Tail queue functions.
351 */
352#define	TAILQ_INIT(head) do {						\
353	(head)->tqh_first = NULL;					\
354	(head)->tqh_last = &(head)->tqh_first;				\
355} while (0)
356
357#define TAILQ_INSERT_HEAD(head, elm, field) do {			\
358	if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)	\
359		(head)->tqh_first->field.tqe_prev =			\
360		    &(elm)->field.tqe_next;				\
361	else								\
362		(head)->tqh_last = &(elm)->field.tqe_next;		\
363	(head)->tqh_first = (elm);					\
364	(elm)->field.tqe_prev = &(head)->tqh_first;			\
365} while (0)
366
367#define TAILQ_INSERT_TAIL(head, elm, field) do {			\
368	(elm)->field.tqe_next = NULL;					\
369	(elm)->field.tqe_prev = (head)->tqh_last;			\
370	*(head)->tqh_last = (elm);					\
371	(head)->tqh_last = &(elm)->field.tqe_next;			\
372} while (0)
373
374#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
375	if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
376		(elm)->field.tqe_next->field.tqe_prev =			\
377		    &(elm)->field.tqe_next;				\
378	else								\
379		(head)->tqh_last = &(elm)->field.tqe_next;		\
380	(listelm)->field.tqe_next = (elm);				\
381	(elm)->field.tqe_prev = &(listelm)->field.tqe_next;		\
382} while (0)
383
384#define	TAILQ_INSERT_BEFORE(listelm, elm, field) do {			\
385	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
386	(elm)->field.tqe_next = (listelm);				\
387	*(listelm)->field.tqe_prev = (elm);				\
388	(listelm)->field.tqe_prev = &(elm)->field.tqe_next;		\
389} while (0)
390
391#define TAILQ_REMOVE(head, elm, field) do {				\
392	if (((elm)->field.tqe_next) != NULL)				\
393		(elm)->field.tqe_next->field.tqe_prev =			\
394		    (elm)->field.tqe_prev;				\
395	else								\
396		(head)->tqh_last = (elm)->field.tqe_prev;		\
397	*(elm)->field.tqe_prev = (elm)->field.tqe_next;			\
398	_Q_INVALIDATE((elm)->field.tqe_prev);				\
399	_Q_INVALIDATE((elm)->field.tqe_next);				\
400} while (0)
401
402#define TAILQ_REPLACE(head, elm, elm2, field) do {			\
403	if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL)	\
404		(elm2)->field.tqe_next->field.tqe_prev =		\
405		    &(elm2)->field.tqe_next;				\
406	else								\
407		(head)->tqh_last = &(elm2)->field.tqe_next;		\
408	(elm2)->field.tqe_prev = (elm)->field.tqe_prev;			\
409	*(elm2)->field.tqe_prev = (elm2);				\
410	_Q_INVALIDATE((elm)->field.tqe_prev);				\
411	_Q_INVALIDATE((elm)->field.tqe_next);				\
412} while (0)
413
414/*
415 * Circular queue definitions.
416 */
417#define CIRCLEQ_HEAD(name, type)					\
418struct name {								\
419	struct type *cqh_first;		/* first element */		\
420	struct type *cqh_last;		/* last element */		\
421}
422
423#define CIRCLEQ_HEAD_INITIALIZER(head)					\
424	{ CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
425
426#define CIRCLEQ_ENTRY(type)						\
427struct {								\
428	struct type *cqe_next;		/* next element */		\
429	struct type *cqe_prev;		/* previous element */		\
430}
431
432/*
433 * Circular queue access methods 
434 */
435#define	CIRCLEQ_FIRST(head)		((head)->cqh_first)
436#define	CIRCLEQ_LAST(head)		((head)->cqh_last)
437#define	CIRCLEQ_END(head)		((void *)(head))
438#define	CIRCLEQ_NEXT(elm, field)	((elm)->field.cqe_next)
439#define	CIRCLEQ_PREV(elm, field)	((elm)->field.cqe_prev)
440#define	CIRCLEQ_EMPTY(head)						\
441	(CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
442
443#define CIRCLEQ_FOREACH(var, head, field)				\
444	for((var) = CIRCLEQ_FIRST(head);				\
445	    (var) != CIRCLEQ_END(head);					\
446	    (var) = CIRCLEQ_NEXT(var, field))
447
448#define CIRCLEQ_FOREACH_REVERSE(var, head, field)			\
449	for((var) = CIRCLEQ_LAST(head);					\
450	    (var) != CIRCLEQ_END(head);					\
451	    (var) = CIRCLEQ_PREV(var, field))
452
453/*
454 * Circular queue functions.
