PageRenderTime 76ms CodeModel.GetById 21ms app.highlight 51ms RepoModel.GetById 1ms app.codeStats 0ms

/ElectroWeakAnalysis/ZEE/test/pat_ZeeVBTF_ntuple_woCertJSON_for__MC.py

https://github.com/aivanov-cern/cmssw
Python | 465 lines | 453 code | 1 blank | 11 comment | 3 complexity | 7574fb868ef09f3f520c90006ded9068 MD5 | raw file
  1#   Initializations
  2#   ---------------
  3#
  4#   Get the base name of the Python script and use it to define input/output associated files
  5#
  6#   N.B:    Special variable __file__ is not available within cmsRun, and the following line fails:
  7#
  8#               pyFile=(__file__).replace('.py','')
  9#
 10#           As a result, the calling arguments must be scanned to locate the Python script.
 11#
 12import sys
 13
 14for inArg in sys.argv:
 15    if inArg.find('.py') == -1:
 16        continue
 17    else:
 18        pyBaseName=inArg.replace('.py','')
 19
 20#   Define input/output associated files.
 21#
 22pyFile = "%s.py" % (pyBaseName)             #   Name of the Python script itself
 23lstFile = "%s.list" % (pyBaseName)          #   Name of the list file       (contains a list of files to process)
 24resFile = "%s.results" % (pyBaseName)       #   Name of the results file    (stdout and stderr messages)
 25outFile = "%s.root" % (pyBaseName)          #   Name of the output file     (ROOT)
 26
 27
 28##   Configuration for the production of the ICHEP VBTF ntuple
 29##   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 30##   MC, spring10
 31##
 32##   Stilianos Kesisoglou - Institute of Nuclear Physics
 33##                                NCSR Demokritos
 34##   25 June 2010
 35import FWCore.ParameterSet.Config as cms
 36
 37process = cms.Process("PAT")
 38
 39
 40
 41process.options = cms.untracked.PSet(
 42    Rethrow = cms.untracked.vstring('ProductNotFound')
 43)
 44
 45#process.MessageLogger = cms.Service(
 46#        "MessageLogger",
 47#            categories = cms.untracked.vstring('info', 'debug','cout')
 48#            )
 49
 50
 51process.load("FWCore.MessageService.MessageLogger_cfi")
 52
 53process.MessageLogger.cerr.threshold = cms.untracked.string("INFO")
 54
 55process.MessageLogger.cerr.FwkSummary = cms.untracked.PSet(
 56    reportEvery = cms.untracked.int32(1000000),
 57    limit = cms.untracked.int32(10000000)
 58       )
 59       
 60process.MessageLogger.cerr.FwkReport = cms.untracked.PSet(
 61      reportEvery = cms.untracked.int32(100000),
 62         limit = cms.untracked.int32(10000000)
 63      )
 64      
 65process.options = cms.untracked.PSet(
 66       wantSummary = cms.untracked.bool(True)
 67       )
 68
 69# 
 70# # source
 71# process.source = cms.Source("PoolSource", 
 72#      fileNames = cms.untracked.vstring(
 73# # SOME DATA FILE TO BE PUT HERE
 74# #
 75# #   MC test (local) running on the OneElecPlusSC skim made from the Zee MC samples
 76# #   ------------------------------------------------------------------------------
 77# #    'rfio:/tmp/ikesisog/TestFiles/skimMC/OneElecPlusSC_1Files.root',
 78# #    'rfio:/tmp/ikesisog/TestFiles/skimMC/OneElecPlusSC_2Files.root',
 79# #    'rfio:/tmp/ikesisog/TestFiles/skimMC/OneElecPlusSC_3Files.root',
 80# # 
 81# #   MC test (local) running directly on the Zee MC samples
 82# #   ------------------------------------------------------
 83#    'rfio:/tmp/ikesisog/TestFiles/dSetMC/Zee/8EA9211C-7476-DF11-BC31-00304867C136.root',
 84#    'rfio:/tmp/ikesisog/TestFiles/dSetMC/Zee/B0737652-7076-DF11-83F8-002618943831.root',
 85#    'rfio:/tmp/ikesisog/TestFiles/dSetMC/Zee/14B213B3-7576-DF11-8763-003048678FA6.root',
 86#     )
 87# )
 88# 
 89
 90
 91#   source - Use an input list to bypass the 255 file limit
 92import FWCore.Utilities.FileUtils as FileUtils
