/third_party/gofrontend/libgo/go/compress/flate/huffman_bit_writer.go
Go | 517 lines | 413 code | 40 blank | 64 comment | 86 complexity | 627d9f1a641763732a162077df7ea776 MD5 | raw file
Possible License(s): BSD-3-Clause, MIT
- // Copyright 2009 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package flate
- import (
- "io"
- "math"
- )
- const (
- // The largest offset code.
- offsetCodeCount = 30
- // The special code used to mark the end of a block.
- endBlockMarker = 256
- // The first length code.
- lengthCodesStart = 257
- // The number of codegen codes.
- codegenCodeCount = 19
- badCode = 255
- )
- // The number of extra bits needed by length code X - LENGTH_CODES_START.
- var lengthExtraBits = []int8{
- /* 257 */ 0, 0, 0,
- /* 260 */ 0, 0, 0, 0, 0, 1, 1, 1, 1, 2,
- /* 270 */ 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,
- /* 280 */ 4, 5, 5, 5, 5, 0,
- }
- // The length indicated by length code X - LENGTH_CODES_START.
- var lengthBase = []uint32{
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 10,
- 12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
- 64, 80, 96, 112, 128, 160, 192, 224, 255,
- }
- // offset code word extra bits.
- var offsetExtraBits = []int8{
- 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
- 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
- 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
- /* extended window */
- 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20,
- }
- var offsetBase = []uint32{
- /* normal deflate */
- 0x000000, 0x000001, 0x000002, 0x000003, 0x000004,
- 0x000006, 0x000008, 0x00000c, 0x000010, 0x000018,
- 0x000020, 0x000030, 0x000040, 0x000060, 0x000080,
- 0x0000c0, 0x000100, 0x000180, 0x000200, 0x000300,
- 0x000400, 0x000600, 0x000800, 0x000c00, 0x001000,
- 0x001800, 0x002000, 0x003000, 0x004000, 0x006000,
- /* extended window */
- 0x008000, 0x00c000, 0x010000, 0x018000, 0x020000,
- 0x030000, 0x040000, 0x060000, 0x080000, 0x0c0000,
- 0x100000, 0x180000, 0x200000, 0x300000,
- }
- // The odd order in which the codegen code sizes are written.
- var codegenOrder = []uint32{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
- type huffmanBitWriter struct {
- w io.Writer
- // Data waiting to be written is bytes[0:nbytes]
- // and then the low nbits of bits.
- bits uint32
- nbits uint32
- bytes [64]byte
- nbytes int
- literalFreq []int32
- offsetFreq []int32
- codegen []uint8
- codegenFreq []int32
- literalEncoding *huffmanEncoder
- offsetEncoding *huffmanEncoder
- codegenEncoding *huffmanEncoder
- err error
- }
- func newHuffmanBitWriter(w io.Writer) *huffmanBitWriter {
- return &huffmanBitWriter{
- w: w,
- literalFreq: make([]int32, maxNumLit),
- offsetFreq: make([]int32, offsetCodeCount),
- codegen: make([]uint8, maxNumLit+offsetCodeCount+1),
- codegenFreq: make([]int32, codegenCodeCount),
- literalEncoding: newHuffmanEncoder(maxNumLit),
- offsetEncoding: newHuffmanEncoder(offsetCodeCount),
- codegenEncoding: newHuffmanEncoder(codegenCodeCount),
- }
- }
- func (w *huffmanBitWriter) reset(writer io.Writer) {
- w.w = writer
- w.bits, w.nbits, w.nbytes, w.err = 0, 0, 0, nil
- w.bytes = [64]byte{}
- for i := range w.codegen {
- w.codegen[i] = 0
- }
- for _, s := range [...][]int32{w.literalFreq, w.offsetFreq, w.codegenFreq} {
- for i := range s {
- s[i] = 0
- }
- }
- for _, enc := range [...]*huffmanEncoder{
- w.literalEncoding,
- w.offsetEncoding,
- w.codegenEncoding} {
- for i := range enc.code {
- enc.code[i] = 0
- }
- for i := range enc.codeBits {
- enc.codeBits[i] = 0
- }
- }
- }
- func (w *huffmanBitWriter) flushBits() {