455 */
456#define	CIRCLEQ_INIT(head) do {						\
457	(head)->cqh_first = CIRCLEQ_END(head);				\
458	(head)->cqh_last = CIRCLEQ_END(head);				\
459} while (0)
460
461#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
462	(elm)->field.cqe_next = (listelm)->field.cqe_next;		\
463	(elm)->field.cqe_prev = (listelm);				\
464	if ((listelm)->field.cqe_next == CIRCLEQ_END(head))		\
465		(head)->cqh_last = (elm);				\
466	else								\
467		(listelm)->field.cqe_next->field.cqe_prev = (elm);	\
468	(listelm)->field.cqe_next = (elm);				\
469} while (0)
470
471#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {		\
472	(elm)->field.cqe_next = (listelm);				\
473	(elm)->field.cqe_prev = (listelm)->field.cqe_prev;		\
474	if ((listelm)->field.cqe_prev == CIRCLEQ_END(head))		\
475		(head)->cqh_first = (elm);				\
476	else								\
477		(listelm)->field.cqe_prev->field.cqe_next = (elm);	\
478	(listelm)->field.cqe_prev = (elm);				\
479} while (0)
480
481#define CIRCLEQ_INSERT_HEAD(head, elm, field) do {			\
482	(elm)->field.cqe_next = (head)->cqh_first;			\
483	(elm)->field.cqe_prev = CIRCLEQ_END(head);			\
484	if ((head)->cqh_last == CIRCLEQ_END(head))			\
485		(head)->cqh_last = (elm);				\
486	else								\
487		(head)->cqh_first->field.cqe_prev = (elm);		\
488	(head)->cqh_first = (elm);					\
489} while (0)
490
491#define CIRCLEQ_INSERT_TAIL(head, elm, field) do {			\
492	(elm)->field.cqe_next = CIRCLEQ_END(head);			\
493	(elm)->field.cqe_prev = (head)->cqh_last;			\
494	if ((head)->cqh_first == CIRCLEQ_END(head))			\
495		(head)->cqh_first = (elm);				\
496	else								\
497		(head)->cqh_last->field.cqe_next = (elm);		\
498	(head)->cqh_last = (elm);					\
499} while (0)
500
501#define	CIRCLEQ_REMOVE(head, elm, field) do {				\
502	if ((elm)->field.cqe_next == CIRCLEQ_END(head))			\
503		(head)->cqh_last = (elm)->field.cqe_prev;		\
504	else								\
505		(elm)->field.cqe_next->field.cqe_prev =			\
506		    (elm)->field.cqe_prev;				\
507	if ((elm)->field.cqe_prev == CIRCLEQ_END(head))			\
508		(head)->cqh_first = (elm)->field.cqe_next;		\
509	else								\
510		(elm)->field.cqe_prev->field.cqe_next =			\
511		    (elm)->field.cqe_next;				\
512	_Q_INVALIDATE((elm)->field.cqe_prev);				\
513	_Q_INVALIDATE((elm)->field.cqe_next);				\
514} while (0)
515
516#define CIRCLEQ_REPLACE(head, elm, elm2, field) do {			\
517	if (((elm2)->field.cqe_next = (elm)->field.cqe_next) ==		\
518	    CIRCLEQ_END(head))						\
519		(head).cqh_last = (elm2);				\
520	else								\
521		(elm2)->field.cqe_next->field.cqe_prev = (elm2);	\
522	if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) ==		\
523	    CIRCLEQ_END(head))						\
524		(head).cqh_first = (elm2);				\
525	else								\
526		(elm2)->field.cqe_prev->field.cqe_next = (elm2);	\
527	_Q_INVALIDATE((elm)->field.cqe_prev);				\
528	_Q_INVALIDATE((elm)->field.cqe_next);				\
529} while (0)
530
531#endif	/* !_SYS_QUEUE_H_ */