PageRenderTime 172ms CodeModel.GetById 21ms app.highlight 122ms RepoModel.GetById 1ms app.codeStats 0ms

/cln-1.3.2/src/base/digitseq/cl_DS_mul_fftp.h

#
C Header | 823 lines | 667 code | 25 blank | 131 comment | 120 complexity | 3b134dbc26829ce8778b6d29ebb5a2b5 MD5 | raw file
Possible License(s): GPL-2.0
  1// Fast integer multiplication using FFT in a modular ring.
  2// Bruno Haible 5.5.1996
  3
  4// FFT in the complex domain has the drawback that it needs careful round-off
  5// error analysis. So here we choose another field of characteristic 0: Q_p.
  6// Since Q_p contains exactly the (p-1)th roots of unity, we choose
  7// p == 1 mod N and have the Nth roots of unity (N = 2^n) in Q_p and
  8// even in Z_p. Actually, we compute in Z/(p^m Z).
  9
 10// All operations the FFT algorithm needs is addition, subtraction,
 11// multiplication, multiplication by the Nth root of unity and division
 12// by N. Hence we can use the domain Z/(p^m Z) even if p is not a prime!
 13
 14// We want to compute the convolution of N 32-bit words. The resulting
 15// words are < (2^32)^2 * N. If is safe to compute in Z/pZ with p = 2^94 + 1
 16// or p = 7*2^92 + 1. We choose p < 2^95 so that we can easily represent every
 17// element of Z/pZ as three 32-bit words.
 18
 19#if !(intDsize==32)
 20#error "fft mod p implemented only for intDsize==32"
 21#endif
 22
 23#if 0
 24typedef union {
 25	#if CL_DS_BIG_ENDIAN_P
 26	struct { uint32 w2; uint32 w1; uint32 w0; };
 27	#else
 28	struct { uint32 w0; uint32 w1; uint32 w2; };
 29	#endif
 30	uintD _w[3];
 31} fftp_word;
 32#else
 33// typedef struct { uint32 w2; uint32 w1; uint32 w0; } fftp_word;
 34// typedef struct { uint32 w0; uint32 w1; uint32 w2; } fftp_word;
 35typedef struct { uintD _w[3]; } fftp_word;
 36#endif
 37#if CL_DS_BIG_ENDIAN_P
 38  #define w2 _w[0]
 39  #define w1 _w[1]
 40  #define w0 _w[2]
 41  #define W3(W2,W1,W0)  { W2, W1, W0 }
 42#else
 43  #define w0 _w[0]
 44  #define w1 _w[1]
 45  #define w2 _w[2]
 46  #define W3(W2,W1,W0)  { W0, W1, W2 }
 47#endif
 48
 49#if 0
 50// p = 19807040628566084398385987585 = 5 * 3761 * 7484047069 * 140737471578113
 51static const fftp_word p = W3( 1L<<30, 0, 1 ); // p = 2^94 + 1
 52#define FFT_P_94
 53static const fftp_word fftp_roots_of_1 [24+1] =
 54  // roots_of_1[n] is a (2^n)th root of unity in Z/pZ.
 55  // (Also roots_of_1[n-1] = roots_of_1[n]^2, but we don't need this.)
 56  // (To build this table, you need to compute roots of unity modulo the
 57  // factors of p and combine them using the Chinese Remainder Theorem.
 58  // Or ask me for "quadmod.lsp".)
 59  {
 60    W3( 0x00000000, 0x00000000, 0x00000001 ), //                             1
 61    W3( 0x0000003F, 0xFFFFFFFF, 0xFF800000 ), //        1180591620717402914816
 62    W3( 0x20000040, 0x00004000, 0x00000001 ), //  9903521494874733285348474881
 63    W3( 0x3688E9A7, 0xDD78E2A9, 0x1E75974D ), // 16877707849775746711303853901
 64    W3( 0x286E6589, 0x5E86C1E0, 0x42710379 ), // 12512861726041464545960067961
 65    W3( 0x00D79325, 0x1A884885, 0xEA46D6C5 ), //   260613923531515619478787781
 66    W3( 0x1950B480, 0xC387CEE5, 0xA69C443F ), //  7834691712342412468047070271
 67    W3( 0x19DC9D08, 0x11CADC6A, 0x5BA8B123 ), //  8003830486242687653832601891
 68    W3( 0x21D6D905, 0xB8BAC7C3, 0xC3841613 ), // 10472740308573592285123712531
 69    W3( 0x27D73986, 0x6AF6BD27, 0x7A6D7909 ), // 12330106088710388189231937801
 70    W3( 0x20D4698B, 0x0039D457, 0xA092AECF ), // 10160311000635748689099534031
 71    W3( 0x049BD1C4, 0xA94F001A, 0xFA76E358 ), //  1426314143682376031341568856
 72    W3( 0x26DD7228, 0x09400257, 0x9BB49CB9 ), // 12028142067661291067236719801
 73    W3( 0x12DAA9AD, 0xAF9435A9, 0xD50FF483 ), //  5835077289334326375656453251
 74    W3( 0x0B7CDA03, 0x9418702E, 0x7CD934CA ), //  3555271451571910239441204426
 75    W3( 0x2D272FCF, 0xB8644522, 0x68EAD40B ), // 13974199331913037576372147211
 76    W3( 0x00EDA06E, 0x0114DA26, 0xE8D84BA9 ), //   287273027105701319912475561
 77    W3( 0x2219C2C4, 0xFD3145C6, 0xDD019359 ), // 10553633252320053510122083161
 78    W3( 0x1764F007, 0x4F5D5FD4, 0xDAB10AFC ), //  7240181310654329198595869436
 79    W3( 0x01AA13EE, 0x2D1CD906, 0x11D5B1EB ), //   515096517694807745704079851
 80    W3( 0x27038944, 0x5A37BAAD, 0x5CECA64C ), // 12074190385578921562318087756
 81    W3( 0x2459CF22, 0xF625FD38, 0xADB48511 ), // 11250032926302238120667809041
 82    W3( 0x25B6C6A8, 0xD684063F, 0x7ABAD1EF ), // 11671908005633729316324561391
 83    W3( 0x1C1A2BC6, 0x12B253F1, 0x0D1BBCB7 ), //  8697219061868963805380983991
 84    W3( 0x198F3FE2, 0x5EE9919F, 0x535E80D5 }  //  7910303322630257758732976341
 85  };
 86// Sadly, this p doesn't work because we don't find a (2^n)th root of unity w
 87// such that  w^(2^(n-1)) = -1  mod p. However, our algorithm below assumes
 88// that  w^(2^(n-1)) = -1...