- if w.err != nil {
- w.nbits = 0
- return
- }
- bits := w.bits
- w.bits >>= 16
- w.nbits -= 16
- n := w.nbytes
- w.bytes[n] = byte(bits)
- w.bytes[n+1] = byte(bits >> 8)
- if n += 2; n >= len(w.bytes) {
- _, w.err = w.w.Write(w.bytes[0:])
- n = 0
- }
- w.nbytes = n
- }
- func (w *huffmanBitWriter) flush() {
- if w.err != nil {
- w.nbits = 0
- return
- }
- n := w.nbytes
- if w.nbits > 8 {
- w.bytes[n] = byte(w.bits)
- w.bits >>= 8
- w.nbits -= 8
- n++
- }
- if w.nbits > 0 {
- w.bytes[n] = byte(w.bits)
- w.nbits = 0
- n++
- }
- w.bits = 0
- _, w.err = w.w.Write(w.bytes[0:n])
- w.nbytes = 0
- }
- func (w *huffmanBitWriter) writeBits(b, nb int32) {
- w.bits |= uint32(b) << w.nbits
- if w.nbits += uint32(nb); w.nbits >= 16 {
- w.flushBits()
- }
- }
- func (w *huffmanBitWriter) writeBytes(bytes []byte) {
- if w.err != nil {
- return
- }
- n := w.nbytes
- if w.nbits == 8 {
- w.bytes[n] = byte(w.bits)
- w.nbits = 0
- n++
- }
- if w.nbits != 0 {
- w.err = InternalError("writeBytes with unfinished bits")
- return
- }
- if n != 0 {
- _, w.err = w.w.Write(w.bytes[0:n])
- if w.err != nil {
- return
- }
- }
- w.nbytes = 0
- _, w.err = w.w.Write(bytes)
- }
- // RFC 1951 3.2.7 specifies a special run-length encoding for specifying
- // the literal and offset lengths arrays (which are concatenated into a single
- // array). This method generates that run-length encoding.
- //
- // The result is written into the codegen array, and the frequencies
- // of each code is written into the codegenFreq array.
- // Codes 0-15 are single byte codes. Codes 16-18 are followed by additional
- // information. Code badCode is an end marker
- //
- // numLiterals The number of literals in literalEncoding
- // numOffsets The number of offsets in offsetEncoding
- func (w *huffmanBitWriter) generateCodegen(numLiterals int, numOffsets int) {
- for i := range w.codegenFreq {
- w.codegenFreq[i] = 0
- }
- // Note that we are using codegen both as a temporary variable for holding
- // a copy of the frequencies, and as the place where we put the result.
- // This is fine because the output is always shorter than the input used
- // so far.
- codegen := w.codegen // cache
- // Copy the concatenated code sizes to codegen. Put a marker at the end.
- copy(codegen[0:numLiterals], w.literalEncoding.codeBits)
- copy(codegen[numLiterals:numLiterals+numOffsets], w.offsetEncoding.codeBits)
- codegen[numLiterals+numOffsets] = badCode
- size := codegen[0]
- count := 1
- outIndex := 0
- for inIndex := 1; size != badCode; inIndex++ {
- // INVARIANT: We have seen "count" copies of size that have not yet
- // had output generated for them.
- nextSize := codegen[inIndex]
- if nextSize == size {
- count++
- continue
- }
- // We need to generate codegen indicating "count" of size.
- if size != 0 {
- codegen[outIndex] = size
- outIndex++
- w.codegenFreq[size]++
- count--
- for count >= 3 {
- n := 6
- if n > count {
- n = count
- }
- codegen[outIndex] = 16
- outIndex++
- codegen[outIndex] = uint8(n - 3)
- outIndex++
- w.codegenFreq[16]++
- count -= n
- }
- } else {
- for count >= 11 {
- n := 138
- if n > count {
- n = count
- }
- codegen[outIndex] = 18
- outIndex++
- codegen[outIndex] = uint8(n - 11)
- outIndex++
- w.codegenFreq[18]++
- count -= n
- }
- if count >= 3 {
- // count >= 3 && count <= 10
- codegen[outIndex] = 17
- outIndex++
- codegen[outIndex] = uint8(count - 3)
- outIndex++
- w.codegenFreq[17]++
- count = 0
- }
- }
- count--
- for ; count >= 0; count-- {
- codegen[outIndex] = size
- outIndex++
- w.codegenFreq[size]++
- }
- // Set up invariant for next time through the loop.