 93
 94filelist = FileUtils.loadListFromFile(lstFile) 
 95
 96process.source = cms.Source('PoolSource',
 97    fileNames = cms.untracked.vstring(*filelist)
 98    )
 99
100
101# 
102# #   using locally provided JSON
103# import PhysicsTools.PythonAnalysis.LumiList as LumiList
104# import FWCore.ParameterSet.Types as CfgTypes
105# myLumis = LumiList.LumiList(filename = 'Cert_132440-149442_7TeV_StreamExpress_Collisions10_JSON_v2.json').getCMSSWString().split(',')
106# process.source.lumisToProcess = CfgTypes.untracked(CfgTypes.VLuminosityBlockRange())
107# process.source.lumisToProcess.extend(myLumis)
108# 
109
110process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(-1) )
111
112## Load additional processes
113# 
114process.load("Configuration.StandardSequences.Geometry_cff")
115process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff")
116
117## global tags:
118#
119process.GlobalTag.globaltag = cms.string('START36_V9::All') # GLOBAL TAG FOR MC
120
121process.load("Configuration.StandardSequences.MagneticField_cff")
122
123
124################################################################################################
125###    P r e p a r a t i o n      o f    t h e    P A T    O b j e c t s   f r o m    A O D  ###
126################################################################################################
127
128## pat sequences to be loaded:
129#process.load("PhysicsTools.PFCandProducer.PF2PAT_cff")
130
131process.load("PhysicsTools.PatAlgos.patSequences_cff")
132
133#process.load("PhysicsTools.PatAlgos.triggerLayer1.triggerProducer_cff")
134
135##
136#
137
138## MET creation     <=== WARNING: YOU MAY WANT TO MODIFY THIS PART OF THE CODE       %%%%%%%%%%%%%
139##                                specify the names of the MET collections that you need here %%%%
140##                                                                                             #%%
141## if you don't specify anything the default MET is the raw Calo MET                           #%%
142process.caloMET = process.patMETs.clone(                                                       #%%
143    metSource = cms.InputTag("met","","RECO"),
144    addTrigMatch = cms.bool(False),
145    addMuonCorrections = cms.bool(False),
146    addGenMET = cms.bool(False),
147)
148process.tcMET = process.patMETs.clone(                                                         #%%
149    metSource = cms.InputTag("tcMet","","RECO"),
150    addTrigMatch = cms.bool(False),
151    addMuonCorrections = cms.bool(False),
152    addGenMET = cms.bool(False),
153)
154process.pfMET = process.patMETs.clone(                                                         #%%
155    metSource = cms.InputTag("pfMet","","RECO"),
156    addTrigMatch = cms.bool(False),
157    addMuonCorrections = cms.bool(False),
158    addGenMET = cms.bool(False),
159)
160
161## specify here what you want to have on the plots! <===== MET THAT YOU WANT ON THE PLOTS  %%%%%%%
162myMetCollection   = 'caloMET'
163myPfMetCollection =   'pfMET'
164myTcMetCollection =   'tcMET'
165
166## modify the sequence of the MET creation:                                                    #%%
167process.makePatMETs = cms.Sequence(process.caloMET*process.tcMET*process.pfMET)
168
169
170## modify the final pat sequence: keep only electrons + METS (muons are needed for met corrections)
171
172process.load("RecoEgamma.EgammaIsolationAlgos.egammaIsolationSequence_cff")
173#process.patElectronIsolation = cms.Sequence(process.egammaIsolationSequence)
174
175process.patElectrons.isoDeposits = cms.PSet()
176process.patElectrons.userIsolation = cms.PSet()
177process.patElectrons.addElectronID = cms.bool(True)
178
