/23.lua
Lua | 101 lines | 78 code | 12 blank | 11 comment | 12 complexity | b321b53fa6ea9eb395085b10eeda590a MD5 | raw file
1-- A perfect number is a number for which the sum of its proper divisors is exactly equal to the number. For example, the sum of the proper divisors of 28 would be 1 + 2 + 4 + 7 + 14 = 28, which means that 28 is a perfect number. 2-- 3-- A number whose proper divisors are less than the number is called deficient and a number whose proper divisors exceed the number is called abundant. 4-- 5-- As 12 is the smallest abundant number, 1 + 2 + 3 + 4 + 6 = 16, the smallest number that can be written as the sum of two abundant numbers is 24. By mathematical analysis, it can be shown that all integers greater than 28123 can be written as the sum of two abundant numbers. However, this upper limit cannot be reduced any further by analysis even though it is known that the greatest number that cannot be expressed as the sum of two abundant numbers is less than this limit. 6-- 7-- Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers. 8 9require "euler" 10 11local last = 28123 12primes, prime_table = sieve_primes(last) 13 14function sum(t, b, e) 15 local s = 1 16 local i 17 for i = b, e do 18 local p = primes[i] 19 local x = t[i] 20 local m = 1 21 for k = 1, x do 22 m = m + math.pow(p, k) 23 end 24 s = s * m 25 end 26 return s 27end 28 29abundance = {} 30 31function is_abundant(i) 32 local x = abundance[i] 33 if x==nil then 34 local d, n = prime_divisors(i, primes) 35 x = sum(d, 1, n) - i 36 abundance[i] = x 37 end 38 -- print(i, x) 39 return x>i 40end 41 42function is_perfect(i) 43 local x = abundance[i] 44 if x==nil then 45 local d, n = prime_divisors(i, primes) 46 x = sum(d, 1, n) - i 47 abundance[i] = x 48 end 49 -- print(i, x) 50 return x==i 51end 52 53function test(n) 54 local x, l = prime_divisors(n, primes) 55 local k, v 56 for k, v in pairs(x) do print(v, primes[k]) end 57 k = sum(x, 1, l) - n 58 return k 59end 60 61-- print(test(284)) 62assert(test(284)==220) 63assert(test(4*9)==91-4*9) 64assert(test(6)==1+2+3) 65assert(test(12)==1+2+3+4+6) 66assert(test(2)==1) 67assert(test(4)==3) 68assert(test(220)==284) 69 70assert(is_perfect(28)) 71assert(is_abundant(12)) 72assert(not is_abundant(28)) 73 74local i 75local a, abundant = 0, {} 76for i=12,last do 77 if is_abundant(i) then 78 a = a + 1 79 abundant[a] = i 80 end 81end 82 83-- for k, v in ipairs(abundant) do print(v) end 84 85local sum = 0 86for i=1,last do 87 local k, v 88 local found = false 89 for k, v in ipairs(abundant) do 90 local r = i-v 91 if r<v then break end 92 if is_abundant(r) then 93 found = true 94 break 95 end 96 end 97 if not found then 98 sum = sum + i 99 end 100end 101print(sum)