PageRenderTime 44ms CodeModel.GetById 16ms RepoModel.GetById 0ms app.codeStats 0ms

/PhysicalParameters/papers/BMD2010/PhysicalParametersPoster/poster.tex

http://github.com/moorepants/PhysicalParameters
LaTeX | 272 lines | 206 code | 26 blank | 40 comment | 0 complexity | 874e3bbfae16651a8365aa2299fd7f22 MD5 | raw file
  1. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  2. % LaTeX poster template
  3. % Created by Nathaniel Johnston
  4. % August 2009
  5. % http://www.nathanieljohnston.com/index.php/2009/08/latex-poster-template/
  6. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  7. \documentclass[final]{beamer}
  8. \usepackage[scale=1.24]{beamerposter}
  9. \usepackage{graphicx} % allows us to import images
  10. %-----------------------------------------------------------
  11. % Define the column width and poster size
  12. % To set effective sepwid, onecolwid and twocolwid values, first choose how many columns you want and how much separation you want between columns
  13. % The separation I chose is 0.024 and I want 4 columns
  14. % Then set onecolwid to be (1-(4+1)*0.024)/4 = 0.22
  15. % Set twocolwid to be 2*onecolwid + sepwid = 0.464
  16. %-----------------------------------------------------------
  17. \newlength{\sepwid}
  18. \newlength{\onecolwid}
  19. \newlength{\twocolwid}
  20. \newlength{\threecolwid}
  21. \setlength{\paperwidth}{1189mm}
  22. \setlength{\paperheight}{841mm}
  23. \setlength{\sepwid}{0.024\paperwidth}
  24. \setlength{\onecolwid}{0.1712\paperwidth}
  25. \setlength{\twocolwid}{0.3664\paperwidth}
  26. \setlength{\threecolwid}{0.5616\paperwidth}
  27. \setlength{\topmargin}{-0.5in}
  28. \usetheme{confposter}
  29. %-----------------------------------------------------------
  30. % Define colours (see beamerthemeconfposter.sty to change these colour definitions)
  31. %-----------------------------------------------------------
  32. \setbeamercolor{block title}{fg=ucdgold,bg=white}
  33. \setbeamercolor{block body}{fg=black,bg=white}
  34. \setbeamercolor{block alerted title}{fg=white,bg=ucdblue}
  35. \setbeamercolor{block alerted body}{fg=black,bg=ucdblue!10}
  36. %-----------------------------------------------------------
  37. % Name and authors of poster/paper/research
  38. %-----------------------------------------------------------
  39. \title{Accurate Measurement of Bicycle Parameters}
  40. \author{Jason K. Moore$^{*}$, Mont Hubbard$^{*}$, A. L. Schwab$^\dag$,
  41. J. D. G. Kooijman$^\dag$}
  42. \institute
  43. {
  44. \centering
  45. \begin{tabular}{cc}
  46. $^*$ Mechanical and Aerospace Engineering, University of California, Davis
  47. \quad
  48. & $^\dag$ Laboratory for Engineering Mechanics, Delft University of Technology\\
  49. e-mail: jkmoor@ucdavis.edu, mhubbard@ucdavis.edu
  50. & e-mail: a.l.schwab@tudelft.nl, jodikooijman@gmail.com
  51. \end{tabular}
  52. }
  53. %-----------------------------------------------------------
  54. % Start the poster itself
  55. %-----------------------------------------------------------
  56. % The \rmfamily command is used frequently throughout the poster to force a serif font to be used for the body text
  57. % Serif font is better for small text, sans-serif font is better for headers (for readability reasons)
  58. %-----------------------------------------------------------
  59. \begin{document}
  60. \frame{
  61. %\begin{frame}[t]
  62. % Divide the frame into columns
  63. \begin{columns}[t] % the [t] option aligns the column's content at the top
  64. % Empty side column for spacing
  65. \begin{column}{\sepwid}\end{column} % empty spacer column
  66. % First column with content
  67. \begin{column}{\onecolwid}
  68. \begin{block}{Introduction}
  69. \rmfamily{
  70. Accurate estimates of a bicycle's physical parameters are required for
  71. realistic dynamic simulations and analysis. For the most basic models the
  72. geometry, mass, mass location and mass distribution of each rigid body
  73. must be measured. In particular, we are concerned with the measurement of
  74. the non-minimal set of 25 parameters required for the benchmark bicycle
  75. presented in~\cite{Meijaard2007}.