179process.patElectrons.electronIDSources = cms.PSet(
180    simpleEleId95relIso = cms.InputTag("simpleEleId95relIso"),
181    simpleEleId90relIso = cms.InputTag("simpleEleId90relIso"),
182    simpleEleId85relIso = cms.InputTag("simpleEleId85relIso"),
183    simpleEleId80relIso = cms.InputTag("simpleEleId80relIso"),
184    simpleEleId70relIso = cms.InputTag("simpleEleId70relIso"),
185    simpleEleId60relIso = cms.InputTag("simpleEleId60relIso"),
186    simpleEleId95cIso   = cms.InputTag("simpleEleId95cIso"),
187    simpleEleId90cIso   = cms.InputTag("simpleEleId90cIso"),
188    simpleEleId85cIso   = cms.InputTag("simpleEleId85cIso"),
189    simpleEleId80cIso   = cms.InputTag("simpleEleId80cIso"),
190    simpleEleId70cIso   = cms.InputTag("simpleEleId70cIso"),
191    simpleEleId60cIso   = cms.InputTag("simpleEleId60cIso")    
192)
193
194##
195
196process.patElectrons.addGenMatch = cms.bool(False)
197process.patElectrons.embedGenMatch = cms.bool(False)
198process.patElectrons.usePV = cms.bool(False)
199
200##
201
202process.load("ElectroWeakAnalysis.ZEE.simpleEleIdSequence_cff")
203
204# you have to tell the ID that it is data. These are set to False for MC
205process.simpleEleId95relIso.dataMagneticFieldSetUp = cms.bool(False)
206process.simpleEleId90relIso.dataMagneticFieldSetUp = cms.bool(False)
207process.simpleEleId85relIso.dataMagneticFieldSetUp = cms.bool(False)
208process.simpleEleId80relIso.dataMagneticFieldSetUp = cms.bool(False)
209process.simpleEleId70relIso.dataMagneticFieldSetUp = cms.bool(False)
210process.simpleEleId60relIso.dataMagneticFieldSetUp = cms.bool(False)
211process.simpleEleId95cIso.dataMagneticFieldSetUp = cms.bool(False)
212process.simpleEleId90cIso.dataMagneticFieldSetUp = cms.bool(False)
213process.simpleEleId85cIso.dataMagneticFieldSetUp = cms.bool(False)
214process.simpleEleId80cIso.dataMagneticFieldSetUp = cms.bool(False)
215process.simpleEleId70cIso.dataMagneticFieldSetUp = cms.bool(False)
216process.simpleEleId60cIso.dataMagneticFieldSetUp = cms.bool(False)
217#
218process.patElectronIDs = cms.Sequence(process.simpleEleIdSequence)
219
220process.makePatElectrons = cms.Sequence(process.patElectronIDs*process.patElectrons)
221
222# process.makePatMuons may be needed depending on how you calculate the MET
223
224process.makePatCandidates = cms.Sequence(process.makePatElectrons+process.makePatMETs)
225
226process.patDefaultSequence = cms.Sequence(process.makePatCandidates)
227
228## WARNING: you may want to modify this item:
229HLT_process_name = "REDIGI39X"   # REDIGI for the production traditional MC / HLT for the powheg samples or data
230
231# Trigger Path(s)
232HLT_path_name     = "HLT_Photon10_L1R"
233
234# Label of the last Trigger Filter in the Trigger Path
235HLT_filter_name  =  "hltL1NonIsoHLTNonIsoSinglePhotonEt10HcalIsolFilter"
236
237HLT_path_name_extra0   = "HLT_Photon15_Cleaned_L1R"
238HLT_filter_name_extra0 = cms.untracked.InputTag("hltL1NonIsoHLTNonIsoSinglePhotonEt15CleanedHcalIsolFilter","",HLT_process_name)
239
240HLT_path_name_extra1   = "HLT_Ele15_SW_CaloEleId_L1R"
241HLT_filter_name_extra1 = cms.untracked.InputTag("hltL1NonIsoHLTNonIsoSingleElectronEt15CaloEleIdPixelMatchFilter","",HLT_process_name)
242
243HLT_path_name_extra2   = "HLT_Ele17_SW_CaloEleId_L1R"
244HLT_filter_name_extra2 = cms.untracked.InputTag("hltL1NonIsoHLTNonIsoSingleElectronEt17CaloEleIdPixelMatchFilter","",HLT_process_name)
245
246HLT_path_name_extra3   = "HLT_Ele17_SW_TightEleId_L1R"
247HLT_filter_name_extra3 = cms.untracked.InputTag("hltL1NonIsoHLTNonIsoSingleElectronEt17TightEleIdDphiFilter","",HLT_process_name)
248
249# HLT_path_name_extra4   = "HLT_Ele17_SW_TighterEleIdIsol_L1R_v2"