- size = nextSize
- count = 1
- }
- // Marker indicating the end of the codegen.
- codegen[outIndex] = badCode
- }
- func (w *huffmanBitWriter) writeCode(code *huffmanEncoder, literal uint32) {
- if w.err != nil {
- return
- }
- w.writeBits(int32(code.code[literal]), int32(code.codeBits[literal]))
- }
- // Write the header of a dynamic Huffman block to the output stream.
- //
- // numLiterals The number of literals specified in codegen
- // numOffsets The number of offsets specified in codegen
- // numCodegens The number of codegens used in codegen
- func (w *huffmanBitWriter) writeDynamicHeader(numLiterals int, numOffsets int, numCodegens int, isEof bool) {
- if w.err != nil {
- return
- }
- var firstBits int32 = 4
- if isEof {
- firstBits = 5
- }
- w.writeBits(firstBits, 3)
- w.writeBits(int32(numLiterals-257), 5)
- w.writeBits(int32(numOffsets-1), 5)
- w.writeBits(int32(numCodegens-4), 4)
- for i := 0; i < numCodegens; i++ {
- value := w.codegenEncoding.codeBits[codegenOrder[i]]
- w.writeBits(int32(value), 3)
- }
- i := 0
- for {
- var codeWord int = int(w.codegen[i])
- i++
- if codeWord == badCode {
- break
- }
- // The low byte contains the actual code to generate.
- w.writeCode(w.codegenEncoding, uint32(codeWord))
- switch codeWord {
- case 16:
- w.writeBits(int32(w.codegen[i]), 2)
- i++
- break
- case 17:
- w.writeBits(int32(w.codegen[i]), 3)
- i++
- break
- case 18:
- w.writeBits(int32(w.codegen[i]), 7)
- i++
- break
- }
- }
- }
- func (w *huffmanBitWriter) writeStoredHeader(length int, isEof bool) {
- if w.err != nil {
- return
- }
- var flag int32
- if isEof {
- flag = 1
- }
- w.writeBits(flag, 3)
- w.flush()
- w.writeBits(int32(length), 16)
- w.writeBits(int32(^uint16(length)), 16)
- }
- func (w *huffmanBitWriter) writeFixedHeader(isEof bool) {
- if w.err != nil {
- return
- }
- // Indicate that we are a fixed Huffman block
- var value int32 = 2
- if isEof {
- value = 3
- }
- w.writeBits(value, 3)
- }
- func (w *huffmanBitWriter) writeBlock(tokens []token, eof bool, input []byte) {
- if w.err != nil {
- return
- }
- for i := range w.literalFreq {
- w.literalFreq[i] = 0
- }
- for i := range w.offsetFreq {
- w.offsetFreq[i] = 0
- }
- n := len(tokens)
- tokens = tokens[0 : n+1]
- tokens[n] = endBlockMarker
- for _, t := range tokens {
- switch t.typ() {
- case literalType:
- w.literalFreq[t.literal()]++
- case matchType:
- length := t.length()
- offset := t.offset()
- w.literalFreq[lengthCodesStart+lengthCode(length)]++
- w.offsetFreq[offsetCode(offset)]++
- }
- }
- // get the number of literals
- numLiterals := len(w.literalFreq)
- for w.literalFreq[numLiterals-1] == 0 {
- numLiterals--
- }
- // get the number of offsets
- numOffsets := len(w.offsetFreq)
- for numOffsets > 0 && w.offsetFreq[numOffsets-1] == 0 {
- numOffsets--
- }
- if numOffsets == 0 {
- // We haven't found a single match. If we want to go with the dynamic encoding,
- // we should count at least one offset to be sure that the offset huffman tree could be encoded.