 89#else
 90// p = 34662321099990647697175478273, a prime
 91static const fftp_word p = W3( 7L<<28, 0, 1 ); // p = 7 * 2^92 + 1
 92#define FFT_P_92
 93static const fftp_word fftp_roots_of_1 [92+1] =
 94  // roots_of_1[n] is a (2^n)th root of unity in Z/pZ.
 95  // (Also roots_of_1[n-1] = roots_of_1[n]^2, but we don't need this.)
 96  {
 97    W3( 0x00000000, 0x00000000, 0x00000001 ), //                             1
 98    W3( 0x70000000, 0x00000000, 0x00000000 ), // 34662321099990647697175478272
 99    W3( 0x064AF70F, 0x997E62CE, 0x77953100 ), //  1947537281862369253065568512
100    W3( 0x261B8E96, 0xC3AD4296, 0xDA1BFA93 ), // 11793744727492885369350519443
101    W3( 0x096EA949, 0x6EDCAF05, 0x47C92A4F ), //  2919146363086089454841571919
102    W3( 0x366A8C3F, 0x7BF1436D, 0x2333BE9E ), // 16840998969615256469762195102
103    W3( 0x27569FA8, 0xAE1775F1, 0xB21956A0 ), // 12174636971387721414084220576
104    W3( 0x16CABB8B, 0xBAA59813, 0x62FCBCD9 ), //  7053758891710792545762852057
105    W3( 0x1AE130A3, 0xF909B101, 0xB6BA30CF ), //  8318848263123793919933558991
106    W3( 0x32AE8FEE, 0x6B1A656B, 0xED02BF24 ), // 15685283280129931240441823012
107    W3( 0x2D1EE047, 0x5AEDC882, 0x8E96BCCC ), // 13964152342912072497719852236
108    W3( 0x222A18FD, 0x3BF40635, 0xBFDEA8AD ), // 10573383226491471052459124909
109    W3( 0x10534EE6, 0xED5A55D4, 0x06AE2155 ), //  5052473604609413010647032149
110    W3( 0x02F3BFA3, 0x2D816786, 0xE6C27B3C ), //   913643975905572976593107772
111    W3( 0x0B0CD0A5, 0x9A1FF4F7, 0x2624A5E1 ), //  3419827524917244902802499041
112    W3( 0x257A492F, 0x156C141C, 0xFC5D75F4 ), // 11598779914676604137587439092
113    W3( 0x061FB92A, 0xB1A1F41A, 0x7006920F ), //  1895261184698485907279745551
114    W3( 0x2A4E1471, 0xDDB96073, 0xD8DDBB71 ), // 13092763174215078887900953457
115    W3( 0x213B469E, 0xD72A84CA, 0xAAA477F2 ), // 10284665443205365583657072626
116    W3( 0x1D7EF67C, 0x3DC2DA37, 0x4C86E9DC ), //  9128553932091860654576036316
117    W3( 0x0CB7AA67, 0x2E087ED8, 0x2675D6E3 ), //  3935858248479385987820410595
118    W3( 0x00BD7B24, 0x68388052, 0x57FFFB10 ), //   229068502577238003716979472
119    W3( 0x1E1724A6, 0xBA587C3D, 0x0C12825B ), //  9312528669272006966417457755
120    W3( 0x20595EF0, 0xC89DA33B, 0x3CB5583B ), // 10011563056352601486430394427
121    W3( 0x15E730B2, 0x6D34E9EB, 0x71CCE555 ), //  6778677035560020292206912853
122    W3( 0x015EFDBB, 0xC0A80C3B, 0xE4B1E017 ), //   424322259008787317821399063
123    W3( 0x1B81FC63, 0x0C694944, 0x8EB481BF ), //  8513238559382277026756198847
124    W3( 0x1AF53421, 0x5DCAA1A4, 0xD0C15A03 ), //  8343043259718611508685527555
125    W3( 0x2F2B6B58, 0xBB60E464, 0x37A7DE2E ), // 14598286201875835624993840686
126    W3( 0x27B4AB13, 0x54617640, 0xE86E757A ), // 12288329911800070034603013498
127    W3( 0x041A31D2, 0xF0AC8E3C, 0x8AA4FD27 ), //  1269607397711669380834983207
128    W3( 0x1A52F484, 0x39AC5917, 0x34E3F1F7 ), //  8146896869111203814625767927
129    W3( 0x048FC120, 0x50F6ECBF, 0x268D86A8 ), //  1411728444351387120148776616
130    W3( 0x27A2C427, 0x001F1239, 0x93380047 ), // 12266687669072434694473646151
131    W3( 0x2E7E8DFB, 0x2411A754, 0xE12A9B1D ), // 14389305591459206001391737629
132    W3( 0x29F14702, 0x40B3E1E2, 0xF7D71A8D ), // 12980571854778363745245010573
133    W3( 0x3158DCE7, 0x8B8FEB32, 0x1DE35D24 ), // 15272194145252623177165790500
134    W3( 0x12484C07, 0x437ED373, 0x9E45F602 ), //  5658131869639928287764805122
135    W3( 0x1AEAE06E, 0xB905C908, 0x4389BF5F ), //  8330558749711089231534341983
136    W3( 0x27BC0045, 0x43024FEB, 0xEC880258 ), // 12297194714773858676269122136
137    W3( 0x2EFE1CBC, 0x0D2FAA94, 0xB4EA69A6 ), // 14543513305163560781242591654
138    W3( 0x0B0D3D8B, 0xD779F105, 0x920367FA ), //  3420341787669373425792804858
139    W3( 0x2D4D7BA9, 0x0970D8CF, 0x8CE6D7EC ), // 14020496699328277892009744364
140    W3( 0x00DC5971, 0x0209470E, 0x713F2B27 ), //   266386055561000736260041511
141    W3( 0x27E54E26, 0x53BA0137, 0xDD6740B3 ), // 12347128447319282384829366451