250# HLT_filter_name_extra4 = cms.untracked.InputTag("hltL1NonIsoHLTNonIsoSingleElectronEt17TighterEleIdIsolTrackIsolFilter","",HLT_process_name)
251
252HLT_path_name_extra5   = "HLT_Ele22_SW_TighterCaloIdIsol_L1R_v1"
253HLT_filter_name_extra5 = cms.untracked.InputTag("hltL1NonIsoHLTNonIsoSingleElectronEt22TighterCaloIdIsolTrackIsolFilter","",HLT_process_name)
254
255HLT_path_name_extra6   = "HLT_Ele22_SW_TighterCaloIdIsol_L1R_v2"
256HLT_filter_name_extra6 = cms.untracked.InputTag("hltL1NonIsoHLTNonIsoSingleElectronEt22TighterCaloIdIsolTrackIsolFilter","",HLT_process_name)
257
258
259rules_Filter = cms.PSet (
260    ### the input collections needed:
261    electronCollectionTag = cms.untracked.InputTag("patElectrons","","PAT"),
262    metCollectionTag = cms.untracked.InputTag(myMetCollection,"","PAT"),
263    pfMetCollectionTag = cms.untracked.InputTag(myPfMetCollection,"","PAT"),
264    tcMetCollectionTag = cms.untracked.InputTag(myTcMetCollection,"","PAT"),
265    triggerCollectionTag = cms.untracked.InputTag("TriggerResults","",HLT_process_name),
266    triggerEventTag = cms.untracked.InputTag("hltTriggerSummaryAOD","",HLT_process_name),
267    hltpath = cms.untracked.string(HLT_path_name), 
268    hltpathFilter = cms.untracked.InputTag(HLT_filter_name,"",HLT_process_name),
269    ebRecHits = cms.untracked.InputTag("reducedEcalRecHitsEB"),
270    eeRecHits = cms.untracked.InputTag("reducedEcalRecHitsEE"),
271    PrimaryVerticesCollection = cms.untracked.InputTag("offlinePrimaryVertices"),
272    ### here the preselection is applied
273    # fiducial cuts:
274    BarrelMaxEta = cms.untracked.double(1.4442),
275    EndCapMinEta = cms.untracked.double(1.5660),
276    EndCapMaxEta = cms.untracked.double(2.5000),
277    # demand ecal driven electron:
278    useEcalDrivenElectrons = cms.untracked.bool(True),
279    # demand offline spike cleaning with the Swiss Cross criterion:
280    useSpikeRejection = cms.untracked.bool(False),
281    spikeCleaningSwissCrossCut = cms.untracked.double(0.95),
282    # demand geometrically matched to an HLT object with ET>15GeV
283    useTriggerInfo = cms.untracked.bool(True),
284    electronMatched2HLT = cms.untracked.bool(True),
285    electronMatched2HLT_DR = cms.untracked.double(0.1),
286    useHLTObjectETCut = cms.untracked.bool(True),
287    hltObjectETCut = cms.untracked.double(15.0),
288    useExtraTrigger = cms.untracked.bool(True),
289#     vHltpathExtra = cms.untracked.vstring(HLT_path_name_extra0,HLT_path_name_extra1,HLT_path_name_extra2,HLT_path_name_extra3,HLT_path_name_extra4,HLT_path_name_extra5),
290#     vHltpathFilterExtra = cms.untracked.VInputTag(HLT_filter_name_extra0,HLT_filter_name_extra1,HLT_filter_name_extra2,HLT_filter_name_extra3,HLT_filter_name_extra4,HLT_filter_name_extra5),
291    vHltpathExtra = cms.untracked.vstring(HLT_path_name_extra0,HLT_path_name_extra1,HLT_path_name_extra2,HLT_path_name_extra3,HLT_path_name_extra5,HLT_path_name_extra6),
292    vHltpathFilterExtra = cms.untracked.VInputTag(HLT_filter_name_extra0,HLT_filter_name_extra1,HLT_filter_name_extra2,HLT_filter_name_extra3,HLT_filter_name_extra5,HLT_filter_name_extra6),
293
294    # ET Cut in the SC
295    ETCut = cms.untracked.double(25.0),                                  
296    METCut = cms.untracked.double(0.0),
297    # For DATA set it to True, for MC set it to False
298    dataMagneticFieldSetUp = cms.untracked.bool(True),
299    dcsTag = cms.untracked.InputTag("scalersRawToDigi")
300)
301
302
303rules_Filter_Elec0 = cms.PSet (
304    # Other parameters of the code - leave them as they are
305    useValidFirstPXBHit0            = cms.untracked.bool(False),
306    useConversionRejection0         = cms.untracked.bool(False),
307    useExpectedMissingHits0         = cms.untracked.bool(True),
