/SHCTools/stoneholmes/stoneholmesstat.m

http://github.com/horchler/SHCTools · Objective C · 181 lines · 164 code · 17 blank · 0 comment · 47 complexity · eb62f37e71e9762097501c7f9b8be602 MD5 · raw file

  1. function [m,v]=stoneholmesstat(varargin)
  2. %STONEHOLMESSTAT Mean and variance for the Stone-Holmes distribution.
  3. % [M, V] = STONEHOLMESSTAT(DELTA,EPSILON,LAMBDA_U,LAMBDA_S) returns the mean,
  4. % M, and variance, V, of the Stone-Holmes distribution with positive
  5. % parameters Delta, Epsilon, Lambda_U, and Lambda_S. Delta is the size of the
  6. % neighborhood, Epsilon (0 <= Epsilon << Delta) is the root-mean-square of the
  7. % noise, and Lambda_U and Lambda_S (Lambda_U < Lambda_S) are the absolute
  8. % value of the eigenvalues with the largest positive and negative real parts,
  9. % respectively. NaN is returned for any Delta <= 0, Epsilon < 0,
  10. % Epsilon = Inf, Lambda_U <= 0, Lambda_U = Inf, Lambda_S <= 0, or certain
  11. % illconditioned parameter combinations. The parameters must be scalars,
  12. % length M column vectors, or M-by-N-by-... size arrays. If any combination of
  13. % Delta, Epsilon, Lambda_U, or Lambda_S are column vectors, they will be
  14. % applied across the N-dimensional columns of M and V. The size of the outputs
  15. % M and V is that of Delta, Epsilon, Lambda_U, and Lambda_S if all are equal
  16. % size arrays. If any subset of the parameters are scalars or column vectors,
  17. % the size of the outputs is the size of the other parameter(s).
  18. %
  19. % [M, V] = STONEHOLMESSTAT(THETA,LAMBDA_U,LAMBDA_S) returns the mean and
  20. % variance of the Stone-Holmes distribution in the three parameter case, where
  21. % Theta = Epsilon/Delta (0 <= Theta << 1) is the size of the noise relative to
  22. % that of the neighborhood, Delta. NaN is returned if Theta = Inf, Theta < 0,
  23. % Lambda_U <= 0, Lambda_U = Inf, or Lambda_S <= 0.
  24. %
  25. % See also:
  26. % STONEHOLMESPASSAGETIME, STONEHOLMESPDF, STONEHOLMESCDF, STONEHOLMESRND,
  27. % STONEHOLMESINV, STONEHOLMESFIT, STONEHOLMESLIKE, STONEHOLMESMODE,
  28. % STONEHOLMESMEDIAN
  29. % Uses a personally derived analytical solution and approximation based on
  30. % Eq. (2.28) in: Emily Stone and Philip Holmes, "Random Perturbations of
  31. % Heteroclinic Attractors," SIAM J. Appl. Math., Vol. 50, No. 3, pp. 726-743,
  32. % Jun. 1990. http://jstor.org/stable/2101884
  33. % Andrew D. Horchler, horchler @ gmail . com, Created 6-7-13
  34. % Revision: 1.1, 6-16-14
  35. % Check variable inputs
  36. if nargin < 3
  37. error('SHCTools:stoneholmesstat:TooFewInputs',...
  38. 'Not enough input arguments.');
  39. end
  40. if nargin > 4
  41. error('SHCTools:stoneholmesstat:TooManyInputs','Too many input arguments.');
  42. end
  43. if nargin == 3
  44. delta = 1;
  45. epsilon = varargin{1};
  46. lambda_u = varargin{2};
  47. lambda_s = varargin{3};
  48. else
  49. delta = varargin{1};
  50. epsilon = varargin{2};
  51. lambda_u = varargin{3};
  52. lambda_s = varargin{4};
  53. end
  54. % Check parameters
  55. if nargin == 4 && (~isreal(delta) || ~isfloat(delta))
  56. error('SHCTools:stoneholmesstat:DeltaInvalid',...
  57. 'Delta must be a real floating point array.');
  58. end
  59. if ~isreal(epsilon) || ~isfloat(epsilon)
  60. if nargin == 3
  61. error('SHCTools:stoneholmesstat:ThetaInvalid',...
  62. 'Theta must be a real floating point array.');
  63. else
  64. error('SHCTools:stoneholmesstat:EpsilonInvalid',...