142    W3( 0x2143A889, 0x8F2B57F5, 0xFB8181C1 ), // 10294799249108063706647986625
143    W3( 0x1125419F, 0x5C4E0608, 0xE0AC0396 ), //  5306285315793562029414679446
144    W3( 0x15B61D90, 0x63A27BB0, 0x26402B32 ), //  6719349317556695539371748146
145    W3( 0x03B582FC, 0x419EF656, 0xB06BBC35 ), //  1147889163765050226454019125
146    W3( 0x08FF62E1, 0xA3BB1145, 0xDA998F77 ), //  2784623116803271439773437815
147    W3( 0x101978AF, 0xF93CBFA1, 0xB788B5A3 ), //  4982553232749484200897852835
148    W3( 0x061334DE, 0x8FE5C6E9, 0x2B2309D6 ), //  1880129318103954373583505878
149    W3( 0x343C6E7C, 0x8019BB43, 0xD954E744 ), // 16166277816826816936484857668
150    W3( 0x06506A03, 0x0E6DE333, 0xF8011494 ), //  1954124751724394051182597268
151    W3( 0x34892A42, 0x6502DAA3, 0x8FDA6971 ), // 16259042912153157504364865905
152    W3( 0x0EF2C4BD, 0xF42D9711, 0xC32CEA49 ), //  4626279273705729025744104009
153    W3( 0x24511305, 0x4F1EAE2C, 0x62FB10F4 ), // 11239473167855288013010178292
154    W3( 0x14E5A052, 0xF1748A9C, 0xDD536730 ), //  6467301317787608309692589872
155    W3( 0x0621D0A7, 0x0A5188AF, 0x7316C352 ), //  1897789944553576071437927250
156    W3( 0x234498F0, 0xDF078E95, 0x6FEED50B ), // 10914904542475816633386325259
157    W3( 0x029E4925, 0x948D6D57, 0xD4DF93A6 ), //   810325725128913871737688998
158    W3( 0x11BB3805, 0x0589D746, 0x852F3E2F ), //  5487578840386649632552205871
159    W3( 0x1D4370CA, 0xA4441B85, 0xC9606FE0 ), //  9056595957858187419376971744
160    W3( 0x1C536F7D, 0x77D44926, 0x8DDB8932 ), //  8766447615182890705620797746
161    W3( 0x3498CE71, 0xB726A4D3, 0xF4F3C813 ), // 16277952140466335672647796755
162    W3( 0x1E4A297E, 0xAC13196E, 0xFACD8102 ), //  9374206759006667727054930178
163    W3( 0x0E7C2CCC, 0xC940C98B, 0x0BC0CA49 ), //  4482908500893894680116251209
164    W3( 0x124CF912, 0xD84438FD, 0x9C03585F ), //  5663784755954194195257972831
165    W3( 0x06180FF8, 0xD447BEBE, 0xDB8821E7 ), //  1885999704184999223512015335
166    W3( 0x1ED2EB11, 0x0687EC7C, 0xBE3436C8 ), //  9539534786948152514714023624
167    W3( 0x30EBB35C, 0x59616A3C, 0x502CBB52 ), // 15140225046175435352009653074
168    W3( 0x33E24883, 0xEDA36D60, 0xA25C8E5F ), // 16057295180155395438855097951
169    W3( 0x0D879ED9, 0x076BAB06, 0x9BE12AA2 ), //  4187260250707927256570866338
170    W3( 0x1A1B6C9C, 0x0966383B, 0x54123A87 ), //  8079764146434082816365050503
171    W3( 0x31BD863A, 0xA2A6505C, 0xD759E6CF ), // 15393886339893077529104869071
172    W3( 0x3209AF0A, 0x5E5055A1, 0x480AF03F ), // 15485957428841754012708171839
173    W3( 0x1A4CC03C, 0xC8AA650B, 0x7F4DBCE9 ), //  8139396433274519652257348841
174    W3( 0x3596471F, 0xB99D2EA3, 0xA3433E0C ), // 16584380266717730797139475980
175    W3( 0x28E87642, 0x98E21FCE, 0xDE1B53EA ), // 12660429650750886812340409322
176    W3( 0x20161DB9, 0xCDC199E9, 0x0A6BEDF2 ), //  9930257058416521571476434418
177    W3( 0x1D0DC095, 0x2C40D22B, 0x088549BA ), //  8991690766592354745340742074
178    W3( 0x2FCC953C, 0xA8B62408, 0x50FC4C29 ), // 14793121080372138443684989993
179    W3( 0x0F854B39, 0xF659B4B5, 0xD2B0A6AC ), //  4803417528030967235217499820
180    W3( 0x30E087D4, 0x02F3BBAB, 0xBA503373 ), // 15126721285415891216108630899
181    W3( 0x0DAF660C, 0x26B99C42, 0x98B8BE05 ), //  4235349051642660841298902533
182    W3( 0x0ED6AE0E, 0xCD02982A, 0xD233F0D9 ), //  4592322227691334993146278105
183    W3( 0x3415EB9B, 0x4B61C19F, 0xB21F1255 ), // 16119720573722492095181034069
184    W3( 0x1015A729, 0x20A1FAA2, 0x0D094529 ), //  4977936993224010619482096937
185    W3( 0x1D2E3AD2, 0x7093579F, 0x1C93C97B ), //  9030953651705465548198627707
186    W3( 0x130EAA8F, 0x859C980F, 0xD9E7E8ED ), //  5897945597894388791627999469
187    W3( 0x2B7CA1C8, 0xFC34C5B5, 0x9C0B1C0C ), // 13458526232475976507763399692
188    W3( 0x22367055, 0xA53B526A, 0x7505EABE ), // 10588302813110450634719881918
189    W3( 0x344FEF55, 0x0B77067F, 0x38999E77 )  // 16189855864848287589134343799
190  };
191#endif
192
193// Define this if you want the external loops instead of inline operations.