  76. The experimental methods described herein are based primarily on
  77. the work done in \cite{Kooijman2006} and \cite{Roland1971} but have been
  78. refined for improved accuracy and methodology. We measured the
  79. characteristics of six different bicycles, two of which were set up in two
  80. different configurations. We provide a total of eight different parameter sets
  81. that can be used with, but are not limited to, the benchmark bicycle model. The
  82. accuracies of all the measurements are presented along with a comparison of
  83. the linear characteristics of the eight bicycles.
  84. \\
  85. \scriptsize{\url{http://github.com/moorepants/PhysicalParameters}}
  86. }
  87. \end{block}
  88. \vskip2ex
  89. % Info about the model
  90. \begin{alertblock}{Whipple Bicycle Model}
  91. \small{\rmfamily{
  92. The linear unforced two degree-of-freedom, $\mathbf{q}$
  93. = [steer and roll], linear Whipple model takes the form:
  94. \begin{equation}
  95. \mathbf{M\ddot{q}}
  96. +v\mathbf{C}_1\mathbf{\dot{q}}
  97. +\left[g\mathbf{K}_0
  98. +v^2\mathbf{K}_2\right]\mathbf{q}
  99. =0
  100. \label{eq:canonical}
  101. \end{equation}
  102. where the entries to the $\mathbf{M}$, $\mathbf{C}_1$, $\mathbf{K}_0$ and $\mathbf{K}_2$
  103. matrices are combinations of 25 of the bicycle's physical parameters that
  104. include the geometry, mass, mass location and mass distribution of the four
  105. rigid bodies.
  106. }}
  107. \end{alertblock}
  108. \end{column}
  109. % Spacer column
  110. \begin{column}{\sepwid}\end{column} % empty spacer column
  111. % Second Column
  112. \begin{column}{\twocolwid}
  113. \begin{block}{Accuracy}
  114. \rmfamily{
  115. Following in the vein of \cite{Roland1971} we used error propagation theory to
  116. calculate the accuracy of the estimates of 25 benchmark bicycle parameters.
  117. We first estimate
  118. the standard deviation of the raw measurements. If $x$ is a parameter and is a function of
  119. the raw measurements, $u,v,\ldots$, then $x$ is a random variable defined as
  120. $x=f(u,v,\ldots)$. The sample variance of $x$ is defined as
  121. \begin{equation}
  122. s_x^2 = s_u^2\left(\frac{\partial x}{\partial u}\right)^2 +
  123. s_v^2\left(\frac{\partial x}{\partial v}\right)^2 +
  124. 2s_{uv}\left(\frac{\partial x}{\partial u}\right)\left(\frac{\partial x}{\partial v}\right)
  125. + \ldots
  126. \label{eqn:variance}
  127. \end{equation}
  128. where $s_u$ is the variance and $s_{uv}$ is the covariance. If $u$ and $v$ are uncorrelated then $s_{uv}=0$ but the cross correlations
  129. must be taken into account otherwise.
  130. }
  131. \end{block}
  132. \begin{columns}[t, totalwidth=\twocolwid]
  133. \begin{column}{\onecolwid}
  134. \begin{block}{Bicycles}
  135. \rmfamily{
  136. The six bicycles, chosen for both variety and convenience, are as follows:
  137. \emph{Batavus Browser}, a Dutch style city bicycle measured with and without
  138. instrumentation; \emph{Batavus Stratos
  139. Deluxe}, a Dutch style sporty city bicycle; \emph{Batavus Crescendo Deluxe} a
  140. Dutch style city bicycle with a suspended fork; \emph{Gary Fisher Mountain
  141. Bike}, a hardtail mountain bicycle; \emph{Bianchi Pista}, a modern steel frame
  142. track racing bicycle; and \emph{Yellow Bicycle}, a stripped-down aluminum frame
  143. road bicycle measured in two configurations, the second with the fork rotated
  144. in the headtube 180 degrees for larger trail.