  65. 'Epsilon must be a real floating point array.');
  66. end
  67. end
  68. if ~isreal(lambda_u) || ~isfloat(lambda_u)
  69. error('SHCTools:stoneholmesstat:Lambda_uInvalid',...
  70. 'Lambda_U must be a real floating point array.');
  71. end
  72. if ~isreal(lambda_s) || ~isfloat(lambda_s)
  73. error('SHCTools:stoneholmesstat:Lambda_sInvalid',...
  74. 'Lambda_S must be a real floating point array.');
  75. end
  76. % Check that sizes of parameter inputs are consistent, return size of Tau
  77. [szt,expansion] = stoneholmesargs('stat',size(delta),size(epsilon),...
  78. size(lambda_u),size(lambda_s));
  79. % Column vector expansion
  80. if any(expansion)
  81. z = ones(prod(szt(2:end)),1);
  82. if expansion(1)
  83. delta = delta(:,z);
  84. end
  85. if expansion(2)
  86. epsilon = epsilon(:,z);
  87. end
  88. if expansion(3)
  89. lambda_u = lambda_u(:,z);
  90. end
  91. if expansion(4)
  92. lambda_s = lambda_s(:,z);
  93. end
  94. end
  95. % Use linear indices, everything is a scalar or equal length vector after here
  96. delta = delta(:);
  97. epsilon = epsilon(:);
  98. lambda_u = lambda_u(:);
  99. lambda_s = lambda_s(:);
  100. % Logical linear indices for out-of-range parameters
  101. % Delta: (0, Inf], Epsilon: [0, Inf), Lambda_U: (0, Inf), Lambda_S: (0, Inf]
  102. i = (delta <= 0 | isnan(delta) | epsilon < 0 | isnan(epsilon) | ...
  103. lambda_u <= 0 | isnan(lambda_u) | lambda_s <= 0 | isnan(lambda_s));
  104. % Check for empty output or if all values of any parameter is out-of-range
  105. dtype = superiorfloat(delta,epsilon,lambda_u,lambda_s);
  106. if any(szt == 0) || all(i)
  107. % Return empty array or NaN array for out-of-range parameters
  108. m = NaN(szt,dtype);
  109. if nargout > 1
  110. v = NaN(szt,dtype);
  111. end
  112. else
  113. % Initialize mean and variance to zero, set out-of-range parameters to NaN
  114. m = zeros(szt,dtype);
  115. m(i) = NaN;
  116. if nargout > 1
  117. v = zeros(szt,dtype);
  118. v(i) = NaN;
  119. end
  120. % Logical linear indices for in-range parameters
  121. i = (~i & epsilon < Inf & lambda_u < Inf);
  122. % If any values in-range
  123. if any(i)
  124. if ~all(i)
  125. if ~isscalar(delta)
  126. delta = delta(i);
  127. end
  128. if ~isscalar(epsilon)
  129. epsilon = epsilon(i);
  130. end
  131. if ~isscalar(lambda_u)
  132. lambda_u = lambda_u(i);
  133. end
  134. if ~isscalar(lambda_s)
  135. lambda_s = lambda_s(i);
  136. end
  137. end
  138. if any(epsilon > delta)
  139. if nargin == 3
  140. warning('SHCTools:stoneholmesstat:ThetaScaling',...
  141. ['One or more Theta = Epsilon/Delta values is '...
  142. 'greater than 1, but the the Stone-Holmes '...
  143. 'distribution defines Epsilon << Delta.']);
  144. else
  145. warning('SHCTools:stoneholmesstat:DeltaEpsilonScaling',...
  146. ['One or more Epsilon values is greater than the '...
  147. 'corresponding Delta value(s), but the Stone-Holmes '...
  148. 'distribution defines Epsilon << Delta.']);
  149. end
  150. end
  151. if any(lambda_u >= lambda_s)
  152. warning('SHCTools:stoneholmesstat:LambdaScaling',...
  153. ['One or more Lambda_U values is greater than or equal '...
  154. 'to the corresponding Lambda_S value(s), but the '...
  155. 'Stone-Holmes distribution defines Lambda_U < Lambda_S.']);
  156. end
  157. % Call private function to calculate mean first passage time
  158. m(i) = meanpassagetime(delta,epsilon,lambda_u,lambda_s);
  159. % Calculate variance via private function if requested
  160. if nargout > 1
  161. v(i) = varpassagetime(delta,epsilon,lambda_u,lambda_s,m(i));
  162. end
  163. end
  164. end