194#define FFTP_EXTERNAL_LOOPS
195
196// Define this for (cheap) consistency checks.
197//#define DEBUG_FFTP
198
199// Define this for extensive consistency checks.
200//#define DEBUG_FFTP_OPERATIONS
201
202// Define the algorithm of the backward FFT:
203// Either FORWARD (a normal FFT followed by a permutation)
204// or     RECIPROOT (an FFT with reciprocal root of unity)
205// or     CLEVER (an FFT with reciprocal root of unity but clever computation
206//                of the reciprocals).
207// Drawback of FORWARD: the permutation pass.
208// Drawback of RECIPROOT: need all the powers of the root, not only half of them.
209#define FORWARD   42
210#define RECIPROOT 43
211#define CLEVER    44
212#define FFTP_BACKWARD CLEVER
213
214// r := a + b
215static inline void add (const fftp_word& a, const fftp_word& b, fftp_word& r)
216{
217#ifdef FFTP_EXTERNAL_LOOPS
218	add_loop_lsp(arrayLSDptr(a._w,3),arrayLSDptr(b._w,3),arrayLSDptr(r._w,3),3);
219#else
220	var uint32 tmp;
221
222	tmp = a.w0 + b.w0;
223	if (tmp >= a.w0) {
224		// no carry
225		r.w0 = tmp;
226		tmp = a.w1 + b.w1;
227		if (tmp >= a.w1) goto no_carry_1; else goto carry_1;
228	} else {
229		// carry
230		r.w0 = tmp;
231		tmp = a.w1 + b.w1 + 1;
232		if (tmp > a.w1) goto no_carry_1; else goto carry_1;
233	}
234	if (1) {
235		no_carry_1: // no carry
236		r.w1 = tmp;
237		tmp = a.w2 + b.w2;
238	} else {
239		carry_1: // carry
240		r.w1 = tmp;
241		tmp = a.w2 + b.w2 + 1;
242	}
243	r.w2 = tmp;
244#endif
245}
246
247// r := a - b
248static inline void sub (const fftp_word& a, const fftp_word& b, fftp_word& r)
249{
250#ifdef FFTP_EXTERNAL_LOOPS
251	sub_loop_lsp(arrayLSDptr(a._w,3),arrayLSDptr(b._w,3),arrayLSDptr(r._w,3),3);
252#else
253	var uint32 tmp;
254
255	tmp = a.w0 - b.w0;
256	if (tmp <= a.w0) {
257		// no carry
258		r.w0 = tmp;
259		tmp = a.w1 - b.w1;
260		if (tmp <= a.w1) goto no_carry_1; else goto carry_1;
261	} else {
262		// carry
263		r.w0 = tmp;
264		tmp = a.w1 - b.w1 - 1;
265		if (tmp < a.w1) goto no_carry_1; else goto carry_1;
266	}
267	if (1) {
268		no_carry_1: // no carry
269		r.w1 = tmp;
270		tmp = a.w2 - b.w2;
271	} else {
272		carry_1: // carry
273		r.w1 = tmp;
274		tmp = a.w2 - b.w2 - 1;
275	}
276	r.w2 = tmp;
277#endif
278}
279
280// b := a >> 1
281static inline void shift (const fftp_word& a, fftp_word& b)
282{
283#ifdef FFTP_EXTERNAL_LOOPS
284	#ifdef DEBUG_FFTP
285	if (shiftrightcopy_loop_msp(arrayMSDptr(a._w,3),arrayMSDptr(b._w,3),3,1,0))
286		throw runtime_exception();
287	#else
288	shiftrightcopy_loop_msp(arrayMSDptr(a._w,3),arrayMSDptr(b._w,3),3,1,0);
289	#endif
290#else
291	var uint32 tmp, carry;
292
293	tmp = a.w2;
294	b.w2 = a.w2 >> 1;
295	carry = tmp << 31;
296	tmp = a.w1;
297	b.w1 = (tmp >> 1) | carry;
298	carry = tmp << 31;
299	tmp = a.w0;
300	b.w0 = (tmp >> 1) | carry;
301	#ifdef DEBUG_FFTP
302	carry = tmp << 31;
303	if (carry)
304		throw runtime_exception();
305	#endif
306#endif
307}
308
309#ifdef DEBUG_FFTP_OPERATIONS
310#define check_fftp_word(x)  if (compare_loop_msp(arrayMSDptr((x)._w,3),arrayMSDptr(p._w,3),3) >= 0) throw runtime_exception()
311#else
312#define check_fftp_word(x)
313#endif
314
315// r := (a + b) mod p
316static inline void addp (const fftp_word& a, const fftp_word& b, fftp_word& r)
317{
318	check_fftp_word(a); check_fftp_word(b);
319#ifdef FFTP_EXTERNAL_LOOPS
320	add(a,b, r);
321	if (compare_loop_msp(arrayMSDptr(r._w,3),arrayMSDptr(p._w,3),3) >= 0)
322		sub(r,p, r);
323#else
324	add(a,b, r);
325	if ((r.w2 > p.w2)
326	    || ((r.w2 == p.w2)
327	        && ((r.w1 > p.w1)
328	            || ((r.w1 == p.w1)
329	                && (r.w0 >= p.w0)))))
330		sub(r,p, r);
331#endif
332	check_fftp_word(r);
333}
334
335// r := (a - b) mod p
336static inline void subp (const fftp_word& a, const fftp_word& b, fftp_word& r)
337{
338	check_fftp_word(a); check_fftp_word(b);
339	sub(a,b, r);
340	if ((sint32)r.w2 < 0)
341		add(r,p, r);
342	check_fftp_word(r);
343}
344
345// r := (a * b) mod p
346static void mulp (const fftp_word& a, const fftp_word& b, fftp_word& r)
347{
348	check_fftp_word(a); check_fftp_word(b);
349#if defined(FFT_P_94)
350	var uintD c[6];
351	var uintD* const cLSDptr = arrayLSDptr(c,6);
352	// Multiply the two words, using the standard method.
