/cln-1.3.2/include/cln/univpoly_complex.h
C Header | 228 lines | 174 code | 27 blank | 27 comment | 0 complexity | a29267782ebf5088e80f83dfe992dcb2 MD5 | raw file
Possible License(s): GPL-2.0
1// Univariate Polynomials over the complex numbers.
2
3#ifndef _CL_UNIVPOLY_COMPLEX_H
4#define _CL_UNIVPOLY_COMPLEX_H
5
6#include "cln/ring.h"
7#include "cln/univpoly.h"
8#include "cln/number.h"
9#include "cln/complex_class.h"
10#include "cln/integer_class.h"
11#include "cln/complex_ring.h"
12
13namespace cln {
14
15// Normal univariate polynomials with stricter static typing:
16// `cl_N' instead of `cl_ring_element'.
17
18#ifdef notyet
19
20typedef cl_UP_specialized<cl_N> cl_UP_N;
21typedef cl_univpoly_specialized_ring<cl_N> cl_univpoly_complex_ring;
22//typedef cl_heap_univpoly_specialized_ring<cl_N> cl_heap_univpoly_complex_ring;
23
24#else
25
26class cl_heap_univpoly_complex_ring;
27
28class cl_univpoly_complex_ring : public cl_univpoly_ring {
29public:
30 // Default constructor.
31 cl_univpoly_complex_ring () : cl_univpoly_ring () {}
32 // Copy constructor.
33 cl_univpoly_complex_ring (const cl_univpoly_complex_ring&);
34 // Assignment operator.
35 cl_univpoly_complex_ring& operator= (const cl_univpoly_complex_ring&);
36 // Automatic dereferencing.
37 cl_heap_univpoly_complex_ring* operator-> () const
38 { return (cl_heap_univpoly_complex_ring*)heappointer; }
39};
40// Copy constructor and assignment operator.
41CL_DEFINE_COPY_CONSTRUCTOR2(cl_univpoly_complex_ring,cl_univpoly_ring)
42CL_DEFINE_ASSIGNMENT_OPERATOR(cl_univpoly_complex_ring,cl_univpoly_complex_ring)
43
44class cl_UP_N : public cl_UP {
45public:
46 const cl_univpoly_complex_ring& ring () const { return The(cl_univpoly_complex_ring)(_ring); }
47 // Conversion.
48 CL_DEFINE_CONVERTER(cl_ring_element)
49 // Destructive modification.
50 void set_coeff (uintL index, const cl_N& y);
51 void finalize();
52 // Evaluation.
53 const cl_N operator() (const cl_N& y) const;
54public: // Ability to place an object at a given address.
55 void* operator new (size_t size) { return malloc_hook(size); }
56 void* operator new (size_t size, void* ptr) { (void)size; return ptr; }
57 void operator delete (void* ptr) { free_hook(ptr); }
58};
59
60class cl_heap_univpoly_complex_ring : public cl_heap_univpoly_ring {
61 SUBCLASS_cl_heap_univpoly_ring()
62 // High-level operations.
63 void fprint (std::ostream& stream, const cl_UP_N& x)
64 {
65 cl_heap_univpoly_ring::fprint(stream,x);
66 }
67 bool equal (const cl_UP_N& x, const cl_UP_N& y)
68 {
69 return cl_heap_univpoly_ring::equal(x,y);
70 }
71 const cl_UP_N zero ()
72 {
73 return The2(cl_UP_N)(cl_heap_univpoly_ring::zero());
74 }
75 bool zerop (const cl_UP_N& x)
76 {
77 return cl_heap_univpoly_ring::zerop(x);
78 }
79 const cl_UP_N plus (const cl_UP_N& x, const cl_UP_N& y)
80 {
81 return The2(cl_UP_N)(cl_heap_univpoly_ring::plus(x,y));
82 }
83 const cl_UP_N minus (const cl_UP_N& x, const cl_UP_N& y)
84 {
85 return The2(cl_UP_N)(cl_heap_univpoly_ring::minus(x,y));
86 }
87 const cl_UP_N uminus (const cl_UP_N& x)
88 {
89 return The2(cl_UP_N)(cl_heap_univpoly_ring::uminus(x));
90 }
91 const cl_UP_N one ()
92 {
93 return The2(cl_UP_N)(cl_heap_univpoly_ring::one());
94 }
95 const cl_UP_N canonhom (const cl_I& x)
96 {
97 return The2(cl_UP_N)(cl_heap_univpoly_ring::canonhom(x));
98 }
99 const cl_UP_N mul (const cl_UP_N& x, const cl_UP_N& y)
100 {
101 return The2(cl_UP_N)(cl_heap_univpoly_ring::mul(x,y));
102 }
103 const cl_UP_N square (const cl_UP_N& x)
104 {
105 return The2(cl_UP_N)(cl_heap_univpoly_ring::square(x));
106 }
107 const cl_UP_N expt_pos (const cl_UP_N& x, const cl_I& y)
108 {
109 return The2(cl_UP_N)(cl_heap_univpoly_ring::expt_pos(x,y));
110 }
111 const cl_UP_N scalmul (const cl_N& x, const cl_UP_N& y)
112 {
113 return The2(cl_UP_N)(cl_heap_univpoly_ring::scalmul(cl_ring_element(cl_C_ring,x),y));
114 }
115 sintL degree (const cl_UP_N& x)
116 {
117 return cl_heap_univpoly_ring::degree(x);
118 }
119 sintL ldegree (const cl_UP_N& x)
120 {
121 return cl_heap_univpoly_ring::ldegree(x);
122 }
123 const cl_UP_N monomial (const cl_N& x, uintL e)
124 {
125 return The2(cl_UP_N)(cl_heap_univpoly_ring::monomial(cl_ring_element(cl_C_ring,x),e));
126 }
127 const cl_N coeff (const cl_UP_N& x, uintL index)
128 {
129 return The(cl_N)(cl_heap_univpoly_ring::coeff(x,index));
130 }
131 const cl_UP_N create (sintL deg)
132 {
133 return The2(cl_UP_N)(cl_heap_univpoly_ring::create(deg));
134 }
135 void set_coeff (cl_UP_N& x, uintL index, const cl_N& y)
136 {
137 cl_heap_univpoly_ring::set_coeff(x,index,cl_ring_element(cl_C_ring,y));
138 }
139 void finalize (cl_UP_N& x)
140 {
141 cl_heap_univpoly_ring::finalize(x);
142 }
143 const cl_N eval (const cl_UP_N& x, const cl_N& y)
144 {
145 return The(cl_N)(cl_heap_univpoly_ring::eval(x,cl_ring_element(cl_C_ring,y)));
146 }
147private:
148 // No need for any constructors.