308    maxNumberOfExpectedMissingHits0 = cms.untracked.int32(0),
309    # calculate some new cuts
310    calculateValidFirstPXBHit0      = cms.untracked.bool(False),
311    calculateConversionRejection0   = cms.untracked.bool(False),
312    calculateExpectedMissingHits0   = cms.untracked.bool(False)
313)
314
315rules_Filter_Elec1 = cms.PSet (
316    # Other parameters of the code - leave them as they are
317    useValidFirstPXBHit1            = cms.untracked.bool(False),
318    useConversionRejection1         = cms.untracked.bool(False),
319    useExpectedMissingHits1         = cms.untracked.bool(True),
320    maxNumberOfExpectedMissingHits1 = cms.untracked.int32(0),
321    # calculate some new cuts
322    calculateValidFirstPXBHit1      = cms.untracked.bool(False),
323    calculateConversionRejection1   = cms.untracked.bool(False),
324    calculateExpectedMissingHits1   = cms.untracked.bool(False)
325)
326
327rules_Filter_Elec2 = cms.PSet (
328    # Other parameters of the code - leave them as they are
329    useValidFirstPXBHit2            = cms.untracked.bool(False),
330    useConversionRejection2         = cms.untracked.bool(False),
331    useExpectedMissingHits2         = cms.untracked.bool(True),
332    maxNumberOfExpectedMissingHits2 = cms.untracked.int32(0),
333    # calculate some new cuts
334    calculateValidFirstPXBHit2      = cms.untracked.bool(False),
335    calculateConversionRejection2   = cms.untracked.bool(False),
336    calculateExpectedMissingHits2   = cms.untracked.bool(False)
337)
338
339
340process.zeeFilter = cms.EDFilter('ZeeCandidateFilter',
341    rules_Filter,
342    rules_Filter_Elec0,    
343    rules_Filter_Elec1,    
344    rules_Filter_Elec2   
345)
346
347
348
349## the Z selection that you prefer
350from ElectroWeakAnalysis.ZEE.simpleCutBasedSpring10SelectionBlocks_cfi import *
351
352selection_inverse = cms.PSet (
353    deta_EB_inv = cms.untracked.bool(True),
354    deta_EE_inv = cms.untracked.bool(True)
355    )
356
357
358rules_Plotter = cms.PSet (
359    #   treat or not the elecrons with same criteria. if yes then rules_Plotter_Elec1/2 are neglected
360    useSameSelectionOnBothElectrons = cms.untracked.bool(True),    
361    # some extra information on the ntuple production:
362    sihih0_EB = cms.untracked.double(1000.0),
363    dphi0_EB  = cms.untracked.double(1000.0),
364    deta0_EB  = cms.untracked.double(1000.0),
365    hoe0_EB   = cms.untracked.double(1000.0),
366    sihih0_EE = cms.untracked.double(1000.0),
367    dphi0_EE  = cms.untracked.double(1000.0),
368    deta0_EE  = cms.untracked.double(1000.0),
369    hoe0_EE   = cms.untracked.double(1000.0),
370    includeJetInformationInNtuples = cms.untracked.bool(True),
371    caloJetCollectionTag = cms.untracked.InputTag('ak5CaloJetsL2L3'),
372    pfJetCollectionTag = cms.untracked.InputTag('ak5PFJetsL2L3'),
373    DRJetFromElectron = cms.untracked.double(0.3),
374    #
375    zeeCollectionTag = cms.untracked.InputTag("zeeFilter","selectedZeeCandidates","PAT"),
376    ZEE_VBTFselectionFileName = cms.untracked.string("ZEE_VBTFselection.root"),
377    ZEE_VBTFpreseleFileName = cms.untracked.string("ZEE_VBTFpreselection.root"),
378    DatasetTag =  cms.untracked.int32(100),
379    storeExtraInformation = cms.untracked.bool(True)
380)
381
382rules_Plotter_Elec0 = cms.PSet (
383    # The selection to be used here:
384    usePrecalcID0                   = cms.untracked.bool(True),
385    usePrecalcIDType0               = cms.untracked.string('simpleEleId80relIso'),
386    usePrecalcIDSign0               = cms.untracked.string('='),
387    usePrecalcIDValue0              = cms.untracked.double(7),    
388    ## preselection criteria are independent of useSameSelectionOnBothElectrons