353	mulu_2loop(arrayLSDptr(a._w,3),3, arrayLSDptr(b._w,3),3, cLSDptr);
354	// c[0..5] now contains the product.
355	// Divide by p.
356	// To divide c (0 <= c < p^2) by p = 2^n+1,
357	// we set q := floor(c/2^n) and r := c - q*p = (c mod 2^n) - q.
358	// If this becomes negative, set r := r + p (at most twice).
359	// (This works because  floor(c/p) <= q <= floor(c/p)+2.)
360	// (Actually, here, 0 <= c <= (p-1)^2, hence
361	// floor(c/p) <= q <= floor(c/p)+1, so we have
362	// to set r := r + p at most once!)
363	// n = 94 = 3*32-2 = 2*32+30.
364	shiftleft_loop_lsp(cLSDptr lspop 3,3,2,lspref(cLSDptr,2)>>30);
365	lspref(cLSDptr,2) &= bit(30)-1;
366	// c[0..2] now contains q, c[3..5] contains (c mod 2^n).
367	#if 0
368	if (compare_loop_msp(cLSDptr lspop 6,arrayMSDptr(p._w,3),3) >= 0) // q >= p ?
369		subfrom_loop_lsp(arrayLSDptr(p._w,3),cLSDptr lspop 3,3); // q -= p;
370	#endif
371	if (subfrom_loop_lsp(cLSDptr lspop 3,cLSDptr,3)) // (c mod 2^n) - q
372		addto_loop_lsp(arrayLSDptr(p._w,3),cLSDptr,3);
373	r.w2 = lspref(cLSDptr,2); r.w1 = lspref(cLSDptr,1); r.w0 = lspref(cLSDptr,0);
374#elif defined(FFT_P_92)
375	var uintD c[7];
376	var uintD* const cLSDptr = arrayLSDptr(c,7);
377	// Multiply the two words, using the standard method.
378	mulu_2loop(arrayLSDptr(a._w,3),3, arrayLSDptr(b._w,3),3, cLSDptr);
379	// c[1..6] now contains the product.
380	// Divide by p.
381	// To divide c (0 <= c < p^2) by p = 7*2^n+1,
382	// we set q := floor(floor(c/2^n)/7) and
383	// r := c - q*p = (floor(c/2^n) mod 7)*2^n + (c mod 2^n) - q.
384	// If this becomes negative, set r := r + p.
385	// (As above, since 0 <= c <= (p-1)^2, we have
386	// floor(c/p) <= q <= floor(c/p)+1, so we have
387	// to set r := r + p at most once!)
388	// n = 92 = 3*32-4 = 2*32+28.
389	lspref(cLSDptr,6) = shiftleft_loop_lsp(cLSDptr lspop 3,3,4,lspref(cLSDptr,2)>>28);
390	lspref(cLSDptr,2) &= bit(28)-1;
391	// c[0..3] now contains floor(c/2^n), c[4..6] contains (c mod 2^n).
392	var uintD remainder = divu_loop_msp(7,cLSDptr lspop 7,4);
393	lspref(cLSDptr,2) |= remainder << 28;
394	// c[0..3] now contains q, c[4..6] contains (c mod 7*2^n).
395	#ifdef DEBUG_FFTP
396	if (lspref(cLSDptr,6) > 0)
397		throw runtime_exception();
398	#endif
399	#if 0
400	if (compare_loop_msp(cLSDptr lspop 6,arrayMSDptr(p._w,3),3) >= 0) // q >= p ?
401		subfrom_loop_lsp(arrayLSDptr(p._w,3),cLSDptr lspop 3,3); // q -= p;
402	#endif
403	if (subfrom_loop_lsp(cLSDptr lspop 3,cLSDptr,3)) // (c mod 2^n) - q
404		addto_loop_lsp(arrayLSDptr(p._w,3),cLSDptr,3);
405	r.w2 = lspref(cLSDptr,2); r.w1 = lspref(cLSDptr,1); r.w0 = lspref(cLSDptr,0);
406#else
407#error "mulp not implemented for this prime"
408#endif
409	if ((sint32)r.w2 < 0)
410		throw runtime_exception();
411	check_fftp_word(r);
412}
413#ifdef DEBUG_FFTP_OPERATIONS
414static void mulp_doublecheck (const fftp_word& a, const fftp_word& b, fftp_word& r)
415{
416	fftp_word zero, ma, mb, or;
417	subp(a,a, zero);
418	subp(zero,a, ma);
419	subp(zero,b, mb);
420	mulp(ma,mb, or);
421	mulp(a,b, r);
422	if (compare_loop_msp(arrayMSDptr(r._w,3),arrayMSDptr(or._w,3),3))
423		throw runtime_exception();
424}
425#define mulp mulp_doublecheck
426#endif /* DEBUG_FFTP_OPERATIONS */
427
428// b := (a / 2) mod p
429static inline void shiftp (const fftp_word& a, fftp_word& b)
430{
431	check_fftp_word(a);
432	if (a.w0 & 1) {
433		var fftp_word a_even;
434		add(a,p, a_even);
435		shift(a_even, b);
436	} else
437		shift(a, b);
438	check_fftp_word(b);
439}
440
441#ifndef _BIT_REVERSE
442#define _BIT_REVERSE
443// Reverse an n-bit number x. n>0.
