/ElectroWeakAnalysis/WENu/test/pat_WenuVBTF_ntuple.py
https://github.com/aivanov-cern/cmssw · Python · 274 lines · 166 code · 28 blank · 80 comment · 0 complexity · b0925869b5e9882d1a0a59dcc0ae6bc8 MD5 · raw file
- ## #########################################################
- ##
- ## Configuration for the production of the ICHEP VBTF ntuple
- ## ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- ## MC, spring10
- ##
- ## Nikolaos Rompotis - Imperial College London
- ## 22 June 2010
- ##
- ## #########################################################
- import FWCore.ParameterSet.Config as cms
- process = cms.Process("PAT")
- process.options = cms.untracked.PSet(
- Rethrow = cms.untracked.vstring('ProductNotFound')
- )
- #process.MessageLogger = cms.Service(
- # "MessageLogger",
- # categories = cms.untracked.vstring('info', 'debug','cout')
- # )
- process.load("FWCore.MessageService.MessageLogger_cfi")
- process.MessageLogger.cerr.threshold = cms.untracked.string("INFO")
- process.MessageLogger.cerr.FwkSummary = cms.untracked.PSet(
- reportEvery = cms.untracked.int32(1000000),
- limit = cms.untracked.int32(10000000)
- )
- process.MessageLogger.cerr.FwkReport = cms.untracked.PSet(
- reportEvery = cms.untracked.int32(100000),
- limit = cms.untracked.int32(10000000)
- )
- process.options = cms.untracked.PSet(
- wantSummary = cms.untracked.bool(True)
- )
- # source
- process.source = cms.Source("PoolSource",
- fileNames = cms.untracked.vstring(
- # SOME DATA FILE TO BE PUT HERE
- #'rfio:/castor/cern.ch/user/r/rompotis/DATA_STUDIES/Spring10/sample_WminusToENu-CTEQ66-powheg_Spring10-START3X_V26_AODSIM-v2.root',
- #'file:rfio:/castor/cern.ch/user/r/rompotis/DATA_STUDIES/Spring10/sample_WenuSpring10START3X_V26_S09-v1_AODSIM.root',
- )
- )
- process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) )
- ## Load additional processes
- process.load("Configuration.StandardSequences.Geometry_cff")
- process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff")
- ## global tags:
- process.GlobalTag.globaltag = cms.string('GR_R_36X_V11A::All') # GLOBAL TAG FOR DATA
- process.load("Configuration.StandardSequences.MagneticField_cff")
- ################################################################################################
- ### P r e p a r a t i o n o f t h e P A T O b j e c t s f r o m A O D ###
- ################################################################################################
- ## pat sequences to be loaded:
- #process.load("PhysicsTools.PFCandProducer.PF2PAT_cff")
- process.load("PhysicsTools.PatAlgos.patSequences_cff")
- #process.load("PhysicsTools.PatAlgos.triggerLayer1.triggerProducer_cff")
- ##
- #
- ## %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- ## MET creation <=== WARNING: YOU MAY WANT TO MODIFY THIS PART OF THE CODE %%%%%%%%%%%%%
- ## specify the names of the MET collections that you need here %%%%
- ## #%%
- ## if you don't specify anything the default MET is the raw Calo MET #%%
- process.caloMET = process.patMETs.clone( #%%
- metSource = cms.InputTag("met","","RECO"),
- addTrigMatch = cms.bool(False),
- addMuonCorrections = cms.bool(False),
- addGenMET = cms.bool(False),
- )
- process.tcMET = process.patMETs.clone( #%%
- metSource = cms.InputTag("tcMet","","RECO"),
- addTrigMatch = cms.bool(False),
- addMuonCorrections = cms.bool(False),
- addGenMET = cms.bool(False),
- )
- process.pfMET = process.patMETs.clone( #%%
- metSource = cms.InputTag("pfMet","","RECO"),
- addTrigMatch = cms.bool(False),
- addMuonCorrections = cms.bool(False),
- addGenMET = cms.bool(False),
- )
- ## specify here what you want to have on the plots! <===== MET THAT YOU WANT ON THE PLOTS %%%%%%%
- myMetCollection = 'caloMET'
- myPfMetCollection = 'pfMET'
- myTcMetCollection = 'tcMET'
- ## modify the sequence of the MET creation: #%%
- process.makePatMETs = cms.Sequence(process.caloMET*process.tcMET*process.pfMET)
- ## %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
- ## modify the final pat sequence: keep only electrons + METS (muons are needed for met corrections)
- process.load("RecoEgamma.EgammaIsolationAlgos.egammaIsolationSequence_cff")
- #process.patElectronIsolation = cms.Sequence(process.egammaIsolationSequence)