149 cl_heap_univpoly_complex_ring ();
150};
151
152// Lookup of polynomial rings.
153inline const cl_univpoly_complex_ring find_univpoly_ring (const cl_complex_ring& r)
154{ return The(cl_univpoly_complex_ring) (find_univpoly_ring((const cl_ring&)r)); }
155inline const cl_univpoly_complex_ring find_univpoly_ring (const cl_complex_ring& r, const cl_symbol& varname)
156{ return The(cl_univpoly_complex_ring) (find_univpoly_ring((const cl_ring&)r,varname)); }
157
158// Operations on polynomials.
159
160// Add.
161inline const cl_UP_N operator+ (const cl_UP_N& x, const cl_UP_N& y)
162 { return x.ring()->plus(x,y); }
163
164// Negate.
165inline const cl_UP_N operator- (const cl_UP_N& x)
166 { return x.ring()->uminus(x); }
167
168// Subtract.
169inline const cl_UP_N operator- (const cl_UP_N& x, const cl_UP_N& y)
170 { return x.ring()->minus(x,y); }
171
172// Multiply.
173inline const cl_UP_N operator* (const cl_UP_N& x, const cl_UP_N& y)
174 { return x.ring()->mul(x,y); }
175
176// Squaring.
177inline const cl_UP_N square (const cl_UP_N& x)
178 { return x.ring()->square(x); }
179
180// Exponentiation x^y, where y > 0.
181inline const cl_UP_N expt_pos (const cl_UP_N& x, const cl_I& y)
182 { return x.ring()->expt_pos(x,y); }
183
184// Scalar multiplication.
185#if 0 // less efficient
186inline const cl_UP_N operator* (const cl_I& x, const cl_UP_N& y)
187 { return y.ring()->mul(y.ring()->canonhom(x),y); }
188inline const cl_UP_N operator* (const cl_UP_N& x, const cl_I& y)
189 { return x.ring()->mul(x.ring()->canonhom(y),x); }
190#endif
191inline const cl_UP_N operator* (const cl_I& x, const cl_UP_N& y)
192 { return y.ring()->scalmul(x,y); }
193inline const cl_UP_N operator* (const cl_UP_N& x, const cl_I& y)
194 { return x.ring()->scalmul(y,x); }
195inline const cl_UP_N operator* (const cl_N& x, const cl_UP_N& y)
196 { return y.ring()->scalmul(x,y); }
197inline const cl_UP_N operator* (const cl_UP_N& x, const cl_N& y)
198 { return x.ring()->scalmul(y,x); }
199
200// Coefficient.
201inline const cl_N coeff (const cl_UP_N& x, uintL index)
202 { return x.ring()->coeff(x,index); }
203
204// Destructive modification.
205inline void set_coeff (cl_UP_N& x, uintL index, const cl_N& y)
206 { x.ring()->set_coeff(x,index,y); }
207inline void finalize (cl_UP_N& x)
208 { x.ring()->finalize(x); }
209inline void cl_UP_N::set_coeff (uintL index, const cl_N& y)
210 { ring()->set_coeff(*this,index,y); }
211inline void cl_UP_N::finalize ()
212 { ring()->finalize(*this); }
213
214// Evaluation. (No extension of the base ring allowed here for now.)
215inline const cl_N cl_UP_N::operator() (const cl_N& y) const
216{
217 return ring()->eval(*this,y);
218}
219
220// Derivative.
221inline const cl_UP_N deriv (const cl_UP_N& x)
222 { return The2(cl_UP_N)(deriv((const cl_UP&)x)); }
223
224#endif
225
226} // namespace cln
227
228#endif /* _CL_UNIVPOLY_COMPLEX_H */