  145. \\
  146. \begin{center}
  147. \begin{tabular}{ccc}
  148. \includegraphics[width=0.333\onecolwid]{../../../images/browserIns_sub.jpg} &
  149. \includegraphics[width=0.333\onecolwid]{../../../images/crescendo_sub.jpg} &
  150. \includegraphics[width=0.333\onecolwid]{../../../images/fisher_sub.jpg}
  151. \\
  152. \includegraphics[width=0.333\onecolwid]{../../../images/pista_sub.jpg} &
  153. \includegraphics[width=0.333\onecolwid]{../../../images/stratos_sub.jpg} &
  154. \includegraphics[width=0.333\onecolwid]{../../../images/yellow_sub.jpg}
  155. \end{tabular}
  156. \end{center}
  157. }
  158. \end{block}
  159. \end{column}
  160. \begin{column}{\onecolwid}
  161. \begin{alertblock}{Eigenanalysis}
  162. \rmfamily{
  163. Distinct variation is apparent among the bicycles' eigenvalues. Frequency,
  164. damping, and the stable speed range can be compared to the physical
  165. differences of the bicycles. The bicycles also exhibit two complex root
  166. pairs at low speeds.
  167. }
  168. \\
  169. \begin{center}
  170. \includegraphics[width=.9\onecolwid]{../../../plots/Bike/eig_plot.pdf}
  171. \end{center}
  172. \rmfamily{
  173. Less variation is seen among the bicycles when a
  174. rigid rider is added, except in the stable speed ranges.
  175. }
  176. \\
  177. \begin{center}
  178. \includegraphics[width=.9\onecolwid]{../../../plots/BikeRider/eig_plot.pdf}
  179. \end{center}
  180. \end{alertblock}
  181. \end{column}
  182. \end{columns}
  183. \end{column}
  184. % Spacer column
  185. \begin{column}{\sepwid}\end{column} % empty spacer column
  186. % The fourth column
  187. \begin{column}{\onecolwid}
  188. \begin{block}{Measurements}
  189. \rmfamily{
  190. We estimated the wheel radii by measuring the distance traveled
  191. by the loaded wheels, the trail by directly measuring the fork
  192. offset and the wheelbase and headtube angle by direct measurement.
  193. We measured the mass of the four bodies (fork, frame, and
  194. wheels) directly using a precision scale. We found the location of
  195. the mass center by hanging the bodies in multiple orientations
  196. through their mass centers.
  197. }
  198. \\
  199. \begin{center}
  200. \includegraphics[width=0.8\onecolwid]{../../../figures/angles.pdf}
  201. \end{center}
  202. \rmfamily{
  203. The in- and out-of-symmetric plane moments of inertia were estimated by
  204. hanging the bodies as torsional and compound pendulums,
  205. respectively. We then estimated the period of oscillation by
  206. fitting a decaying oscillation function to a voltage signal from a
  207. rate gyro after the pendulums were perturbed. The period can then
  208. be correlated to the inertia.
  209. }
  210. \\
  211. \begin{center}
  212. \includegraphics[width=0.90\onecolwid]{../../../plots/PendFit/BrowserFrameCompoundFirst1.pdf}
  213. \end{center}
  214. \end{block}
  215. \end{column}
  216. % Spacer column
  217. \begin{column}{\sepwid}\end{column} % empty spacer column
  218. \begin{column}{\onecolwid}
  219. % Frequency Response
  220. \begin{alertblock}{Frequency Response}
  221. \small{\rmfamily{
  222. The steer torque to roll angle Bode plot reveals up to 15 dB variation
  223. among the bikes at 2 m/s and some variation in phase.
  224. }}
  225. \\
  226. \begin{center}
  227. \includegraphics[width=.85\onecolwid]{../../../plots/Bike/Bode/Tdel2phi.pdf}
  228. \\
  229. \includegraphics[width=.85\onecolwid]{../../../plots/BikeRider/Bode/Tdel2phi.pdf}
  230. \end{center}
  231. \end{alertblock}
  232. % References
  233. \begin{block}{References}
  234. \small{\rmfamily{
  235. \bibliographystyle{plain}
  236. \bibliography{bicycle}
  237. }}
  238. \end{block}
  239. \end{column}
  240. %\vskip2.5ex
  241. % Last spacer column
  242. \begin{column}{\sepwid}\end{column} % empty spacer column
  243. \end{columns}
  244. }
  245. %\end{frame}
  246. \end{document}