- process.patElectrons.isoDeposits = cms.PSet()
- process.patElectrons.userIsolation = cms.PSet()
- process.patElectrons.addElectronID = cms.bool(True)
- process.patElectrons.electronIDSources = cms.PSet(
- simpleEleId95relIso= cms.InputTag("simpleEleId95relIso"),
- simpleEleId90relIso= cms.InputTag("simpleEleId90relIso"),
- simpleEleId85relIso= cms.InputTag("simpleEleId85relIso"),
- simpleEleId80relIso= cms.InputTag("simpleEleId80relIso"),
- simpleEleId70relIso= cms.InputTag("simpleEleId70relIso"),
- simpleEleId60relIso= cms.InputTag("simpleEleId60relIso"),
- simpleEleId95cIso= cms.InputTag("simpleEleId95cIso"),
- simpleEleId90cIso= cms.InputTag("simpleEleId90cIso"),
- simpleEleId85cIso= cms.InputTag("simpleEleId85cIso"),
- simpleEleId80cIso= cms.InputTag("simpleEleId80cIso"),
- simpleEleId70cIso= cms.InputTag("simpleEleId70cIso"),
- simpleEleId60cIso= cms.InputTag("simpleEleId60cIso"),
- )
- ##
- process.patElectrons.addGenMatch = cms.bool(False)
- process.patElectrons.embedGenMatch = cms.bool(False)
- process.patElectrons.usePV = cms.bool(False)
- ##
- process.load("ElectroWeakAnalysis.WENu.simpleEleIdSequence_cff")
- # you have to tell the ID that it is data
- process.simpleEleId95relIso.dataMagneticFieldSetUp = cms.bool(True)
- process.simpleEleId90relIso.dataMagneticFieldSetUp = cms.bool(True)
- process.simpleEleId85relIso.dataMagneticFieldSetUp = cms.bool(True)
- process.simpleEleId80relIso.dataMagneticFieldSetUp = cms.bool(True)
- process.simpleEleId70relIso.dataMagneticFieldSetUp = cms.bool(True)
- process.simpleEleId60relIso.dataMagneticFieldSetUp = cms.bool(True)
- process.simpleEleId95cIso.dataMagneticFieldSetUp = cms.bool(True)
- process.simpleEleId90cIso.dataMagneticFieldSetUp = cms.bool(True)
- process.simpleEleId85cIso.dataMagneticFieldSetUp = cms.bool(True)
- process.simpleEleId80cIso.dataMagneticFieldSetUp = cms.bool(True)
- process.simpleEleId70cIso.dataMagneticFieldSetUp = cms.bool(True)
- process.simpleEleId60cIso.dataMagneticFieldSetUp = cms.bool(True)
- #
- process.patElectronIDs = cms.Sequence(process.simpleEleIdSequence)
- process.makePatElectrons = cms.Sequence(process.patElectronIDs*process.patElectrons)
- # process.makePatMuons may be needed depending on how you calculate the MET
- process.makePatCandidates = cms.Sequence(process.makePatElectrons+process.makePatMETs)
- process.patDefaultSequence = cms.Sequence(process.makePatCandidates)
- ##
- ## ################################################################################
- ##
- ## the filter to select the candidates from the data samples
- ##
- ##
- ## WARNING: you may want to modify this item:
- HLT_process_name = "HLT" # REDIGI for the Spring10 production traditional MC / HLT for the powheg samples or data
- # trigger path selection
- HLT_path_name = "HLT_Photon10_L1R" #= "HLT_Ele15_LW_L1R" #
- # trigger filter name
- HLT_filter_name = "hltL1NonIsoHLTNonIsoSinglePhotonEt10HcalIsolFilter"
- #
- HLT_path_name_extra = "HLT_Photon15_L1R" #= "HLT_Ele15_LW_L1R" #
- HLT_filter_name_extra = "hltL1NonIsoHLTNonIsoSinglePhotonEt15HcalIsolFilter"
- process.wenuFilter = cms.EDFilter('WenuCandidateFilter',
- ### the input collections needed:
- electronCollectionTag = cms.untracked.InputTag("patElectrons","","PAT"),
- metCollectionTag = cms.untracked.InputTag(myMetCollection,"","PAT"),
- pfMetCollectionTag = cms.untracked.InputTag(myPfMetCollection,"","PAT"),
- tcMetCollectionTag = cms.untracked.InputTag(myTcMetCollection,"","PAT"),
- triggerCollectionTag = cms.untracked.InputTag("TriggerResults","",HLT_process_name),
- triggerEventTag = cms.untracked.InputTag("hltTriggerSummaryAOD","",HLT_process_name),
- hltpath = cms.untracked.string(HLT_path_name),
- hltpathFilter = cms.untracked.InputTag(HLT_filter_name,"",HLT_process_name),
- ebRecHits = cms.untracked.InputTag("reducedEcalRecHitsEB"),
- eeRecHits = cms.untracked.InputTag("reducedEcalRecHitsEE"),
- PrimaryVerticesCollection = cms.untracked.InputTag("offlinePrimaryVertices"),
- ### here the preselection is applied
- # fiducial cuts:
- BarrelMaxEta = cms.untracked.double(1.4442),
- EndCapMinEta = cms.untracked.double(1.566),
- EndCapMaxEta = cms.untracked.double(2.5),