389    #  set them to False if you don't want them
390    useValidFirstPXBHit0            = cms.untracked.bool(False),
391    useConversionRejection0         = cms.untracked.bool(False),
392    useExpectedMissingHits0         = cms.untracked.bool(True),
393    maxNumberOfExpectedMissingHits0 = cms.untracked.int32(0),    
394    ##
395    calculateValidFirstPXBHit0      = cms.untracked.bool(False),
396    calculateConversionRejection0   = cms.untracked.bool(False),
397    calculateExpectedMissingHits0   = cms.untracked.bool(False)
398)
399
400rules_Plotter_Elec1 = cms.PSet (
401    # The selection to be used here:
402    usePrecalcID1                   = cms.untracked.bool(True),
403    usePrecalcIDType1               = cms.untracked.string('simpleEleId80relIso'),
404    usePrecalcIDSign1               = cms.untracked.string('='),
405    usePrecalcIDValue1              = cms.untracked.double(7),    
406    ## preselection criteria are independent of useSameSelectionOnBothElectrons
407    #  set them to False if you don't want them
408    useValidFirstPXBHit1            = cms.untracked.bool(False),
409    useConversionRejection1         = cms.untracked.bool(False),
410    useExpectedMissingHits1         = cms.untracked.bool(True),
411    maxNumberOfExpectedMissingHits1 = cms.untracked.int32(0),    
412    ##
413    calculateValidFirstPXBHit1      = cms.untracked.bool(False),
414    calculateConversionRejection1   = cms.untracked.bool(False),
415    calculateExpectedMissingHits1   = cms.untracked.bool(False)
416)
417
418rules_Plotter_Elec2 = cms.PSet (
419    # The selection to be used here:
420    usePrecalcID2                   = cms.untracked.bool(True),
421    usePrecalcIDType2               = cms.untracked.string('simpleEleId80relIso'),
422    usePrecalcIDSign2               = cms.untracked.string('='),
423    usePrecalcIDValue2              = cms.untracked.double(7),    
424    ## preselection criteria are independent of useSameSelectionOnBothElectrons
425    #  set them to False if you don't want them
426    useValidFirstPXBHit2            = cms.untracked.bool(False),
427    useConversionRejection2         = cms.untracked.bool(False),
428    useExpectedMissingHits2         = cms.untracked.bool(True),
429    maxNumberOfExpectedMissingHits2 = cms.untracked.int32(0),    
430    ##
431    calculateValidFirstPXBHit2      = cms.untracked.bool(False),
432    calculateConversionRejection2   = cms.untracked.bool(False),
433    calculateExpectedMissingHits2   = cms.untracked.bool(False)
434)
435
436
437# we need to store jet information, hence we have to produce the jets:
438process.load("JetMETCorrections.Configuration.DefaultJEC_cff")
439
440process.jetSequence = cms.Sequence( process.ak5CaloJetsL2L3  )
441
442process.pfjetAK5Sequence = cms.Sequence( process.ak5PFJetsL2L3 )
443
444process.ourJetSequence = cms.Sequence( process.jetSequence * process.pfjetAK5Sequence )
445
446
447process.plotter = cms.EDAnalyzer('ZeePlots',
448    rules_Plotter,
449    rules_Plotter_Elec0,
450    rules_Plotter_Elec1,
451    rules_Plotter_Elec2   
452)
453
454
455# For DATA, 361p4 electrons need fixing first (misalignment corrections) *NOT* be used with MC
456#process.load("RecoEgamma.EgammaTools.correctedElectronsProducer_cfi")
457#process.p = cms.Path( process.gsfElectrons*process.ourJetSequence*process.patDefaultSequence*process.zeeFilter*process.plotter)
458
459# For DATA, 397 electrons are fixed (misalignment corrections included)
460#process.p = cms.Path( process.ourJetSequence*process.patDefaultSequence*process.zeeFilter*process.plotter)
461
462# For MonteCarlo,
463process.p = cms.Path( process.ourJetSequence * process.patDefaultSequence +process.zeeFilter + process.plotter)
464
465