/SHCTools/stoneholmes/stoneholmesstat.m
http://github.com/horchler/SHCTools · Objective C · 181 lines · 164 code · 17 blank · 0 comment · 47 complexity · eb62f37e71e9762097501c7f9b8be602 MD5 · raw file
- function [m,v]=stoneholmesstat(varargin)
- %STONEHOLMESSTAT Mean and variance for the Stone-Holmes distribution.
- % [M, V] = STONEHOLMESSTAT(DELTA,EPSILON,LAMBDA_U,LAMBDA_S) returns the mean,
- % M, and variance, V, of the Stone-Holmes distribution with positive
- % parameters Delta, Epsilon, Lambda_U, and Lambda_S. Delta is the size of the
- % neighborhood, Epsilon (0 <= Epsilon << Delta) is the root-mean-square of the
- % noise, and Lambda_U and Lambda_S (Lambda_U < Lambda_S) are the absolute
- % value of the eigenvalues with the largest positive and negative real parts,
- % respectively. NaN is returned for any Delta <= 0, Epsilon < 0,
- % Epsilon = Inf, Lambda_U <= 0, Lambda_U = Inf, Lambda_S <= 0, or certain
- % illconditioned parameter combinations. The parameters must be scalars,
- % length M column vectors, or M-by-N-by-... size arrays. If any combination of
- % Delta, Epsilon, Lambda_U, or Lambda_S are column vectors, they will be
- % applied across the N-dimensional columns of M and V. The size of the outputs
- % M and V is that of Delta, Epsilon, Lambda_U, and Lambda_S if all are equal
- % size arrays. If any subset of the parameters are scalars or column vectors,
- % the size of the outputs is the size of the other parameter(s).
- %
- % [M, V] = STONEHOLMESSTAT(THETA,LAMBDA_U,LAMBDA_S) returns the mean and
- % variance of the Stone-Holmes distribution in the three parameter case, where
- % Theta = Epsilon/Delta (0 <= Theta << 1) is the size of the noise relative to
- % that of the neighborhood, Delta. NaN is returned if Theta = Inf, Theta < 0,
- % Lambda_U <= 0, Lambda_U = Inf, or Lambda_S <= 0.
- %
- % See also:
- % STONEHOLMESPASSAGETIME, STONEHOLMESPDF, STONEHOLMESCDF, STONEHOLMESRND,
- % STONEHOLMESINV, STONEHOLMESFIT, STONEHOLMESLIKE, STONEHOLMESMODE,
- % STONEHOLMESMEDIAN
- % Uses a personally derived analytical solution and approximation based on
- % Eq. (2.28) in: Emily Stone and Philip Holmes, "Random Perturbations of
- % Heteroclinic Attractors," SIAM J. Appl. Math., Vol. 50, No. 3, pp. 726-743,
- % Jun. 1990. http://jstor.org/stable/2101884
- % Andrew D. Horchler, horchler @ gmail . com, Created 6-7-13
- % Revision: 1.1, 6-16-14
- % Check variable inputs
- if nargin < 3
- error('SHCTools:stoneholmesstat:TooFewInputs',...
- 'Not enough input arguments.');
- end
- if nargin > 4
- error('SHCTools:stoneholmesstat:TooManyInputs','Too many input arguments.');
- end
- if nargin == 3
- delta = 1;
- epsilon = varargin{1};
- lambda_u = varargin{2};
- lambda_s = varargin{3};
- else
- delta = varargin{1};
- epsilon = varargin{2};
- lambda_u = varargin{3};
- lambda_s = varargin{4};
- end
- % Check parameters
- if nargin == 4 && (~isreal(delta) || ~isfloat(delta))
- error('SHCTools:stoneholmesstat:DeltaInvalid',...
- 'Delta must be a real floating point array.');
- end
- if ~isreal(epsilon) || ~isfloat(epsilon)
- if nargin == 3
- error('SHCTools:stoneholmesstat:ThetaInvalid',...
- 'Theta must be a real floating point array.');
- else
- error('SHCTools:stoneholmesstat:EpsilonInvalid',...