444static uintC bit_reverse (uintL n, uintC x)
445{
446	var uintC y = 0;
447	do {
448		y <<= 1;
449		y |= (x & 1);
450		x >>= 1;
451	} while (!(--n == 0));
452	return y;
453}
454#endif
455
456// Compute an convolution mod p using FFT: z[0..N-1] := x[0..N-1] * y[0..N-1].
457static void fftp_convolution (const uintL n, const uintC N, // N = 2^n
458                              fftp_word * x, // N words
459                              fftp_word * y, // N words
460                              fftp_word * z  // N words result
461                             )
462{
463	CL_ALLOCA_STACK;
464	#if (FFTP_BACKWARD == RECIPROOT) || defined(DEBUG_FFTP)
465	var fftp_word* const w = cl_alloc_array(fftp_word,N);
466	#else
467	var fftp_word* const w = cl_alloc_array(fftp_word,(N>>1)+1);
468	#endif
469	var uintC i;
470	// Initialize w[i] to w^i, w a primitive N-th root of unity.
471	w[0] = fftp_roots_of_1[0];
472	w[1] = fftp_roots_of_1[n];
473	#if (FFTP_BACKWARD == RECIPROOT) || defined(DEBUG_FFTP)
474	for (i = 2; i < N; i++)
475		mulp(w[i-1],fftp_roots_of_1[n], w[i]);
476	#else // need only half of the roots
477	for (i = 2; i < N>>1; i++)
478		mulp(w[i-1],fftp_roots_of_1[n], w[i]);
479	#endif
480	#ifdef DEBUG_FFTP
481	// Check that w is really a primitive N-th root of unity.
482	{
483		var fftp_word w_N;
484		mulp(w[N-1],fftp_roots_of_1[n], w_N);
485		if (!(w_N.w2 == 0 && w_N.w1 == 0 && w_N.w0 == 1))
486			throw runtime_exception();
487		w_N = w[N>>1];
488		if (!(w_N.w2 == p.w2 && w_N.w1 == p.w1 && w_N.w0 == p.w0 - 1))
489			throw runtime_exception();
490	}
491	#endif
492	var bool squaring = (x == y);
493	// Do an FFT of length N on x.
494	{
495		var sintL l;
496		/* l = n-1 */ {
497			var const uintC tmax = N>>1; // tmax = 2^(n-1)
498			for (var uintC t = 0; t < tmax; t++) {
499				var uintC i1 = t;
500				var uintC i2 = i1 + tmax;
501				// Butterfly: replace (x(i1),x(i2)) by
502				// (x(i1) + x(i2), x(i1) - x(i2)).
503				var fftp_word tmp;
504				tmp = x[i2];
505				subp(x[i1],tmp, x[i2]);
506				addp(x[i1],tmp, x[i1]);
507			}
508		}
509		for (l = n-2; l>=0; l--) {
510			var const uintC smax = (uintC)1 << (n-1-l);
511			var const uintC tmax = (uintC)1 << l;
512			for (var uintC s = 0; s < smax; s++) {
513				var uintC exp = bit_reverse(n-1-l,s) << l;
514				for (var uintC t = 0; t < tmax; t++) {
515					var uintC i1 = (s << (l+1)) + t;
516					var uintC i2 = i1 + tmax;
517					// Butterfly: replace (x(i1),x(i2)) by
518					// (x(i1) + w^exp*x(i2), x(i1) - w^exp*x(i2)).
519					var fftp_word tmp;
520					mulp(x[i2],w[exp], tmp);
521					subp(x[i1],tmp, x[i2]);
522					addp(x[i1],tmp, x[i1]);
523				}
524			}
525		}
526	}
527	// Do an FFT of length N on y.
528	if (!squaring) {
529		var sintL l;
530		/* l = n-1 */ {
531			var uintC const tmax = N>>1; // tmax = 2^(n-1)
532			for (var uintC t = 0; t < tmax; t++) {
533				var uintC i1 = t;
534				var uintC i2 = i1 + tmax;
535				// Butterfly: replace (y(i1),y(i2)) by
536				// (y(i1) + y(i2), y(i1) - y(i2)).
537				var fftp_word tmp;
538				tmp = y[i2];
539				subp(y[i1],tmp, y[i2]);
540				addp(y[i1],tmp, y[i1]);
541			}
542		}
543		for (l = n-2; l>=0; l--) {
544			var const uintC smax = (uintC)1 << (n-1-l);
545			var const uintC tmax = (uintC)1 << l;
546			for (var uintC s = 0; s < smax; s++) {
547				var uintC exp = bit_reverse(n-1-l,s) << l;
548				for (var uintC t = 0; t < tmax; t++) {
549					var uintC i1 = (s << (l+1)) + t;
550					var uintC i2 = i1 + tmax;
551					// Butterfly: replace (y(i1),y(i2)) by
552					// (y(i1) + w^exp*y(i2), y(i1) - w^exp*y(i2)).