- w.offsetFreq[0] = 1
- numOffsets = 1
- }
- w.literalEncoding.generate(w.literalFreq, 15)
- w.offsetEncoding.generate(w.offsetFreq, 15)
- storedBytes := 0
- if input != nil {
- storedBytes = len(input)
- }
- var extraBits int64
- var storedSize int64 = math.MaxInt64
- if storedBytes <= maxStoreBlockSize && input != nil {
- storedSize = int64((storedBytes + 5) * 8)
- // We only bother calculating the costs of the extra bits required by
- // the length of offset fields (which will be the same for both fixed
- // and dynamic encoding), if we need to compare those two encodings
- // against stored encoding.
- for lengthCode := lengthCodesStart + 8; lengthCode < numLiterals; lengthCode++ {
- // First eight length codes have extra size = 0.
- extraBits += int64(w.literalFreq[lengthCode]) * int64(lengthExtraBits[lengthCode-lengthCodesStart])
- }
- for offsetCode := 4; offsetCode < numOffsets; offsetCode++ {
- // First four offset codes have extra size = 0.
- extraBits += int64(w.offsetFreq[offsetCode]) * int64(offsetExtraBits[offsetCode])
- }
- }
- // Figure out smallest code.
- // Fixed Huffman baseline.
- var size = int64(3) +
- fixedLiteralEncoding.bitLength(w.literalFreq) +
- fixedOffsetEncoding.bitLength(w.offsetFreq) +
- extraBits
- var literalEncoding = fixedLiteralEncoding
- var offsetEncoding = fixedOffsetEncoding
- // Dynamic Huffman?
- var numCodegens int
- // Generate codegen and codegenFrequencies, which indicates how to encode
- // the literalEncoding and the offsetEncoding.
- w.generateCodegen(numLiterals, numOffsets)
- w.codegenEncoding.generate(w.codegenFreq, 7)
- numCodegens = len(w.codegenFreq)
- for numCodegens > 4 && w.codegenFreq[codegenOrder[numCodegens-1]] == 0 {
- numCodegens--
- }
- dynamicHeader := int64(3+5+5+4+(3*numCodegens)) +
- w.codegenEncoding.bitLength(w.codegenFreq) +
- int64(extraBits) +
- int64(w.codegenFreq[16]*2) +
- int64(w.codegenFreq[17]*3) +
- int64(w.codegenFreq[18]*7)
- dynamicSize := dynamicHeader +
- w.literalEncoding.bitLength(w.literalFreq) +
- w.offsetEncoding.bitLength(w.offsetFreq)
- if dynamicSize < size {
- size = dynamicSize
- literalEncoding = w.literalEncoding
- offsetEncoding = w.offsetEncoding
- }
- // Stored bytes?
- if storedSize < size {
- w.writeStoredHeader(storedBytes, eof)
- w.writeBytes(input[0:storedBytes])
- return
- }
- // Huffman.
- if literalEncoding == fixedLiteralEncoding {
- w.writeFixedHeader(eof)
- } else {
- w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof)
- }
- for _, t := range tokens {
- switch t.typ() {
- case literalType:
- w.writeCode(literalEncoding, t.literal())
- break
- case matchType:
- // Write the length
- length := t.length()
- lengthCode := lengthCode(length)
- w.writeCode(literalEncoding, lengthCode+lengthCodesStart)
- extraLengthBits := int32(lengthExtraBits[lengthCode])
- if extraLengthBits > 0 {
- extraLength := int32(length - lengthBase[lengthCode])
- w.writeBits(extraLength, extraLengthBits)
- }
- // Write the offset
- offset := t.offset()
- offsetCode := offsetCode(offset)
- w.writeCode(offsetEncoding, offsetCode)
- extraOffsetBits := int32(offsetExtraBits[offsetCode])
- if extraOffsetBits > 0 {
- extraOffset := int32(offset - offsetBase[offsetCode])
- w.writeBits(extraOffset, extraOffsetBits)
- }
- break
- default:
- panic("unknown token type: " + string(t))
- }
- }
- }