/cln-1.3.2/examples/lucaslehmer.cc
C++ | 82 lines | 60 code | 9 blank | 13 comment | 9 complexity | aacfeab6b4ff1e1c7ba555ba3978d6da MD5 | raw file
Possible License(s): GPL-2.0
1// Check whether a mersenne number is prime,
2// using the Lucas-Lehmer test.
3// [Donald Ervin Knuth: The Art of Computer Programming, Vol. II:
4// Seminumerical Algorithms, second edition. Section 4.5.4, p. 391.]
5
6// We work with integers.
7#include <cln/integer.h>
8
9using namespace std;
10using namespace cln;
11
12// Checks whether 2^q-1 is prime, q an odd prime.
13bool mersenne_prime_p (int q)
14{
15 cl_I m = ((cl_I)1 << q) - 1;
16 int i;
17 cl_I L_i;
18 for (i = 0, L_i = 4; i < q-2; i++)
19 L_i = mod(L_i*L_i - 2, m);
20 return (L_i==0);
21}
22
23// Same thing, but optimized.
24bool mersenne_prime_p_opt (int q)
25{
26 cl_I m = ((cl_I)1 << q) - 1;
27 int i;
28 cl_I L_i;
29 for (i = 0, L_i = 4; i < q-2; i++) {
30 L_i = square(L_i) - 2;
31 L_i = ldb(L_i,cl_byte(q,q)) + ldb(L_i,cl_byte(q,0));
32 if (L_i >= m)
33 L_i = L_i - m;
34 }
35 return (L_i==0);
36}
37
38// Now we work with modular integers.
39#include <cln/modinteger.h>
40
41// Same thing, but using modular integers.
42bool mersenne_prime_p_modint (int q)
43{
44 cl_I m = ((cl_I)1 << q) - 1;
45 cl_modint_ring R = find_modint_ring(m); // Z/mZ
46 int i;
47 cl_MI L_i;
48 for (i = 0, L_i = R->canonhom(4); i < q-2; i++)
49 L_i = R->minus(R->square(L_i),R->canonhom(2));
50 return R->equal(L_i,R->zero());
51}
52
53#include <cln/io.h> // we do I/O
54#include <cstdlib> // declares exit()
55#include <cln/timing.h>
56
57int main (int argc, char* argv[])
58{
59 if (!(argc == 2)) {
60 cerr << "Usage: lucaslehmer exponent" << endl;
61 exit(1);
62 }
63 int q = atoi(argv[1]);
64 if (!(q >= 2 && ((q % 2)==1))) {
65 cerr << "Usage: lucaslehmer q with q odd prime" << endl;
66 exit(1);
67 }
68 bool isprime;
69 { CL_TIMING; isprime = mersenne_prime_p(q); }
70 { CL_TIMING; isprime = mersenne_prime_p_opt(q); }
71 { CL_TIMING; isprime = mersenne_prime_p_modint(q); }
72 cout << "2^" << q << "-1 is ";
73 if (isprime)
74 cout << "prime" << endl;
75 else
76 cout << "composite" << endl;
77}
78
79// Computing time on a i486, 33 MHz:
80// 1279: 2.02 s
81// 2281: 8.74 s
82// 44497: 14957 s