553					var fftp_word tmp;
554					mulp(y[i2],w[exp], tmp);
555					subp(y[i1],tmp, y[i2]);
556					addp(y[i1],tmp, y[i1]);
557				}
558			}
559		}
560	}
561	// Multiply the transformed vectors into z.
562	for (i = 0; i < N; i++)
563		mulp(x[i],y[i], z[i]);
564	// Undo an FFT of length N on z.
565	{
566		var uintL l;
567		for (l = 0; l < n-1; l++) {
568			var const uintC smax = (uintC)1 << (n-1-l);
569			var const uintC tmax = (uintC)1 << l;
570			#if FFTP_BACKWARD != CLEVER
571			for (var uintC s = 0; s < smax; s++) {
572				var uintC exp = bit_reverse(n-1-l,s) << l;
573				#if FFTP_BACKWARD == RECIPROOT
574				if (exp > 0)
575					exp = N - exp; // negate exp (use w^-1 instead of w)
576				#endif
577				for (var uintC t = 0; t < tmax; t++) {
578					var uintC i1 = (s << (l+1)) + t;
579					var uintC i2 = i1 + tmax;
580					// Inverse Butterfly: replace (z(i1),z(i2)) by
581					// ((z(i1)+z(i2))/2, (z(i1)-z(i2))/(2*w^exp)).
582					var fftp_word sum;
583					var fftp_word diff;
584					addp(z[i1],z[i2], sum);
585					subp(z[i1],z[i2], diff);
586					shiftp(sum, z[i1]);
587					mulp(diff,w[exp], diff); shiftp(diff, z[i2]);
588				}
589			}
590			#else // FFTP_BACKWARD == CLEVER: clever handling of negative exponents
591			/* s = 0, exp = 0 */ {
592				for (var uintC t = 0; t < tmax; t++) {
593					var uintC i1 = t;
594					var uintC i2 = i1 + tmax;
595					// Inverse Butterfly: replace (z(i1),z(i2)) by
596					// ((z(i1)+z(i2))/2, (z(i1)-z(i2))/(2*w^exp)),
597					// with exp <-- 0.
598					var fftp_word sum;
599					var fftp_word diff;
600					addp(z[i1],z[i2], sum);
601					subp(z[i1],z[i2], diff);
602					shiftp(sum, z[i1]);
603					shiftp(diff, z[i2]);
604				}
605			}
606			for (var uintC s = 1; s < smax; s++) {
607				var uintC exp = bit_reverse(n-1-l,s) << l;
608				exp = (N>>1) - exp; // negate exp (use w^-1 instead of w)
609				for (var uintC t = 0; t < tmax; t++) {
610					var uintC i1 = (s << (l+1)) + t;
611					var uintC i2 = i1 + tmax;
612					// Inverse Butterfly: replace (z(i1),z(i2)) by
613					// ((z(i1)+z(i2))/2, (z(i1)-z(i2))/(2*w^exp)),
614					// with exp <-- (N/2 - exp).
615					var fftp_word sum;
616					var fftp_word diff;
617					addp(z[i1],z[i2], sum);
618					subp(z[i2],z[i1], diff); // note that w^(N/2) = -1
619					shiftp(sum, z[i1]);
620					mulp(diff,w[exp], diff); shiftp(diff, z[i2]);
621				}
622			}
623			#endif
624		}
625		/* l = n-1 */ {
626			var const uintC tmax = N>>1; // tmax = 2^(n-1)
627			for (var uintC t = 0; t < tmax; t++) {
628				var uintC i1 = t;
629				var uintC i2 = i1 + tmax;
630				// Inverse Butterfly: replace (z(i1),z(i2)) by
631				// ((z(i1)+z(i2))/2, (z(i1)-z(i2))/2).
632				var fftp_word sum;
633				var fftp_word diff;
634				addp(z[i1],z[i2], sum);
635				subp(z[i1],z[i2], diff);
636				shiftp(sum, z[i1]);
637				shiftp(diff, z[i2]);
638			}
639		}
640	}
641	#if FFTP_BACKWARD == FORWARD
642	// Swap z[i] and z[N-i] for 0 < i < N/2.
643	for (i = (N>>1)-1; i > 0; i--) {
644		var fftp_word tmp = z[i];
645		z[i] = z[N-i];
646		z[N-i] = tmp;
647	}
648	#endif
649}
650
651static void mulu_fft_modp (const uintD* sourceptr1, uintC len1,
652                           const uintD* sourceptr2, uintC len2,
653                           uintD* destptr)
654// Es ist 2 <= len1 <= len2.
655{
656	// Methode:
657	// source1 ist ein Stück der Länge N1, source2 ein oder mehrere Stücke
658	// der Länge N2, mit N1+N2 <= N, wobei N Zweierpotenz ist.
659	// sum(i=0..N-1, x_i b^i) * sum(i=0..N-1, y_i b^i) wird errechnet,
660	// indem man die beiden Polynome
661	// sum(i=0..N-1, x_i T^i), sum(i=0..N-1, y_i T^i)
662	// multipliziert, und zwar durch Fourier-Transformation (s.o.).
663	var uint32 n;
664	integerlengthC(len1-1, n=); // 2^(n-1) < len1 <= 2^n
665	var uintC len = (uintC)1 << n; // kleinste Zweierpotenz >= len1
666	// Wählt man N = len, so hat man ceiling(len2/(len-len1+1)) * FFT(len).
667	// Wählt man N = 2*len, so hat man ceiling(len2/(2*len-len1+1)) * FFT(2*len).
668	// Wir wählen das billigere von beiden:
669	// Bei ceiling(len2/(len-len1+1)) <= 2 * ceiling(len2/(2*len-len1+1))
670	// nimmt man N = len, bei ....... > ........ dagegen N = 2*len.
671	// (Wahl von N = 4*len oder mehr bringt nur in Extremfällen etwas.)