- # demand ecal driven electron:
- useEcalDrivenElectrons = cms.untracked.bool(True),
- # demand offline spike cleaning with the Swiss Cross criterion:
- useSpikeRejection = cms.untracked.bool(True),
- spikeCleaningSwissCrossCut = cms.untracked.double(0.95),
- # demand geometrically matched to an HLT object with ET>15GeV
- useTriggerInfo = cms.untracked.bool(True),
- electronMatched2HLT = cms.untracked.bool(True),
- electronMatched2HLT_DR = cms.untracked.double(0.1),
- useHLTObjectETCut = cms.untracked.bool(True),
- hltObjectETCut = cms.untracked.double(15.),
- useExtraTrigger = cms.untracked.bool(True),
- hltpathExtra = cms.untracked.string(HLT_path_name_extra),
- hltpathFilterExtra = cms.untracked.InputTag(HLT_filter_name_extra,"",HLT_process_name),
- # ET Cut in the SC
- ETCut = cms.untracked.double(20.),
- METCut = cms.untracked.double(0.),
- # reject events with a 2nd electron with ET > 20 that passes the WP95%
- vetoSecondElectronEvents = cms.untracked.bool(False),
- storeSecondElectron = cms.untracked.bool(True),
- ETCut2ndEle = cms.untracked.double(20.),
- vetoSecondElectronIDType = cms.untracked.string("simpleEleId95relIso"),
- vetoSecondElectronIDSign = cms.untracked.string("="),
- vetoSecondElectronIDValue = cms.untracked.double(7.),
- # Other parameters of the code - leave them as they are
- useValidFirstPXBHit = cms.untracked.bool(False),
- useConversionRejection = cms.untracked.bool(False),
- useExpectedMissingHits = cms.untracked.bool(False),
- maxNumberOfExpectedMissingHits = cms.untracked.int32(1),
- # calculate some new cuts
- calculateValidFirstPXBHit = cms.untracked.bool(True),
- calculateConversionRejection = cms.untracked.bool(True),
- calculateExpectedMissingHits = cms.untracked.bool(True),
- # we are dealing with DATA
- dataMagneticFieldSetUp = cms.untracked.bool(True),
- dcsTag = cms.untracked.InputTag("scalersRawToDigi"),
- )
- ####################################################################################
- ##
- ## the W selection that you prefer included in another cfg
- from ElectroWeakAnalysis.WENu.simpleCutBasedSpring10SelectionBlocks_cfi import *
- selection_inverse = cms.PSet (
- deta_EB_inv = cms.untracked.bool(True),
- deta_EE_inv = cms.untracked.bool(True)
- )
- ####################################################################################
- #
- # we need to store jet information, hence we have to produce the jets:
- process.load("JetMETCorrections.Configuration.DefaultJEC_cff")
- process.jetSequence = cms.Sequence( process.ak5CaloJetsL2L3 )
- process.pfjetAK5Sequence = cms.Sequence( process.ak5PFJetsL2L3 )
- process.ourJetSequence = cms.Sequence( process.jetSequence * process.pfjetAK5Sequence )
- ##
- ## and the plot creator
- process.plotter = cms.EDAnalyzer('WenuPlots',
- # selection in use: wont be used - we have usePrecalcID true later
- selection_80relIso,
- selection_inverse,
- # The selection to be used here:
- usePrecalcID = cms.untracked.bool(True),
- usePrecalcIDType = cms.untracked.string('simpleEleId80relIso'),
- usePrecalcIDSign = cms.untracked.string('='),
- usePrecalcIDValue = cms.untracked.double(7),
- # some extra information on the ntuple production:
- includeJetInformationInNtuples = cms.untracked.bool(True),
- caloJetCollectionTag = cms.untracked.InputTag('ak5CaloJetsL2L3'),
- pfJetCollectionTag = cms.untracked.InputTag('ak5PFJetsL2L3'),
- DRJetFromElectron = cms.untracked.double(0.3),
- #
- wenuCollectionTag = cms.untracked.InputTag("wenuFilter","selectedWenuCandidates","PAT"),
- WENU_VBTFselectionFileName = cms.untracked.string("WENU_VBTFselection.root"),
- WENU_VBTFpreseleFileName = cms.untracked.string("WENU_VBTFpreselection.root"),
- DatasetTag = cms.untracked.int32(100),
- storeSecondElectronInformation = cms.untracked.bool(True),
- )
- #
- # if you run on data then you have to do misalignment corrections first!!!
- # not to be used with MC!!
- process.load("RecoEgamma.EgammaTools.correctedElectronsProducer_cfi")
- process.p = cms.Path( process.gsfElectrons*process.ourJetSequence*
- process.patDefaultSequence*process.wenuFilter*process.plotter)
- #process.p = cms.Path( process.ourJetSequence * process.patDefaultSequence +process.wenuFilter + process.plotter)