- 'Epsilon must be a real floating point array.');
- end
- end
- if ~isreal(lambda_u) || ~isfloat(lambda_u)
- error('SHCTools:stoneholmesstat:Lambda_uInvalid',...
- 'Lambda_U must be a real floating point array.');
- end
- if ~isreal(lambda_s) || ~isfloat(lambda_s)
- error('SHCTools:stoneholmesstat:Lambda_sInvalid',...
- 'Lambda_S must be a real floating point array.');
- end
- % Check that sizes of parameter inputs are consistent, return size of Tau
- [szt,expansion] = stoneholmesargs('stat',size(delta),size(epsilon),...
- size(lambda_u),size(lambda_s));
- % Column vector expansion
- if any(expansion)
- z = ones(prod(szt(2:end)),1);
- if expansion(1)
- delta = delta(:,z);
- end
- if expansion(2)
- epsilon = epsilon(:,z);
- end
- if expansion(3)
- lambda_u = lambda_u(:,z);
- end
- if expansion(4)
- lambda_s = lambda_s(:,z);
- end
- end
- % Use linear indices, everything is a scalar or equal length vector after here
- delta = delta(:);
- epsilon = epsilon(:);
- lambda_u = lambda_u(:);
- lambda_s = lambda_s(:);
- % Logical linear indices for out-of-range parameters
- % Delta: (0, Inf], Epsilon: [0, Inf), Lambda_U: (0, Inf), Lambda_S: (0, Inf]
- i = (delta <= 0 | isnan(delta) | epsilon < 0 | isnan(epsilon) | ...
- lambda_u <= 0 | isnan(lambda_u) | lambda_s <= 0 | isnan(lambda_s));
- % Check for empty output or if all values of any parameter is out-of-range
- dtype = superiorfloat(delta,epsilon,lambda_u,lambda_s);
- if any(szt == 0) || all(i)
- % Return empty array or NaN array for out-of-range parameters
- m = NaN(szt,dtype);
- if nargout > 1
- v = NaN(szt,dtype);
- end
- else
- % Initialize mean and variance to zero, set out-of-range parameters to NaN
- m = zeros(szt,dtype);
- m(i) = NaN;
- if nargout > 1
- v = zeros(szt,dtype);
- v(i) = NaN;
- end
-
- % Logical linear indices for in-range parameters
- i = (~i & epsilon < Inf & lambda_u < Inf);
-
- % If any values in-range
- if any(i)
- if ~all(i)
- if ~isscalar(delta)
- delta = delta(i);
- end
- if ~isscalar(epsilon)
- epsilon = epsilon(i);
- end
- if ~isscalar(lambda_u)
- lambda_u = lambda_u(i);
- end
- if ~isscalar(lambda_s)
- lambda_s = lambda_s(i);
- end
- end
-
- if any(epsilon > delta)
- if nargin == 3
- warning('SHCTools:stoneholmesstat:ThetaScaling',...
- ['One or more Theta = Epsilon/Delta values is '...
- 'greater than 1, but the the Stone-Holmes '...
- 'distribution defines Epsilon << Delta.']);
- else
- warning('SHCTools:stoneholmesstat:DeltaEpsilonScaling',...
- ['One or more Epsilon values is greater than the '...
- 'corresponding Delta value(s), but the Stone-Holmes '...
- 'distribution defines Epsilon << Delta.']);
- end
- end
-
- if any(lambda_u >= lambda_s)
- warning('SHCTools:stoneholmesstat:LambdaScaling',...
- ['One or more Lambda_U values is greater than or equal '...
- 'to the corresponding Lambda_S value(s), but the '...
- 'Stone-Holmes distribution defines Lambda_U < Lambda_S.']);
- end
-
- % Call private function to calculate mean first passage time
- m(i) = meanpassagetime(delta,epsilon,lambda_u,lambda_s);
-
- % Calculate variance via private function if requested
- if nargout > 1
- v(i) = varpassagetime(delta,epsilon,lambda_u,lambda_s,m(i));
- end
- end
- end