672	if (len2 > 2 * (len-len1+1) * (len2 <= (2*len-len1+1) ? 1 : ceiling(len2,(2*len-len1+1)))) {
673		n = n+1;
674		len = len << 1;
675	}
676	var const uintC N = len; // N = 2^n
677	CL_ALLOCA_STACK;
678	var fftp_word* const x = cl_alloc_array(fftp_word,N);
679	var fftp_word* const y = cl_alloc_array(fftp_word,N);
680	#ifdef DEBUG_FFTP
681	var fftp_word* const z = cl_alloc_array(fftp_word,N);
682	#else
683	var fftp_word* const z = x; // put z in place of x - saves memory
684	#endif
685	var uintD* const tmpprod = cl_alloc_array(uintD,len1+1);
686	var uintP i;
687	var uintC destlen = len1+len2;
688	clear_loop_lsp(destptr,destlen);
689	do {
690		var uintC len2p; // length of a piece of source2
691		len2p = N - len1 + 1;
692		if (len2p > len2)
693			len2p = len2;
694		// len2p = min(N-len1+1,len2).
695		if (len2p == 1) {
696			// cheap case
697			var uintD* tmpptr = arrayLSDptr(tmpprod,len1+1);
698			mulu_loop_lsp(lspref(sourceptr2,0),sourceptr1,tmpptr,len1);
699			if (addto_loop_lsp(tmpptr,destptr,len1+1))
700				if (inc_loop_lsp(destptr lspop (len1+1),destlen-(len1+1)))
701					throw runtime_exception();
702		} else {
703			var uintC destlenp = len1 + len2p - 1;
704			// destlenp = min(N,destlen-1).
705			var bool squaring = ((sourceptr1 == sourceptr2) && (len1 == len2p));
706			// Fill factor x.
707			{
708				for (i = 0; i < len1; i++) {
709					x[i].w0 = lspref(sourceptr1,i);
710					x[i].w1 = 0;
711					x[i].w2 = 0;
712				}
713				for (i = len1; i < N; i++) {
714					x[i].w0 = 0;
715					x[i].w1 = 0;
716					x[i].w2 = 0;
717				}
718			}
719			// Fill factor y.
720			if (!squaring) {
721				for (i = 0; i < len2p; i++) {
722					y[i].w0 = lspref(sourceptr2,i);
723					y[i].w1 = 0;
724					y[i].w2 = 0;
725				}
726				for (i = len2p; i < N; i++) {
727					y[i].w0 = 0;
728					y[i].w1 = 0;
729					y[i].w2 = 0;
730				}
731			}
732			// Multiply.
733			if (!squaring)
734				fftp_convolution(n,N, &x[0], &y[0], &z[0]);
735			else
736				fftp_convolution(n,N, &x[0], &x[0], &z[0]);
737			#ifdef DEBUG_FFTP
738			// Check result.
739			for (i = 0; i < N; i++)
740				if (!(z[i].w2 < N))
741					throw runtime_exception();
742			#endif
743			// Add result to destptr[-destlen..-1]:
744			{
745				var uintD* ptr = destptr;
746				// ac2|ac1|ac0 are an accumulator.
747				var uint32 ac0 = 0;
748				var uint32 ac1 = 0;
749				var uint32 ac2 = 0;
750				var uint32 tmp;
751				for (i = 0; i < destlenp; i++) {
752					// Add z[i] to the accumulator.
753					tmp = z[i].w0;
754					if ((ac0 += tmp) < tmp) {
755						if (++ac1 == 0)
756							++ac2;
757					}
758					tmp = z[i].w1;
759					if ((ac1 += tmp) < tmp)
760						++ac2;
761					tmp = z[i].w2;
762					ac2 += tmp;
763					// Add the accumulator's least significant word to destptr:
764					tmp = lspref(ptr,0);
765					if ((ac0 += tmp) < tmp) {
766						if (++ac1 == 0)
767							++ac2;
768					}
769					lspref(ptr,0) = ac0;
770					lsshrink(ptr);
771					ac0 = ac1;
772					ac1 = ac2;
773					ac2 = 0;
774				}
775				// ac2 = 0.
776				if (ac1 > 0) {
777					if (!((i += 2) <= destlen))
778						throw runtime_exception();
779					tmp = lspref(ptr,0);
780					if ((ac0 += tmp) < tmp)
781						++ac1;
782					lspref(ptr,0) = ac0;
783					lsshrink(ptr);
784					tmp = lspref(ptr,0);
785					ac1 += tmp;
786					lspref(ptr,0) = ac1;
787					lsshrink(ptr);
788					if (ac1 < tmp)
789						if (inc_loop_lsp(ptr,destlen-i))
790							throw runtime_exception();
791				} else if (ac0 > 0) {
792					if (!((i += 1) <= destlen))
793						throw runtime_exception();
794					tmp = lspref(ptr,0);
795					ac0 += tmp;
796					lspref(ptr,0) = ac0;
797					lsshrink(ptr);
798					if (ac0 < tmp)
799						if (inc_loop_lsp(ptr,destlen-i))
800							throw runtime_exception();
801				}
802			}
803			#ifdef DEBUG_FFTP
804			// If destlenp < N, check that the remaining z[i] are 0.
805			for (i = destlenp; i < N; i++)
806				if (z[i].w2 > 0 || z[i].w1 > 0 || z[i].w0 > 0)
807					throw runtime_exception();
808			#endif
809		}
810		// Decrement len2.
811		destptr = destptr lspop len2p;
812		destlen -= len2p;
813		sourceptr2 = sourceptr2 lspop len2p;
814		len2 -= len2p;
815	} while (len2 > 0);
816}
817
818#undef FFT_P_94
819#undef FFT_P_92
820#undef w0
821#undef w1
822#undef w2
823#undef W3